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In evaluating brain malignancies, radiologists frequently look at several MRI sequences 
produced by multimodal imaging. Advanced MRI techniques that seek to correlate histological 
characteristics with radiological markers like cellular density or vascular structure have 
recently been the focus of neuro-oncology research. Currently, the most used imaging methods 
in clinical practice are T1-weighted sequences, which highlight anatomical characteristics, and 
T2-weighted sequences, which display oedema and can assist in determining cellularity. It is 
still challenging for radiologists to diagnose suspected gliomas or brain lesions on MRI using 
histological subtypes. However, because they usually rely on qualitative observations rather 
than predetermined quantitative thresholds, these diagnoses might be subjective. Without clear 
diagnostic thresholds, for instance, statements such as "low-to-moderate oedema could 
indicate tumor characteristics" are still ambiguous. As a result, tumor detection accuracy is still 
a major challenge, with existing techniques providing only mediocre reliability. 

AI has been a key component of neuro-oncology in recent years, with the potential to segment 

and categorize tumor subtypes in addition to detecting cancers in MR images. This study uses a 

DenseNet-based Convolutional Neural Network (CNN) model to improve brain tumor 

identification. The efficacy of pre-trained DenseNet and ResNet architectures in precisely 

detecting and describing brain cancers was assessed by comparing their performance under 

various settings. 

Keywords: brain tumor, glioma, magnetic resonance imaging, convolution neural network, 

dense net, and resent. 

 
INTRODUCTION 

An unchecked proliferation of aberrant tissue that creates a fibrous network inside the brain is called a brain tumor. 

Magnetic resonance imaging (MRI) is widely used by radiologists to identify and monitor brain tumors. However, it 

can be time-consuming and error-prone to manually analyze the enormous amount of MRI pictures and find 

malignancies, which could affect prompt and precise patient care. The diagnosis is made more difficult by the fact 

that tumor cells and healthy tissue might look alike. As a result, the demand for an automated tumor detection 

system with high accuracy is rising. This study investigates the classification of brain MRIs as either tumor-affected 

or healthy using the deep learning algorithms. 
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This study uses a convolutional neural network (CNN) that has already been trained to 2D brain MRIs to propose a 

method for brain tumor detection. For tumor location and subtype identification following detection, this method 

may employ segmentation and classification models. To effectively train the model, we employ different MR images 

with varying form, tumor size, location and intensities. We compare the model with other designs that use residual 

connections in order to assess the model's performance in more detail. 

Every layer in a dense block is connected to every other layer in a revolutionary connection pattern found in a new 

CNN architecture known as DenseNet [1, 2]. This architecture enhances feature reuse, reduces model size, and 

lessens the likelihood of overfitting by granting each layer access to the feature maps of all previous layers. 

Additionally, the loss function can implicitly provide deep supervision by supervising individual layers thanks to 

DenseNet's shortcut pathways. DenseNet is ideal for pixel-level predictions because of these characteristics. When 

used in CNN architectures, dense blocks enhance performance by preserving information flow as network depth 

rises. As the distance between input and output layers grows, DenseNet's connectedness reduces this problem, 

enabling effective information transfer, in contrast to typical CNNs. 

Our method uses a large pre-processed dataset of T1-weighted contrast-enhanced MR images to train DenseNet 

models. In order to minimize overfitting, the model's architecture is improved by varying the number of 

classification layers, layer layout, hyperparameters, and dropout layers. Furthermore, data augmentation is used to 

expand the number of MRI slices, which improves the accuracy and resilience of the model even more. 

RELATED WORK 

Magnetic resonance imaging (MRI) is widely utilized in medical imaging because it produces high-resolution, 

radiation-free images. This enables non-invasive evaluation of brain disorders by radiologists [8], [9]. On the other 

hand, the computer-Aided Diagnosis (CAD) method was created to help identify brain malignancies early without 

requiring human assistance. CAD systems use MRI image analysis to produce diagnostic reports that provide 

radiologists with guidance [10]. 

The CAD process in medical imaging has been greatly enhanced by deep learning (DL) and machine learning (ML) 

applications [11–13], increasing the precision of brain tumor diagnosis. Machine learning techniques are based on 

feature extraction, selection, and classification. Many feature extraction techniques, including contour, texture- 

based, thresholding, and clustering, are used to segment tumors in the skull [14]. These techniques particularly 

extract important information from MRI images to improve accuracy [15]. However, important information may be 

lost during feature extraction [16]. 

By using the source images directly [17], DL approaches overcome this constraint and do away with the 

requirement for manually created features. Image features can be efficiently extracted by Convolutional Neural 

Networks (CNNs), a DL model with many convolution layers [18], [19]. Medical imaging frequently lacks huge 

datasets, despite CNNs' superior performance with them [20]. This problem is lessened by transfer learning, which 

helps achieve accuracy with little data by employing a model that has already trained on a dataset for classification 

[21], [22]. 

