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Surveillance systems often struggle with managing dynamic spatial-temporal data streams due 

to information's vast volume and velocity. To address this, we introduce a novel self-acting 

framework tailored explicitly for generating unique framesets in an unsupervised video 

environment. Our approach leverages efficient data management techniques to extract and 

compress video data without losing critical details while filtering out irrelevant duplicated data, 

thereby enhancing real-time monitoring and analysis capabilities. We validate our methodology 

using a substantial dataset of one terabyte of surveillance footage, from which 26,454 unique 

frames were extracted, covering various activities and interactions within home premises, from 

daily chores to social interactions. The results demonstrate significant improvements in 

processing speed and data reduction, enabling better resource management. This research 

contributes to more effective home security solutions by providing a streamlined approach to 

managing dynamic data streams and identifying patterns often overlooked by traditional 

surveillance methods. 

Keywords: Data stream management, Video data extraction, Surveillance system, Real-time 

analysis. 

 

INTRODUCTION 

Video data has become a pivotal resource in various sectors, particularly enhancing security and surveillance 

measures. Managing this data efficiently is crucial to extracting actionable insights [1] and ensuring timely responses 

to security threats. The data source in a surveillance system captures continuous footage that needs to be stored, 

processed, and analyzed [2]. Managing this video data cannot be overstated, as it directly impacts the ability to detect 

anomalies, identify suspicious activities, and provide real-time alerts [3]. Effective video data management involves 

organizing and storing the relevant data efficiently. This underscores the necessity of developing robust 

methodologies for handling unsupervised data's dynamic and extensive nature [4]. Dynamic data streams refer to 

continuous flows of data generated in real-time and can change rapidly as new information is captured. Managing 

dynamic data streams involves handling large volumes of incoming data [5], ensuring real-time processing, and 

making the data available for immediate or near real-time [6] analysis and interpretation [7]. Combining data from 

multiple cameras to create a cohesive view of events is complex. Extracting meaningful insights from spatiotemporal 

[8] data that correlate events across different times and locations involves sophisticated analytical techniques and 

tools [9]. This research investigates the necessity and significance of data management in surveillance systems by 

examining the intricacies of data storage, resource optimization, and analytical enhancements [10]. The main 

objectives of the proposed research work are, 

• The study introduces a new methodology to manage dynamic data streams efficiently. 
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• This study provides a practical solution for managing large-scale video data by automating unique video data 

extraction, significantly improving resource management without compromising critical information. 

• The research targets home security, where surveillance data is continuously generated, and the method has 

been validated using 1TB of primary surveillance data. 

METHODS 

The proposed methodology focuses on automating the management of dynamic data streams tailored explicitly for 

surveillance applications. The methodology systematically handles the ingestion, processing, and storage of video 

data, ensuring that critical information is captured and preserved without manual intervention from initial 

acquisition to final archiving. Algorithm 1 extracts frames from video files and saves them as individual images. For 

each video file in the input directory, Algorithm 1 checks if the file is in video format. If so, it creates a subfolder in 

the output directory to store the frames for that specific video. The VideoCapture function reads the video frame by 

frame. Each frame is then saved in the corresponding subfolder. The process continues until all frames from the video 

are extracted. Algorithm 2 is designed to identify and retain unique images by removing similar ones based on 

histogram comparisons. Initially, Algorithm 2 defines the paths to the relevant input-output directories. The folder 

path variable is set to the location within storage where the duplicate images are stored. Additionally, an empty list 

named unique images is initialized to keep track of the histograms of images identified as unique. This list is a 

reference for comparing new images against those already deemed unique. Algorithm 2 then iterates over every file. 

For each file, it checks whether the filename ends with the image extension. If so, the image is read into memory. To 

standardize the comparison process, each image is resized to a fixed dimension of 256x256 pixels, which helps 

maintain consistency. After resizing, the image is converted to a gray-scale or color [11]. This conversion simplifies 

the histogram calculation by reducing the image data to color channels, which is sufficient for comparing similarities. 

The methodology then calculates the histogram of the gray-scale or color image using Algorithm 3, focusing on the 

intensity distribution across 256 bins. The histogram is normalized and flattened into a one-dimensional array to 

facilitate an accurate comparison. This comparison uses the Bhattacharyya distance metric, which quantifies the 

similarity between two histograms, where a lower value indicates more remarkable similarity. A threshold of 0.07 is 

set; if the similarity score falls below this threshold, the image is considered similar [12]. If the image is determined 

to be unique, its histogram is appended to this list for future comparisons. Subsequently, Algorithm 2 ensures the 

output directory designated for unique images exists. The unique image is then saved to this directory with a modified 

filename. Algorithm 2 dynamically manages directories throughout the process, ensuring that input and output paths 

are correctly structured and accessible. The proposed methodology effectively filters out highly similar images by 

systematically resizing, converting, and comparing images based on their histograms, thereby maintaining a 

collection of unique visuals [13]. 

