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The chosen direction of work, the loads acting on the structure, including some long-term ones, 

are of a random temporary nature. An unfavorable combination of several random loads over 

time has a low probability. The work of combinations of snow loads is devoted to solving the 

problem of combining loads. The combination coefficients largely determine the magnitude of 

the loads on the structure, and therefore its parameters, material consumption and cost on the 

one hand; on the other hand, the correct assignment of these coefficients ensures the reliability 

of the structures. The insufficiency of statistical data on loads and the imperfection of 

theoretical load models forces designers to create structures with a certain margin to 

compensate for these shortcomings, which leads to waste of materials. In the design standards 

in force in our country, when calculating structures and foundations for the action of two or 

more temporary loads, combination coefficients (...) 1 are introduced, which multiply the 

design values of each of the existing loads. 

Keywords: Beam, support moments, load, moment of inertia, recurrence relation, conditional 

probability. 

 

INTRODUCTION 

At present, when Uzbekistan is tasked with creating cost-effective structures of optimal reliability, the 

theoretical justification of building codes and regulations is acquiring important national economic significance. 

The chosen direction of work seems relevant both for engineering practice and for the development of 

modern statistical methods of structural mechanics. 

Using the methods of the theory of extreme order statistics, models of snow loads have been 

developed. The theoretically based choice of models made it possible to obtain models in a form quite convenient 

for subsequent use and with their help to solve the problem of combining 2, 3, 4 and (theoretically) more loads. 

Problems in such a formulation are considered for the first time, which determines the novelty of the main content 

of the work. The significance of the work lies in the fact that the proposed probabilistic calculation method makes it 

possible to take into account the random nature of the loads acting on the structure, snow loads, based on the 

principle of equireliability. 

Standard snow load values are obtained based on the weight of the snow cover on 1 horizontal surface 

of the earth, taking into account the cover profile and the snow load pattern on it. The weight of the snow cover is 

determined as a result of snow surveys systematically carried out at weather stations.  
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During the survey, among a number of characteristics of the snow cover, the height and density of the 

snow are determined, which, in turn, serve as the basis for calculating the water reserve in the snow. The water 

reserve in snow, expressed in mm, corresponds to the weight of the snow cover in kg/or snow load [1]. 

The results of observations of snow cover, including the amount of water in the snow on various dates, 

are published in the monthly meteorological departments of the hydrometeorological service.  

Calculations of probabilistic values of snow cover weight were carried out using a statistical series 

consisting of annual maximums of water reserves in snow with a repetition period of 2, 5, 10 and 20 years. Based on 

these calculations, meteorologists carried out zoning of the territory of the USSR according to the weight of snow 

cover, possible once every 5 years. [1,2]. 

MATERIALS AND METHODS 

Research into the patterns of snow removal from pavements under the influence of wind, carried out 

at TsNIISK by V.A. Otstavnov and L.S. Rozenberg [3,4,5,6,7], made it possible to take into account in the standards 

the reduction in the load from snow on a significant part of the types of pavements. 

Snow load is a temporary load on structures, the nature of which varies from year to year according to 

a random law. Observations of snow load received during the winter period with a time interval τ are shown on the 

graph (Fig. 1). 

 

FIGURE 1. 

 If the snow load is the only load acting on the structure, then we are only interested in the 

distribution law for the maximum value of the snow load during the winter. This distribution is usually assumed to 

be double exponential. 

 

The notation is adopted in (22).   The numerical values of parameters  and  for 

Moscow are given in [4].    ,        

If the structure is subject to loads other than snow, then we need to create a model of the snow load as 

a function of time to calculate the structure for all existing loads. In the snow load models known in the literature, 

the latter is represented as a non-stationary random process. Such a representation greatly complicates the 

subsequent probabilistic calculation of structures under the influence of several random loads. The thesis proposes 

a model in the form of a set of independent identically distributed random variables. In this case, the actually 

observed snow load values are represented by the order statistics of this population [8,9,10,11,12,13]. 

