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Cybersecurity threats Continuously develop and adapt. Posing serious risks for companies, 

governments, and individuals worldwide. Traditional methods for detecting these threats, which 

often rely on fixed rules and established patterns, are ineffective against attackers' dynamic and 

sophisticated tactics. Detecting cyber threats, especially for malware images, presents a 

considerable challenge for organizations and individuals. Conventional detection techniques, 

which often depend on fixed rules, are increasingly ineffective against the sophisticated 

strategies utilized by today’s attackers. That calls for creating more sophisticated and intelligent 

cyber defense systems, integrating autonomous agents that can learn and make decisions 

without relying on human knowledge. This paper employed Reinforcement Learning techniques, 

which is one of the machine learning fields based on trial and error for learning, to propose the 

Detection of Cyber Image Threats by the DQN (DCITD) model for malware detection system 

leveraging Deep Q-Networks (DQN) integrated with image-based reinforcement learning. The 

model uses a Convolutional Neural Network (CNN) to feature extraction and incorporates 

multithreading to optimize experience replay during training. The DCITD model, utilizing Deep 

Q-Network (DQN) architecture, showcases a permanent auto-learning feature within a network 

setting, allowing for detecting various network threats through an automated trial-and-error 

process while steadily refining its detection capabilities. The paper is based on thorough 

experimentation utilizing the Blended malware dataset, and the results reveal that the proposed 

DCITD model excels in recognizing a wide array of threats and outperforms similar machine-

learning techniques. Those techniques produce a fusion of features to build a model that can be 

used to recognize and classify the malware images into 31 malware families, then evaluate the 

performance of malware classification by identifying unique malware families and tracking 

detection accuracy that reached 98%. 

Keywords: Cybersecurity, Reinforcement learning, Deep learning, DQN, Image threats, 

Malware 

I. Introduction 

The fast growth of digital technologies has transformed industries. Furthermore, it significantly increased 

organizations' vulnerability to cybersecurity threats. These threats, spanning from phishing, ransomware, and 

Malware to Distributed Denial-of-Service (DDoS) attacks, can cause severe financial damage and irreparable harm 

to reputations. The challenge lies in swiftly detecting these threats—especially the more complex ones represented as 

images—while minimizing detection time, reducing false positives, and adapting to the evolving landscape of attack 

vectors. Traditional detection systems, which predominantly rely on signature-based or heuristic methods, are often 

effective against known attack patterns. However, they frequently fail when confronted with zero-day threats and 

sophisticated attacks disguised as legitimate activities. This shortfall has created an urgent need for intelligent and 

adaptive systems capable of learning and addressing the dynamic nature of modern cyber threats. The DCITD model, 

based on Reinforcement Learning (RL), emerges as a promising solution to address this. Unlike conventional 

supervised learning frameworks, RL emphasizes training agents to interact with their environment and determine 

optimal strategies through trial and error. The DCITD model introduces an innovative combination of network 

intrusion detection techniques by employing a Q-learning-based RL framework integrated with a deep feed-forward 
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neural network. This approach enhances network threat identification, offering more effective self-learning 

capabilities. In the field of RL methods, Deep Q-networks (DQNs) have garnered substantial attention for their ability 

to combine the representational power of deep learning with RL decision-making proficiency. This makes them 

especially well-suited for addressing high-dimensional, complex, and sensitive datasets, such as those involving 

image-based threats. This paper explores using DQNs for accurate and reliable cybersecurity threat detection. The 

key contributions of our proposed method are as follows: 

• Detection of threats in cybersecurity images using Deep Reinforcement Learning technologies 

• Recognized and classified multi-malware families using DQN 

• reduced the complexity and time-consumption using multi-threads 

• CNN is effectively used for feature extraction and feature selection, respectively. 

•  Evaluation of this model is depicted using various performance measures such as accuracy, precision, 

recall, f1-score, and training loss. 

The other parts of the paper are prepared as follows: Section 2 discusses related work, while Section 3 outlines the 

details of the proposed methodology. The 4th section presents the results and discusses the experimental results and 

their importance. Section 5 concludes the paper. 