CNNs eliminate the need for human feature extraction techniques by offering a segmentation-free method. As a 

result, researchers have developed a number of CNN architectures, particularly for multiclass brain tumor 

identification. A 16-layer CNN model, for instance, was presented by [24] and evaluated on two publicly accessible 

datasets. A novel CNN-based method outperformed six machine learning models with a prediction accuracy of 

97.9% after the tumor region was retrieved using the Fuzzy C-Means clustering algorithm [25]. 

CNNs have two main limitations even though they work effectively with large image datasets: 

 Large image datasets are often required for training, which can be challenging in medical imaging. 

 CNNs may struggle with image variations, such as rotation or tilt. This study addresses this by augmenting 

the dataset with new image variants. 

Because only the fully linked layers need to be trained, this approach uses a pre-trained model with updated 

weights for classification, consuming less processing power. These benefits have led to the application of transfer 

learning models in the diagnosis of brain cancer. Talo et al., for example, used a pre-trained ResNet34 model to 
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differentiate between normal and pathological MRI brain pictures. They used significant data augmentation to 

obtain remarkable forecast accuracy [26]. 

METHODOLOGY 

Fig. 1 describes the workflow utilized in this study to identify malignancy in MR images. To reduce noise and 

enhance picture quality, the MR images are first preprocessed. Through inverse filtering and noise smoothing, the 

Wiener filter is used to lower the mean square error. The contrast of the denoised photos is then improved via 

histogram equalization. A trained binary classifier is then used to detect tumors from these contrast-enhanced MRI 

images. 
 

 
Three sources provided the MR image samples used in this investigation: the Br35H dataset, the SARTAJ dataset, 

and figshare. 9,523 MRI pictures of human brains divided into four classes meningioma, glioma, no tumor and 

pituitary are included in this integrated dataset. The Br35H dataset was especially used to source images for the "no 

tumor" class. Images classified as "no tumor" label as "0," while all other categories label as "1" to train the binary 

classifier. Training and testing were divided in an 80:20 ratio. 

 

With the goal of minimizing the mean square error (MSE) between the output and the noise-free signal, the Wiener 

filter is an ideal linear filter that generates an output that closely resembles the original signal. Both noise and 

useful signal components are assumed to be present in the input, and they are both handled as generalized 

stationary processes with second-order statistical properties. The Wiener filter is a non-adaptive, frequency-domain 

implementation that treats noise and pictures as random processes. The filter's goal, which may be expressed as an 

optimization problem, is to minimize the MSE in order to estimate an ideal version of the original picture. Fig. 2 

displayed the denoised image together with the corresponding raw image. This is how it is expressed 

mathematically: 
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the essential preprocessing technique for enhancing CAD in MRI is contrast enhancement. The Improving the 

original image's quality is the main goal of image enhancement, especially when it comes to emphasizing particular 

significant components. Histogram equalization, a method for enhancing low contrast photos, balances pixel 

distribution and increases the dynamic range of pixel values to produce a high contrast image [7]. This method is 

based on the fundamental idea of histogram equalization, which is the image's gray-level values' probability 

distribution [8]. The discrete function that represents the pixels of an image I ranges from 0 to L-1. The value of L 

for an 8-bit picture is 256. 

 

 

By differentiating Eq. 3 with respect to 𝑟 
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Consequently, Ps(s) is a normalized distribution, and the histogram can be equalized using the transfer function 

provided in Eq. 3. Fig. 3 displays the outcome of histogram equalization. 

The DenseNet Architecture 

Every layer in the DenseNet architecture is intimately connected to every other layer, facilitating an effective 

information flow across the network. The vanishing gradient problem that frequently arises in models with many 

layers is lessened by this design. DenseNets, which use fewer parameters than traditional CNNs, concentrate on 

feature reuse rather than creating deep or wide topologies to increase representational capacity. DenseNets use 

fewer parameters than conventional CNNs because of their architecture, which eliminates the need for redundant 

feature maps. DenseNets address issue by adding only a few additional feature maps per layer, but ResNet versions 

have demonstrated that many layers contribute minimally. Because each layer receives direct gradient information 

from the input and the loss function, DenseNets can handle very deep networks efficiently thanks to this 

minimalistic architecture, improved information flow, and gradient access. 

 

Traditional feed-forward neural networks use a series of composite processes, usually including an activation 

function, batch normalization, and either a convolution or pooling operation, before sending the output of each 

layer sequentially to the following layer. The following is a mathematical expression for this composite operation 
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Each layer has access to both its prior feature maps and the collective knowledge. Each layer then contributes 

additional data to this body of knowledge in the form of concrete k feature maps of information. Fig.5 provides a 

very basic representation of the architecture of the DenseNet-121, which was utilized in this work. 

 

Transition Block operates as a 1x1 convolution with 128 filters. The volume and quantity of feature maps are split in 

half after a 2x2 pooling with a stride of 2. 