Let us show the possibility of representing the snow load for the winter period in the form of a sample 

volume n21 Х,...,Х,Х  where  independent random variables with the same distribution law. The time 

interval τ corresponding to each random variable will be clarified later. The random process of snow load X(t) is 

represented as a step function:  

)2(,2,1)],:)1[(,)( niiitXtX i =−= 
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Next, we make the following assumptions, which do not contradict common sense: 

1. There are  independent and identically distributed random variables n:nX
 with a distribution law 

 such that their order statistics n:nn:2n:1 Х,...,Х,Х
 are observable snow accumulation processes. 

2. Random values of load increment n::1nn:nnn:1n:22 XXU...,XXU −−=−= independent.  

From assumption 2 it follows that the law of distribution of random variables n21 Х,...,Х,Х  is 

exponential, i.e. .e1)x(F x−−=  Evidence of this fact was given by J. Galambos. 

Based on this theorem, it is easy to prove that for a sequence of independent random variables 

n21 Х,...,Х,Х  with a distribution function of .e1)x(F х−−=  limit distribution law is double exponential, i.e.: 

  )3(,)exp(lim y

nnn
n

eуbaZP −

→
−=+

 

nn b,а   - normalizing constants, equal 

.
 

)4(,1ln == nn bиna
 

If 

то,e1)x(F х−−=
 

)15.1(
1

b,
nln

а nn


==

 

 Next we will do this. Size  

nbb =  we consider known  . The value   is obtained from the relation 00274,0
b

1
== . 

Let's adjust the value nаа =  a little compared to (3) so that the number )
b

a
exp(n =  is equal to an integer. 

We get 
2м

н
113,936a,13n ==  . 

For the obtained value, it is quite plausible to assign a value equal to 10 days to the time interval, and a 

value equal to 130 days to the duration of winter. 

To substantiate our model, we can give the following reasoning. Let n21 Х,...,Х,Х be an 

independently identical distribution of a quantity with a distribution function )x(F . 

Let n:nn:2n:1 Х,...,Х,Х  be the order statistics corresponding to the random variables )nj1(Х j  . 

Let's put .2j,XXU...,XXUXU n::1jn:jnn:1n:22n:11 −=−== −  

For an exponential distribution with a distribution function of, it is easily shown that the random 

variables are independent and have an exponential distribution. It turns out that the converse of Theorem 2 holds: 

Let there be  independent variables with a common continuous distribution function of. Let us assume that the 

random variables are independent. Then: 
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;1)( xexF −−=
    

;,...,, 21 nХХХ
  

);(xF
   

);1( jU j    
.1)( xexF −−=

 

Now a model is proposed that necessarily follows if we accept the assumption of independence of snow 

load increments over a time interval of 
10=

 days. 

To compare the value of the probability of the snow load not exceeding level x for k = 5, 10 and 20 

years according to formula (1) and formula  

  knxe1 −−  

 A random implementation of the snow load process according to the proposed model is shown in 

Fig. 2. 

Next, we will compare the developed model with the Poisson process model proposed by E.I. Fedorov, 

as well as with its possible generalization in the form of a process with random increments. 

TABLE 1. 

K 

 

Х   knxe1 −−  







 −
−− )

b

ax
exp(kexp

 

 

5 

2000 

2500 

3000 

3500 

0,7625513 

0,9334255 

0,9826434 

0,9955599 

0,7621770 

0,9334140 

0,9826478 

0,9955574 

 

1

0 

2100 

2500 

3000 

3500 

0,5814844 

0,8712831 

0,9665862 

0,9911400 

0,5809137 

0,8712616 

0,9655967 

0,9911345 

 

2

0 

2000 

2500 

3000 

3300 

0,3381242 

0,7591343 

0,9323607 

0,9823585 

0,3374608 

0,7590967 

0,9323770 

0,9823476 

 

FIGURE 2. Sequence n.o.r. random variables. 