II. Related works 

Many threat classification and identification research in images or text works have been investigated based on 

machine learning approaches, including image-based feature extraction, hybrid models, and deep learning 

approaches. In [1] (Thakur, 2020), The authors proposed a method for classifying Android Malware by transforming 

it into image sections and using the GIST algorithm to extract features from the DREBIN dataset. These features are 

classified utilizing machine learning algorithms like SVM, KNN, RF, and NB. The SVM classifier achieved an accuracy 

of 92.7% with Android manifest image files. The study concludes that visualization techniques combined with 

machine learning can improve malware classification accuracy. In [2](O Aslan et al., 2021), The authors proposed a 

malware classification framework to detect and classify malware variants from the Malimg dataset and Malevis 

dataset, achieving 96.5% accuracy, Microsoft BIG 2015 dataset achieved 97.48% accuracy using the ResNet-50 and 

AlexNet methods to achieve 97.78% accuracy. However, in [3](Ullah et al., 2022), The researchers presented a 

malware detection system for Android apps using a hybrid transfer learning approach and multi-model image 

representation. It combines textual and texture features of network traffic to detect Malware. The proposed method 

is tested on two datasets, CIC-AAGM2017 and CIC Mal Droid 2020, and has achieved 99% accuracy in malware 

classification and detection. The system leverages word2vec embeddings and convolutional neural networks to 

feature extraction and classification. In [4](Golubev et al., 2022), the authors proposed intrusion detection in cyber-

physical systems by transforming raw network packets into grayscale images. The creators analyze existing methods 

and introduce a technique that leverages convolutional neural networks (CNNs) for detecting network attacks. 

Resulted in 99% accuracy using the SWaT dataset. The authors (N. Gyamfi et al., 2022) in [4]The paper introduces a 

malware detection framework named D-WARE. that utilizes deep learning techniques to identify malicious software, 

using (PCA) for feature extraction Principal Component Analysis and Particle Swarm Optimization (PSO) for feature 

selection and classification via Convolutional Neural Networks (CNN). Applying D-WARE on the MalImg dataset 

resulted in 96% accuracy. The authors in [5] (Ren et al.,2023) explored the utilization of deep reinforcement learning 

(DRL) for cyberattack detection. It proposes a framework utilizing an agent-based model that continuously learns 

and adapts within a dynamic network security environment—using the double deep Q-network (DDQN) and policy 

gradient (PG) models in improving cyberattack detection outcomes across three datasets: NSL-KDD, CIC-IDS-2018, 

and AWID and resulting in 96.8% accuracy and 96.3% F1 score for CSE-CIC-IDS2018 and 99.1% for NSL-KD. 

Meanwhile, the authors (S. Mohanty, S. Nanda, R. Rout, et al.) are in [8]. The authors proposed a supervised logistic 

regression using machine learning classifiers, Naive Bayes, k-Nearest Neighbor, and Decision Tree to identify 

cybersecurity attacks. They created a dataset with 29 lexical features of URLs and trained the model using these 

features. The experimental results showed that the proposed machine learning model achieved a 94.1% accuracy in 

detecting different attacks based solely on URLs' lexical or structural features—table 1. Abstract Various studies have 

explored techniques for malware and cyberattack detection. Methods. 
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Table 1. Summary of related works 

 

  

no Ref & Year  The Aim Methods used Dataset Classifier Result 

1.  [1], 2020  

 

Classify Android malware 

through the utilization of 

visualization techniques. 