Algorithm 1 Extracting Frames from Videos 

Require: input path (Folder containing videos), output path (Folder to store extracted frames) 

Ensure: Extract frames from each video in the input directory and store them in the output directory. 

1: Mount the storage 

2: Ensure the output directory exists: 

3: if output  path does not exist then 

4: Create the output directory output  path 

5: end if 

6: Loop through all files in the input directory: 

7: for each filename in input path do 

8: if filename ends with .dav then 

9:  Define video path as the path to the video file 

10:  Open the video file: VideoCapture(video  path) 

11:  Initialize count to 0 
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12:  Define video output  path as the subfolder to store frames for this video 

13:  if video  output path does not exist then 

14:   Create the subfolder video output path 

15:  end if 

16:  Extract frames from the video: 

17:  while video has more frames do 

18:   Read the next frame from the video 

19:   if frame read is successful then 

20:    Define frame  path as the path to save the current frame 

21:    Save the frame to frame path 

22:    Increment count 

23:   else 

24:    Break the loop 

25:   end if 

26:  end while 

27: Print the message: print(f’Number of frames for {filename}:’, count) 

28: end if 

29: end for 

30: function VideoCapture(video path) 

31: Initialize VideoCapture object: cap ← source 

32: if ¬ cap is Opened then 

33:  Output: ”Error: Could not open video source.” return 

34: end if  

35: Loop: 

36: while True do 

37:  Read a frame: ret,frame ← cap 

38:  if ¬ret then    ▷ No frame returned (end of video) 

39:   Break    ▷ Exit the loop 

40:  end if  

41:  Process frame:  

42:  Display the frame  

43:  if waitKey(1)&0xFF == ord(’q’) then ▷ Check for exit key 

44:   Break 

45:  end if 

46: end while 

47: Release resources and  



674   
 

J INFORM SYSTEMS ENG, 10(16s) 

48: Close all windows 

49: end function 

Algorithm 2 Removing Duplicate Images and Extracting Unique Ones 

Require: folder path (Path to the folder with images), save path (Path to store unique images)  

Ensure: Detect and save unique images based on histogram comparison. 

1: Mount the storage 

2: Initialize list unique images to store histograms of unique images. 

3: Loop through all image files in folder path: 

4: for each filename in folder path do 

5: if filename ends with .jpg then 

6:  Load image img from filename 

7:  Resize img to (256, 256) 

8:  Convert img to grayscale or color 

9:   Calculate histogram of the grayscale or color image using  

CalculateHistogram(image, channels, mask, histSize, range) 

10:  Normalize the histogram using NormalizeHistogram(hist, normType) 

11:  Flatten the histogram for comparison 

12:  Check similarity of the current image with previous unique images: 

13:  Initialize similar to False 

14:  for each histogram, hist ref in unique images do 

15:    Compare hist and hist ref using CompareHistograms(hist, hist-ref, method)  

with Bhattacharyya distance 

16:   if similarity < threshold ( 0.07) then 

17:    Set similar to True 

18:    Break the loop 

19:   end if 

20:  end for 

21:  if similar is False then 

22:   Add current histogram hist to unique images  

23:   Save the unique image to the output folder: 

24:   if save path does not exist then 

25:    Create save path  

26:   end if 

27:   Define the output file name: save name = filename + ’ unique.jpg’ 

28:   Save image to save path 

29:  end if 

30: end if 
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31: end for 

Algorithm 3 Histogram Calculation, Normalization, and Comparison 

1: function CalculateHistogram(image, channels, mask, histSize, range) 

2: Input: 

3: image: Input image 

4: channels: Channels to calculate histogram for (e.g., grayscale or color) 

5: mask: Region of interest (optional, can be None) 

6: histSize: Number of bins (e.g., 256) 

7: range: Pixel intensity range (e.g., 0 to 255) 

8:  1. Split the image into specified channels: ch ← split(image) 

9:  2. Count the number of pixels for each intensity value in channels 

10:        3. Create an array hist of size histSize, where each element stores the count of pixels  

        for the corresponding intensity value 

11:  4. If a mask is provided, only consider pixels inside the mask when counting 

12:  5. Return the computed hist for the image 

13: return hist 

14: end function 

15: function NormalizeHistogram(hist, normType) 

16: Input: 

17: hist: The histogram to normalize 

18: normType: Type of normalization (e.g., cv2.NORM MINMAX)  