In (..) the Poisson process was adopted as a snow load model. Let )t(Y  be the snow load. At 

0)0(Y,0t == . On the segment [0, ] where T is the duration of winter, at nv  time points process )t(Y  makes 

a jump by a certain constant value c. Discrete random variable n distributed according to Poisson's law, 
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)6(,
!

)(
k

n
eTP

k

n

k = −

 

 Where  

n  - mathematical expectation of value n on a segment [0, ]. 

 Moments in time at which process jumps occur - n21 Т,...,Т,Т
  

As is known, random variables  

n21 Т,...,Т,Т
 

Distributed as a set of order statistics of volume n taken from a uniform distribution on the segment 

[0, ]. 

 Random variables 1nnn12211 TT...,TT,T −−=−==   are distributed uniformly in the 

region  

)7(,,,...,2,1,0
1

Tni
n

i

ii = 
=


 

Parameters 
n

 and c were selected based on the following considerations. Random value of maximum 

snow load 

]T,0[t
1 )(EmaxZ



= 
 

Has a mathematical expectation and variance equal to:  

)8(,)(,)( 2 ncZDncZE ii ==
 

As is known [5], as the law of distribution of the random variable of the maximum winter snow load, 

we can take the double exponential  

 

Numerical parameters a and b for Moscow are given in (62): 

 ,             (10)  

The mathematical expectation and variance of a random variable with distribution function (9) are 

equal to:
 

)11(,
6

)(,)(
22

22





=+=

b
ZDbaZE

 

 

Where:
57721,0)1('Г −==−   is the value of the first derivative of the gamma function )x(F  at the 

point  

есть значение первой производной гамма-функция .1x =  
 

If we equate   
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]Z(D]Z[D,]Z(E]Z[E 2121 ==  

then you can find the parameters with and n . 

                     

)12(,
)(6

22





ba

b
с

+


=  

22

222

b

b)ba(6
n







+
=  

 For a and b, in accordance with (10), we obtain 

)13(,695,5,95,191 == nс
 

Figure 3 shows the trajectory of the Poisson process. The moments in time are random. 

n21 Т,...,Т,Т
 

We emphasize that any load model requires that the distribution of the random variable of the 

maximum load on a certain time interval [0,T] coincide with the distribution of the maximum obtained as a result 

of processing the observed sample of maximum values. Fulfillment of this requirement is necessary, if only because 

at small values of all other loads, the reliability of the structure is determined by the extreme values of the load in 

question. 

RESULTS AND DISCUSSION 

The disadvantage of the proposed model is the constancy of the snow load increment and, as a 

consequence, the discreteness of the random value of the maximum snow load. 

A natural generalization of the process model is a model with random increments of snow load at the 

moment of the jump. 

 

FIGURE 3. Poisson process model.
 

We will assume that at n time points the snow load increases by the value Ui (i=1, 2, … ,n). The number 

of jumps is a random variable with mathematical expectation. As mentioned above, from the assumption of 

independence of random variables Ui. It follows that their distribution law is exponential. 

The trajectory of the random process for this model is shown in Fig. 4. In contrast to the Poisson 

process model, for the latter model we can consider the option of a non-random variable and a constant time 

interval 



34  
 

J INFORM SYSTEMS ENG, 10(17s) 

;nn =    )1n(/T +=  

 The law of distribution of the maximum snow load during the winter  

  )15(,1
!

)(
0

1

i

i

x

i

т e
i

n
exF 



=

−− −=


 

 

FIGURE 4. Process model with independent increments. 

It is easy to show that the distribution function )x(Fи)x(F 21  in expressions (14) and (15) are 

comparable Parameters nи1  can be selected from the condition that functions )x(Fи)x(F 21 and distribution 

function )x(F0  from (9) are comparable. 