Naive Bayes 
 

The DREBIN 

dataset 

 76.81% accuracy 
 

Random Forests (RF) 91.01% accuracy 

 

K-Nearest Neighbors (KNN 

 

 92.38% accuracy 

 

Support Vector Machines 

(SVM) 

 

92.7% accuracy 

 

2.  [2], 2021  malware classification 

framework to detect and 

classify malware variants 

ResNet-50 and AlexNet Malimg dataset 97.78% accuracy 

Malevis dataset 96.5% accuracy 

Microsoft BIG 2015 

dataset 

94.88% accuracy 

3.  [3] , 2022 present a malware 

detection system based on 

transfer learning and multi-

model image 

representation 

Convolutional Neural 

Networks (CNNs) 

CIC-AAGM2017 

and CIC Mal Droid 

2020 datasets 

99% accuracy 

4.  [5], 2022 malware detection utilizing 

deep learning techniques 

for identifying malicious 

software 

Convolutional Neural 

Networks (CNNs), PSO, 

PCA 

MalImg dataset 96% accuracy 

5.  [4], 2022 intrusion detection in 

cyber-physical systems by 

transforming raw network 

packets into grayscale 

images. 

Pre-trained models 

(ResNet34, MobileNetV3-

small) in conjunction with a 

bespoke CNN  

SWaT dataset 99% accuracy  

6.  [6], 2023 cyberattack detection 

within a dynamic network 

security environment 

the double deep Q-network 

(DDQN) and policy 

gradient (PG) models 

NSL-KDD  99.1% accuracy 

99% F1scor 

CIC-IDS-2018 96.8% accuracy  

96.3% F1scor 

7.  [8] ,2023 detection of various 

cybersecurity attacks 

Logistic Regression, Naive 

Bayes, k-Nearest Neighbor, 

Decision Tree, 

dataset with 29 

lexical features of 

URLs and trained 

the model using 

these features 

94.1% accuracy 
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III. Methodology 

The methodology phase is based on several steps to enhance detection and classification accuracy and response 

efficiency against sophisticated cyber threats. The proposed DCITD model focuses on developing a cyber malware 

image threat detection and classification system using the Deep Q-Network (DQN) algorithm. DQN, one of the 

Reinforcement learning models, enables the system to learn optimal detection strategies by interacting with dynamic 

network environments, Using cyber threats in image representations. The model leverages convolutional neural 

networks (CNNs) for feature extraction and decision-making. This approach allows adaptive learning and real-time 

detection of complex and evolving cyber threats. 

Malware is malicious software that executes malicious actions on the victim's machine to endorse scams. When the 

users click this infected URL, the Malware like ransomware, virus, trojan, or any other type of Malware downloaded 

automatically will compromise both the machine and network. Malware is used to steal sensitive data and payment 

information, disrupt operations, and demand payment [7], as shown in Figure 1. The diagram illustrates a malware 

attack when a malicious email tricks the victim by downloading a RAR file containing a Dropper EXE, which decrypts 

and injects the Bandook RAT into iexplore.exe. The infected system then connects to the attacker's C&C server, 

allowing remote control and the download of additional malicious DLL extensions. This process makes full system 

compromise and unauthorized access. 

 

Figure 1. explains the malware attack life cycle.[6] 

Datasets description 

The two widely recognized datasets utilized for the malware image classification category are the MalImg and the 

Malevis datasets. The MalImg dataset exhibits a significant imbalance regarding class distribution, whereas the 

Malevis dataset is characterized by its equitable class distribution. Both datasets have been amalgamated to construct 

a unified dataset incorporating all classes from the Malevis dataset and five classes from the MalImg dataset [7]. The 

blended malware dataset encompasses 13,700 images with RGB and Grayscale byteplot images, resulting from 

integrating the two datasets into one dataset. Ishwarya Suresh curated it on Kaggle; this dataset is a comprehensive 

resource specifically engineered for malware detection tasks. It comprises both malicious and benign files, structured 

into 31 classes of malware family to facilitate researchers and data scientists in deploying machine learning models 

for cybersecurity applications [8]. The dataset's classes, family types, and image count for each are described in Table 

2. The dataset is organized into two directories, one designated for training and the other for validation sets. Each of 

these sets contains samples from 31 distinct classes, which can be utilized for training and assessing models to identify 

Malware based on patterns present within the data. Figure1. Illustrate the dataset samples, wherein the first row 

contains two image samples of the Blended malware dataset while the second row describes the general structure of 

malware images. 
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Table 2. The malware classes with the number of images in each class. 

no Class (family 

type) 