EXPERIMENT AND OUTCOME 

To increase the batch size and learning rate in this investigation, a random search was employed. Potential values 

were found as contenders after the search; assessing these candidates aided in identifying the optimal range. The 

ideal batch size and learning rate were selected for the model's training based on the outcomes of the random 

search. The datasets were trained using the DenseNet model with bottleneck layers, compression, and a growth rate 

of 12. Batch sizes ranged from 16 to 128 and the learning rate varied from 0.001 to 0.1. The model was trained for 

50 epochs with weight decay set to 0.0001 and momentum set to 0.9. 

Transfer learning is an effective deep learning method that accelerates learning and improves model accuracy by 

using model parameters that have previously been trained on a larger dataset. In this scenario, only training the 

fully linked layers and leaving the CNN layers frozen allowed for faster training and higher performance customized 

to brain MRI images. Pre-trained weights were adjusted to account for the special features of this brain MRI 

dataset. Convolutional layers, batch normalization (BN), and a rectified linear unit (ReLU) activation layer make up 

a dense block in the DenseNet architecture. The last dense block is followed by a global average pooling layer that is 

linked to a Softmax classifier. In a DenseNet with L layers, each pair of layers has a direct connection with every 

other pair, for a total of L(L+1)/2 connections. 

The Batch normalization was used to normalize the activations or the inputs of a previous layer. Dense blocks with 

similar sizes but different filter configurations make up DenseNet. Batch normalization is done by a Transition 

Layer that downsamples. Average pooling down-samples are carried out by figuring out the average value of each 

feature map segment. Weights were changed throughout training by the Adamax optimizer, and the loss function 

was Cross Entropy. Adamax, an extension of the Adam optimization technique, produces efficient optimization by 

modifying gradient descent to the infinite norm. 

DISCUSSIONS 

The algorithm successfully distinguished between photographs with brain tumors and those that were healthy after 

it had been trained to classify images it had never seen before. The trained model produced dependable 

classification accuracy for the test photos by reducing validation loss. As seen in Fig. 6, the addition of a denoising 

step in pre-processing employing a Wiener filter enhanced model performance. The model's accuracy for the brain 

tumor and healthy classes was evaluated using recall, F1-score, accuracy, and precision metrics. Furthermore, the 

model's performance was contrasted with that of other CNN designs and optimization techniques, including ResNet 

and Inception. 
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The model's training accuracy is dependent on the sample photos used. Model performance over epochs is depicted 

in Fig. 7, which consistently shows an increase in accuracy with increasing epochs. DenseNet outperformed ResNet- 

50 and Inception V3, which obtained 86.3% and 76.2% accuracy, respectively, to earn the greatest training accuracy 

of 91.94%. Despite the inclusion of dropout, batch normalization, and regularization approaches, the notable 

discrepancy between Inception V3's validation and training accuracies raises the possibility of overfitting. 
 

 
In this case, training loss demonstrates which attributes to include and how well the model is learning with each 

iteration. to lower mistakes and enhance the model's capacity to differentiate between brain tumors and typical 

cases in later rounds. When differentiating brain tumor patients from healthy cases, a The DenseNet model is 

highly accurate and generates less errors when the loss value is smaller. 



J INFORM SYSTEMS ENG, 10(17s) 356 
 

 

 

The identity shortcut that stabilizes training limits the representational capacity of ResNet, but multi-layer feature 

concatenation gives DenseNet a larger capacity. The results in Table 1 show that our suggested model outperforms 

ResNet by a wide margin. Several optimization procedures are used to further evaluate the DenseNet design's 

robustness, and the outcomes are listed in Table 2. 

 

 

 
AdaMax's primary benefit over SGD is its significantly lower sensitivity to hyper-parameter selection. AdaMax 

employs the ADAM estimate method's second momentum component. This provides a weight optimization 

problem solution that is more reliable. To address the gradient descent issue, Stochastic Gradient Decent (SGD) 

was created, which adjusts parameters with a single record. However, because each record must propagate both 

forward and backward, SGD takes a long time to converge. Because to his weight degradation, Adam is not always 

able to make the best decisions. Consequently, The model trained with the ADAMAX optimizer produced superior 

results in terms of accuracy, precision, and other metrics, as was evident from the results. 

FINAL RESULT 

The DenseNet architecture and CNN suggested as useful methods for MRI-based brain tumor diagnosis. A 

systematic review of papers pertaining to deep learning-based diagnostic techniques is becoming more and more 

necessary as the prevalence of brain illnesses and related research increases. This study aims to assist researchers 

and educators by offering a quantitative analysis of relevant literature. A comparative analysis was also conducted 

to automatically select the optimal optimizer, and the findings indicated that Adamax outperformed Adam and 

SGD. To choose the best learning rates and batch sizes for our trials, we employed a random search strategy. The 

findings showed that the DenseNet model can be trained well with 64 batch size and with 0.01 optimal learning 

rate. These values demonstrated their efficacy in training with an average accuracy of almost 90%. 
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