 To do this, the equalities must be satisfied: 

)16(,exp,
1

1 







==

b

a
n

b
  

1381,12n,00274,01 ==
 

 Thus, we have two snow load models. One model with jumps at random times, for which the 

maximum distribution law is (14) and the second model with jumps at a constant period of time and the maximum 

distribution law (15). 

 
)1n(/TТ +=

 

Note that in cases of probabilistic calculation of a structure under the influence of one snow load, the 

use of these two models or the use of a random value of the maximum load with distribution law 
)x(F0  gives 

almost identical results, since function 
)x(Fи)x(F,)x(F m

2

m

1

m

0 . Where m is the number of years, very quickly 

)4m( 
 becomes almost indistinguishable. This difference can only affect the problem of probabilistic 

combination of loads. 

Next, we will try to compare a model with random time intervals 1n21 ...,, + , where 

T... 1n21 =+++ +  and n are a random variable distributed according to Poisson’s law, and a model with a 

constant number of 1n +  deterministic time intervals, equal to )1n/(TT +=  in the load combination problem. 
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Let P(t,x) be the conditional probability of failure-free operation of the structure over a period of time t, provided 

that the snow load is equal to x.  

Then for the first model the probability of failure-free operation during time T is equal to 

)17(,...),(
!

)( 21

1

1
0

1

1

1

n

n

i

i

x

k

n

n ddddxxPe
n

n
etP  

 


+

=


−



=

−









=  

where n211n ...T  −−−−=+  

This expression requires complex calculations. A simpler expression for this probability is obtained for 

the second model  

)18(,),()(
1

0
110

1

+


−





= 

n
x

dxxТPetP
  

If we assume that the intervals T1 =  and n are random, we obtain the following approximation for 

)t(P : 

)19(,),(
!

)(
1

0
1

1

1
1

+


−


=

−





= 

n
x

n

n

n dxxТPe
n

n
etP
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Or in another form: 

)20(,),(1exp),()(
0 0

111
11 

 
−−












 −−= dxxТPendxxТPetP

xx    

Let us introduce the notation: 


+

=

−



=
1

1 0

121 )21(,),()...,,( 1

n

i

i

x

nn dxxPe  

 

Then the mathematical expectation of the function  
)...,,( n21n   

)22(,...)...,,( 2121


= nnnn ddd   

And formula (13) takes the form: 

)23(,
!

)(
0

n

n

n

n

n

n
etP 



=

−=  

Applying linearization to function )...,,( n21n   in the vicinity of mathematical expectations, we 

obtain in a first approximation  

)24(,)...,,( 21 nnn    

Next, formula (15), since )1n/(Ti += . 

 We get a more accurate formula in the form:  

)25(,][
2

1
)...,,(

1

,

2

2

2

21  
=  


+




+

n

i ji

ji

ji

n
i

i

n
nnn kD









  
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As known (4) 

)26(,
)2()1(

)1(
)])([(,

)1(

)1(
][

2

2

2

2

++

+−
=−−

+

+−
=

nn

jni
TTTTTE

n

ini
TTD jii

 

After making some simple transformations, we arrive at the formula for  

:)T(P2

)27(,),(),(),(
)2()1(
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!
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2
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n

t
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xn dxxTPedxxTPedxxTPe
nn

nn

n

n
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 

Where can you get an estimate of the error by replacing )Т(P2  with )Т(P1 . 

Thus, models of a random process with independent increments for random times of load surges and 

non-random times of these surges can be considered little different from each other. A model based on the 

application of the theory of order statistics is actually identical to a process model with random increments at non-

random points in time. 

The good agreement of all these models is an argument in favor of their adequacy. 

In the future, a model based on the theory of order statistics will be used, as it is the simplest for use in 

the task of combining loads. 

CONCLUSION 

Thus, models of a random process with independent increments for random times of load surges and 

non-random times of these surges can be considered little different from each other [2]. 

A model based on the application of the theory of order statistics is actually identical to a process 

model with random increments at non-random points in time. 

The good agreement of all these models is an argument in favor of their adequacy. 
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