Number of 

Images 

1.  Adposhel 494 

2.  Agent 470 

3.  Allaple 478 

4.  Alueron.gen!J 198 

5.  Amonetize 497 

6.  Androm 500 

7.  Autorun 496 

8.  BrowseFox 493 

9.  C2LOP.gen!g 200 

10.  Dialplatform.B 177 

11.  Dinwod 499 

12.  Elex 500 

13.  Expiro 501 

14.  Fakerean 381 

15.  Fasong 500 

16.  HackKMS 499 

17.  Hlux 500 

18.  Injector 495 

19.  InstallCore 500 

20.  Lolyda.AA1 213 

21.  Lolyda.AA2 184 

22.  MultiPlug 499 

23.  Neoreklami 500 

24.  Neshta 497 

25.  Regrun 485 

26.  Sality 499 

27.  Snarasite 500 

28.  Stantinko 500 

29.  VBA 500 

30.  VBKrypt 496 

31.  Vilsel 496 
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Figure 2. Sample of the malware image dataset. 

Reinforcement learning (RL) is a machine-learning field, like supervised or unsupervised learning. It learns the 

best actions an agent needs to perform to maximize its rewards in a particular environment, sometimes called seem 

supervised. In RL, the agents learn by interacting with an environment. The agent monitors the state of the 

environment, performs actions, and receives rewards or penalties based on the results of those actions. Over time, 

the agent learns the optimal policy to maximize cumulative rewards. Reinforcement learning components involve 

agents, states(S), and actions per state (A). Agents evolve from the state when they act to learn how to react; finally, 

agents make decisions; the Reinforcement learning essential component is shown in Figure 3. 

 

Figure 3. Reinforcement learning (RL) components 

Reinforcement learning (RL) can be divided into two main categories: model-based RL and model‐free RL. Model-

based reinforcement learning algorithms are approaches that attempt to explain the Environment and create a model 

simulated to it like world models,12 A, MBVE, and Alpha zero algorithms, while Model‐free reinforcement learning 

algorithms are approaches that will also have two type categories: policy-based only update its policy by interacting 

with it is Environment and observing the rewards like policy gradient, PPO, TRPO. Value-based reinforcement 

learning algorithms like SARSA, Q-learning, DQN, DDQN, and Distributional Q-Learning are approaches where the 

agent learns a value function that estimates how good it is to be in a particular state (or to perform a specific action 

in a state). This paper will focus on DQN, one of the value-based Reinforcement learning algorithms. 

DQN The Deep Q-Network is one of the model-free reinforcement learning algorithms introduced to address 

various complication problems within computer vision. It integrated the rules of the classical Q-learning 

methodology with deep convolutional neural networks (CNNs). A primary impetus for the development of DQN was 

to address the limitations and capacity associated with the Q-table utilized in Q-learning, which can adapt only a 

finite quantity of states. In contrast, real-world applications may necessitate the management of a substantial or 

potentially infinite array of states. DQN incorporated an experience replay mechanism, facilitating the random 

sampling of a small subset of tuples from the replay buffer throughout the training phase. This approach substantially 

mitigated the correlations among the sampled data, thereby enhancing the overall robustness of the algorithm. DQN 

employed a deep convolutional neural network to encapsulate the current Q function and utilized a separate network 

to establish the target Q value. Implementing the target Q value network effectively diminished the correlation 

between the current and target Q values.[9] 



442  

 

J INFORM SYSTEMS ENG, 10(17s) 

 

Figure 4 The operational workflow of the Deep Q-Network (DQN) 

Figure 4 illustrates the workflow of the Deep Q-Network DQN; this schematic delineates the mechanism by which a 

Deep Q-Network functions, elucidating the progression of information within a reinforcement learning framework. 

Environment represents the agent's domain, encompassing cybersecurity imagery that embodies potential hazards. 