19:           1. Calculate the minimum and maximum values in the hist: 

20:  min_valmin(hist) 

21:  max_valmax(hist) 

22:  2. If using NORM MINMAX, scale all values to be between 0 and 1: 

23:  For all elements i in hist: 

24:   hist[i]hist[i]-min_val / max_val-min_val  

25:          3. Return the normalized hist 

26:         return hist 

27: end function 

28: function CompareHistograms(hist1, hist2, method) 

29: Input: 

30: hist1: The first histogram 

31: hist2: The second histogram 

32: method: The comparison method (e.g., Bhattacharyya distance)  

33:        1. Compute the sum of products of corresponding bins from hist1 and hist2: 
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34:   s ← sum of √ hist1[i] · hist2[i] 

35:   2. Use the formula for Bhattacharyya distance: 

36:    d √1 – ((1 / h¯1  · h¯2  · n2) s) 

37:  where h¯1 and h¯2 are the mean values of the two histograms and n is the number of bins. 

38:  3. Return d as the Bhattacharyya distance between hist1 and hist2 

  

 39:        return d 

 40: end function 

Residential Activity Capture Dataset: A detailed and diverse collection of CCTV footage datasets is required to 

enable effective data stream management tailored to home environments. RACD, comprising 26,454 unique frames 

extracted from 1TB of primary data collected over a month, has been curated to facilitate this. The dataset was 

collected from six distinct channels labeled A1 to A6. Channels A1, A2, and A3 capture footage from the front area of 

the home premises, while channels A4, A5, and A6 cover the restricted area. The dataset encompasses various 

categories, ranging from routine activities to specialized visits. RACD consists of 12 classes. A total of 672 hours of 

CCTV footage was collected. From this, 63 videos were selected to cover various activities within the premises. Each 

video, with a duration of 1 hour, generates an average of 50,000 frames using Algorithm 1. After processing, 26,454 

unique frames were extracted using Algorithms 2 and 3.  

Running Platform: The research study utilized the NVIDIA T4 GPU, a versatile and efficient GPU designed for 

machine learning, deep learning, and other high-performance computing tasks. It is part of the NVIDIA Tesla series 

and is based on the Turing architecture, which offers substantial improvements in performance and efficiency over 

previous generations [14]. The T4 GPU includes 2,560 CUDA cores and 320 Tensor Cores, specifically engineered to 

accelerate deep learning workloads by performing mixed-precision matrix computations much faster than general-

purpose cores [15]. 

RESULTS AND DISCUSSION 

Table 1 provides a detailed comparison between the original Data Stream (raw footage) and the extracted data stream 

(processed footage) across various activity classes, such as waste collection, postal and utility services, guest visits, 

and restricted area monitoring, highlighting significant reductions in frame count, run time, and size. The original 

data is large and resource-intensive, with lengthy runtimes and high storage demands. After processing, the extracted 

data retains only the most relevant frames, resulting in substantial reductions. This optimization makes data more 

manageable and efficient for anomaly detection or rare event identification in CCTV footage. 

Table 1 Comparison of Original and Processed Data Streams 

Classes 

Original Data Stream Extracted Data Stream 

Frame 

Count 

Run Time 

(Minutes) 

Size 

(MB) 

Frame 

Count 

Run Time 

(Minutes) 

Size 

(MB) 

Waste Collection 150494 180 1400 1273 30 660 

Postal and Utility 

Services 
148393 180 1340 1238 27 651 

Guest Visits 293075 360 2680 2487 60 1280 

Family Interactions 301350 360 2700 2606 62 1300 

Household Services 296149 360 2690 2534 61 1290 

Vehicle Services 148751 180 1340 1232 27 648 

Financial Transactions 298396 360 2690 2568 61 1290 

Newspaper Delivery 150534 180 1400 1288 30 658 

Delivery Services 149125 180 1400 1293 30 660 
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Security Incidents 146420 180 1340 1229 27 648 

Restricted Area 146420 1,260 9500 8706 210 4610 

 

CONCLUSION 

The proposed methodology and primary dataset aim to enhance the reliability and accuracy of surveillance solutions, 

providing a robust foundation for data stream management. Across all classes, the processed data streams exhibit a 

notable reduction in size and processing time, reflecting the algorithm’s robust ability to manage and condense large 

volumes of data efficiently. The successful extraction and compression of data streams without compromising the 

integrity of critical information demonstrate the method’s practical applicability in real-time systems. The data 

reduction highlights the effectiveness of duplicate removal and focusing on unique elements. This can be crucial for 

applications that require immediate response and decision-making. 
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