The Environment delineates the current state (the existing conditions) and provides rewards (feedback) contingent 

upon the agent's actions. The Current Value Network constitutes the principal neural network that forecasts the Q-

value corresponding to a specific state-action pair (Q(s, a; θ)). The Q-value encapsulates the efficacy of executing a 

particular action within a defined state. This network's parameters (θ) are subject to modification throughout the 

training process to enhance predictive accuracy. The Target Value Network is a supplementary neural network that 

supplies a consistent benchmark from which the current value network can derive insights. It computes the maximum 

prospective Q-value (max Q(s', a')) for the subsequent state, which is then utilized to amend the current value 

network. The parameters undergo updates at less frequent intervals (every N time step) to maintain stability during 

the learning process. The Replay Memory Buffer archives the agent's historical experiences as tuples: (state, action, 

reward, next state) or (s, a, r, s'). Rather than instantaneously assimilating each experience, the agent randomly 

sampled past experiences during training, thereby mitigating data correlations and enhancing learning efficacy. The 

DQN Loss Function inspects the inconsistency between the suggested Q-value (taken from the present value network) 

and the aimed Q-value (collected from the target value network). The gradient of this loss function is employed to 

recalibrate the parameters (θ) of the current value network, thereby facilitating improved predictions over time. 

 Proposed model 

 The Dynamic and Adaptive Learning paradigm effectively addresses cybersecurity challenges stemming from 

evolving threats like malware images and zero-day attacks, which often display changing temporal patterns. This 

paper introduces the DCITD model for detecting and classifying cyber image threats via Deep Q-Networks, which is 

designed for Cybersecurity and image-based threat detection. The model goes through several steps, as shown in 

Figure 5. The integration of Deep Q-Networks (DQNs) combined with multithreading programming libraries to 

leverage reinforcement learning (RL) for adaptive and intelligent threat identification in complex systems. By 

interacting with their Environment, DQNs continuously improve their performance, enabling them to adapt to 

dynamic threat landscapes without frequent retraining. This makes them highly effective in detecting new and 

sophisticated image-based threats. 

Image-based threats like malicious image payloads involve complex and nonlinear data patterns. DQNs handle high-

dimensional inputs like images using advanced neural architectures, particularly Convolutional Neural Networks 

(CNNs), to extract subtle visual features and anomalies. This capability is crucial for recognizing hidden malicious 

elements in images. DCITD model consists of a Current Q-Network and a Target Q-Network, as shown in Figure 5, 

which work together through gradient updates and replay memory to improve learning stability. The Replay Memory 

Buffer stores past experiences to enhance learning by sampling and replaying them. The system continuously refines 

its predictions by minimizing the DQN loss, ultimately leading to accurate threat detection. This approach enables 

adaptive and efficient detection of evolving cyber threats. Moreover, image threat detection involves complex 
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decision-making, where systems must determine whether to investigate specific image regions further or classify 

them as malicious. DQNs excel in this sequential decision-making process, developing optimal strategies to detect 

threats while minimizing false positives and resource usage. 

A significant advantage of DQNs is their automatic learning ability, which allows them to extract high-level features 

from raw image data without relying on manually crafted features, which are often ineffective against zero-day 

threats. Additionally, DQNs are well-suited for real-time threat detection, responding swiftly to potential risks—an 

essential capability in Cybersecurity. Their resilience against adversarial attacks is another strength, as they are 

trained across diverse attack scenarios, enabling them to identify and adapt to deceptive tactics, particularly in image-

based threats where attackers may obscure malicious intent. 

 

Figure 5.DCITD model Deep Q-Network for Cyber Threats Detection 

Data collected: All samples are collected from blended malware image classification datasets. One will run with the 

proposed model separately to ensure the improvement of the DCITD model in detecting different types of threats in 

image-based Malware. After loading, the dataset is decoded into a usable tensor format for TensorFlow. Loads the 

image as an RGB image; three channels, regardless of the original format, to ensure consistent input data format; the 

dataset is loaded at 64 batch size each Episode, and the DQN expects a consistent state space, so all images must be 

adequately loaded. 

Table 3. Dataset split partitions for training and testing 

Total images  Number of images for 

training 

Number of images for testing 

 

13,700 
 

 

10,997 

 

 

2750 

 

 

The preprocessing step in constructing the model is preprocessing the dataset. The first step in preprocessing 

converts the image from RGB (3 channels) to Grayscale (1 channel) to reduce input dimensionality, making training 

faster and less memory-intensive, mainly since Malware detection usually relies on patterns and structures rather 

than colors—Simplifies feature extraction by focusing on texture and structure. The second step in preprocessing is 

to resize images into 128x128 pixels to ensure a uniform input size for the convolutional neural network (CNN) used 

in the DQN. However, the smaller, fixed-size images reduce computational load and speed up training. Moreover, it 

avoids inconsistencies caused by varying image sizes. The third step is normalization by Scales pixel values from [0, 

255] to [0, 1]. To stabilize training by keeping input values within a small, consistent range that prevents large input 
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values from causing unstable gradients during backpropagation and helps the neural network converge faster. 

Yielding NumPy arrays and ultimately labeling by invoking the aforementioned functions. Figure 6. illustrates 

samples of the post-preprocessing steps. Then designating labels (1 for "malware" and 0 for "benign"). After these 

preprocessing steps, the DQN agent receives clean, uniform, and optimized input data to improve efficient training 

and accurate detection. Finally, the feature dataset is loaded in parallel, processing images concurrently through 

multiple threads for enhanced efficiency. These features become the foundational input for the learning algorithm. 

After preprocessing, the dataset is divided into training and testing sets in an 80-20 ratio. This division ensures that 

the model can generalize effectively to previously unseen data. The results of this dataset splitting are presented in 

Table 3. The training set is used for the model's learning phase, while the testing set is designated for evaluating the 

performance of the final model. 

 

Figure 6 samples the preprocessing stages of the DCITD model. 

Deep-Q learning wherein the agent initializes the environmental state by sampling a traffic sample and striking a 

balance between exploration (random actions) and exploitation (maximization of Q-values). The agent acts, observes 

the subsequent state and reward, and archives the experience in a replay buffer for training purposes by trial and 

error as Mini-batches (64) extracted from the buffer are employed to compute target Q-values and to customize the 

Environment. The subsequent phase in the DCITD model involved the delineation of the Environment that was 

created using the Gym library, where the agent interacts with the dataset by classifying each image and receiving 

rewards for correct predictions based on a reward system and representing each traffic sample as a state (s) and 

specifying two potential actions (a). Specifically, a is designated as zero to denote classification as benign, whereas a 

is assigned a value of one to signify classification as malicious. 

Furthermore, rewards were defined by (r), where the correct classification yields reword+1 and the incorrect 

classification yields reword-2. Thereby providing feedback through the reward system. The Episode ends when all 

images have been processed in the same manner. The following procedural step encompassed a training loop over 

(150) episodes. The target network undergoes periodic updates by updating the Q-network via gradient descent 

methodologies, facilitating the agent's progressive enhancement in decision-making capabilities over time through 

continuous learning derived from its Environment and prior experiences. The amalgamation of neural networks and 

reinforcement learning renders the model particularly efficacious for intricate tasks such as image threat detection 

within Cybersecurity. 
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Figure 7. Deep neural network agent observes in DQN 

The proposed DCITD model architecture is structured with an input layer that processes normalized network traffic 

features. It encompasses two hidden layers characterized by ReLU activation functions, which serve to identify and 

extract salient features. The output layer is responsible for calculating Q-values to ensure whether the traffic is 

categorized as usual or malicious, employing the Bellman equation for the iterative refinement of these Q-values. As 

shown in Figure 7, the Environment's state selects optimal actions based on Q-values, receives rewards, and updates 

its policy iteratively. Additionally, the model integrates a reward system to enhance efficiency, and it utilizes 

experience replay to learn from archived data and a target network to uphold stability through periodic weight 

updates. Table 4 depicts the outcomes of neural network parameters after training the DCITD model. The total 

parameters of the Neural Network after training were 22,176,008 (84.59 MB) trainable Parameters:7,392,002 (28.20 

MB) and Non-Trainable Parameters 0 (0.00 B), Optimizer Parameters14,784,006 (56.40 MB). 

Table 4. Neural network parameters after training  DCITD proposed model 

 Layer (type) Output Shape Param # 

conv2d_60 (Conv2D) (None, 126, 126, 32) 320 

max_pooling2d_60 (MaxPooling2D) (None, 63, 63, 32) 0 

dropout_90 (Dropout) (None, 63, 63, 32) 0 

conv2d_61 (Conv2D) (None, 61, 61, 64) 18,496 

max_pooling2d_61 (MaxPooling2D) (None, 30, 30, 64) 0 

dropout_91 (Dropout) (None, 30, 30, 64) 0 

flatten_30 (Flatten) (None, 57600) 0 

dense_60 (Dense) (None, 128) 7,372,928 

dropout_92 (Dropout) (None, 128) 0 

dense_61 (Dense) (None, 2) 258 

 

  

  

Key components of the DCITD Model Architecture include the State-Value Stream, which estimates the value 

associated with a given state, and the Advantage Stream, which assesses the advantage relative to each action. The 

Replay Buffer stores past experiences (state, action, reward, next state, done) for training purposes. The model 
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explores random actions based on probability (epsilon) to maintain equilibrium between exploration and 

exploitation. By utilizing the trained model, please enable it to predict the optimal action (classifying Malware or 

benign). The training and evaluation of the DCITD model involved training with 80% of the dataset, utilizing 

threading to enhance time and resource consumption. This training was divided into segments (episodes) and 

parallelized using four threads utilizing the (ThreadPoolExecutor) library in Python to expedite the training process. 

Afterward, the factor was evaluated by applying it to the remaining 20% of the dataset, during which different 

evaluation metrics, precision, precision, recall, F1-Score, and confusion matrix, were calculated. 

IV. Results and Discussion 

This paper studies the effectiveness of Deep Networks (DQN) in identifying and classifying different types of 

cybersecurity image threats. By leveraging the power of reinforcement learning, the proposed DCITD model 

demonstrates a dynamic learning capability that adapts to evolving image attack patterns. The proposed model was 

trained and evaluated on the Blended Malware dataset to successfully detect and classify various malware families 

with high accuracy and precision. The DCITD model accurately detected and classified 6,103 malware threats across 

diverse families during training and testing, improving the strength model performance in distinguishing malicious 

files from benign ones. The model accomplished an accuracy of 98%, precision of 99 %, recall of 98%, and an F1-

score of 99%. However, it reached just 0.02 of the error rate; Figure 8. illustrates the outcomes derived from the 

implementation of the Deep Convolutional Inverse Transfer Learning (DCITD) methodology on a malware dataset, 

wherein the graphical representations delineate the reward metrics, training loss, and confusion matrix about false 

and true alarms across a testing phase where the blue squire refer to the accurate optimistic prediction of Malware 

detected family that authentic identify 63 samples from total 64 where the third blue light squire refer to accurate 

pessimistic prediction of only one sample. The model's results demonstrated that it is highly effective in identifying 

and classifying various malware image threats. However, The minimum training loss was 0.9952, indicating room 

for optimization in the training process. The frequency distribution of detected Malware highlights the model's ability 

to generalize across different malware types, effectively learning complex patterns associated with malware behavior 

among the most frequently detected families, from the most frequently Androm was identified with 505 samples to 

the lowest-frequency detections included C2lop.gen!g (80 samples), that underscoring of the system's capability to 

identify rare or obscure as soon as more complex behaviors, that posing a more significant challenge for detection 

threats The Implications of The DCIT model for Cybersecurity was ability to detect a wide range of malware families 

confirms and improved reinforcement learning's powerful and proactive tool in cybersecurity defenses. 
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Figure 8. Results Obtained from the Learning (DCITD) Methodology Applied to a Malware Dataset 

The DQN model can enhance malware detection systems by continuously learning and adapting to new threats. The 

results of the detected and classified malware families and their frequencies are summarized in the training and test 

phases distribution bar plot in Figure 9. The results highlight the model's effectiveness in generalizing across diverse 

threats. The frequency distribution underscores the model's capability to detect common and rare malware families, 

achieving a high detection rate and showcasing its potential for real-world cybersecurity applications. This work 

demonstrates the significant potential of deep Reinforcement learning in combating cybersecurity threats. 

 

Figure 9.  Types and Malware families frequently detected by the proposed DCITD model 

When comparing the DCITD model with the [4], it introduces a malware image detection framework designated as 

D-WARE. Implementing the MalImg dataset resulted in an accuracy of 96% but has several significant limitations, 

such as dependencies on data quality, the dynamic nature of Malware, overfitting risks, and computation complexity. 

Those who made the model perform poorly in this issue and cannot detect new or unknown Malware. These issues 

are solved by the DCITD model whenever different ranges and frequencies of malware families are detected and 

classified. While the dynamic nature of Reinforcement learning DQN algorithm based on continuous learning enables 

the DCITD model to handle the newest Malware, complexity computation is solved using a multi-threaded and batch 

system. However, when comparing the DCITD model with the[2] hybrid deep-learning-based architecture(HDLA) 

model to detect and classify malware families from the Malimg dataset that can classify 25 families and achieved 

97.78% accuracy, and the Malevis dataset achieved 96.5 % accuracy. The Microsoft BIG 2015 dataset achieved 94.88% 

accuracy. At the same time, the DCITD model achieved 98% accuracy. The divergent performance outcomes between 
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the two models are delineated in Table 5. In a broader context, the proposed DCITD model distinguishes itself as a 

state-of-the-art solution, achieving superior performance and providing exceptional capabilities in detecting threats 

within network data flows represented as images analogous to the datasets of the referenced model. 

Table 5. Comparison performance between DCITD and D-WARE, HDLA models: 

Model Dataset Number of 

images 

Numbers 

of 

malware\s 

family 

detected   

Accuracy F1-score Precession Recall 

D-WARE MalImg 

 

9458 images 8 family 96% 98% 96% 91% 

 

HDLA 

MalImg  

 

9339 images 

 

25 family 

 

97.78% 

 

97.79% 

 

97.80% 

 

97.78% 

 

Malevis 

 

9100 images 

 

25 family 

 

96.5% 

 

94.5% 

 

97.1% 

 

94.9% 

 

Microsoft 

BIG 2015 

20000images 9 family 

 

94.88% 89.88% 92.47% 91.31% 

Proposal 

work 

DCITD 

MalImg  

+ 

Malevis 

13700 

images 

29 family 98% 99% 99% 98% 

 

V. Conclusion 

In conclusion, this paper demonstrates the significant potential of Deep Networks (DQN) for cybersecurity 

applications, particularly in detecting and classifying malware threats from image-based data. By leveraging 

reinforcement learning, the proposed model showcased its ability to dynamically learn and adapt to evolving malware 

patterns, achieving a high accuracy of 98%. The model successfully identified and classified various malware families, 

including commonly occurring threats like Androm and Adposhel and rare families like C2lop.gen!g and Hackkms 

malware types, highlighting its robustness and versatility. The frequency distribution of detected malware families 

further underscores the system's capability to generalize across different threat types while maintaining high 

detection rates. With its ability to accurately classify over 6,103 malware threats and detect frequent and rare 

instances, the DCITD model is an effective tool for modern cybersecurity challenges. These results highlight the 

transformative potential of deep Reinforcement learning in combating cyberattacks and emphasize the importance 

of further research to improve scalability and address real-world dataset challenges. Overall, the paper reinforces the 

value of AI-driven solutions in safeguarding digital systems against ever-evolving cybersecurity threats. 

For future improvements, even if the proposed DCITD model shows promising results, additional feature extraction 

techniques or training with a more diverse dataset can enhance detection accuracy, particularly for less common 

malware families. Furthermore, the application can be used to check, detect, and classify the malware threats 

included in images, yielding superior performance outcomes and enabling the development of a threat detection 

application characterized by ease of use and clear visual representation. 
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