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RGB-D house hold object recognition is essential for robotic perception, enabling accurate 

object identification by leveraging both visual (RGB) and depth information. However, 

traditional deep learning models struggle with sensor noise, occlusions, and overconfident 

misclassifications. To address this, we propose an Evidential Multimodal Deep Learning 

(EMDL) framework, integrating Evidential Deep Learning (EDL) with CNN (Convolutional 

Neural Network) and attention based feature fusion. Our model extracts features using CNNs 

for RGB and depth, and then fuses them through a cross-attention mechanism, allowing 

adaptive weighting of modalities based on uncertainty. Instead of softmax classifiers, Dirichlet-

based evidential output layer has been used. It quantifies both classification confidence and 

epistemic uncertainty, improving robustness. Evaluations on the Washington RGB-D dataset 

demonstrate superior performance in classification accuracy, noise handling, and domain 

generalization compared to baseline models. Accuracy of 92.2% is reached with this novel 

approach considering 10-fold cross validation method. By enhancing uncertainty-aware 

decision-making, our approach ensures safer and more reliable robotic perception, making it 

suitable for real-world applications like grasping, manipulation, and autonomous navigation. 

Keywords:

 

1. Introduction 

In the domains of robotics and computer vision, one of the basic issues is object recognition. The majority of object 

recognition techniques that have been proposed up to this point are based on RGB (Red Green Blue) images. 

However, the RGB image can only reflect the scene's color, lighting, and texture information since the depth 

information of the image is lost during the optical projection process from the 3D (Three Dimensional) space to the 

2D (Two Dimensional) environment. This makes it challenging to apply RGB image-based object recognition 

methods in real-world situations since they are susceptible to external factors like illumination and a complex 

background. [1–5].  

Since the introduction of low-cost RGB-D (Red Green Blue-Depth) sensors such as Microsoft Kinect and Intel 

RealSense [6,7], the RGB-D sample has been used extensively in medical diagnostics, video surveillance, 

intelligence robotics, and scene analysis and understanding . Both color and depth images can be simultaneously 

captured by the RGB-D sensor. Information about color and appearance is contained in the RGB image, while 

information about the distance between the household item and the RGB-D sensor is contained in the depth image. 

The RGB-D image contains more useful information for household object recognition than an RGB image since it 

can reveal more details about the object's 3D geometry structure. The depth image is also resistant to changes in 

lighting and color. It has been demonstrated that the RGB-D image-based approach to household object 

recognition outperforms the RGB image-based approach. Thus, the study of the multi-modal object detection 

approach based on RGB-D images has gained increasing attention in recent years [8–10]. Existing RGB-D image-

based object recognition techniques can be categorized into two groups based on the types of features: learnt 

feature-based techniques and hand-crafted feature-based techniques. Hand-crafted features such as spin images 

[13,14], scale-invariant feature transform (SIFT) [11], and speeded up robust features (SURF) [12] are used to 

describe the RGB and depth images for the first category. These features are then input into classifiers such SVMs 

Object Recognition, Uncertainty Aware, Evidential Deep Learning, Cross-Modal

Attention based Fusion, RGB-D Dataset.
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(Support Vector Machines) for classification. The chosen hand-crafted features have an impact on this type of 

method's performance. In addition to not being able to capture all of the valuable discriminative information of 

various object classes, the hand-crafted features frequently require human tuning for various scenarios. The 

classifiers are then used for the classification after the RGB and depth images are used to learn the features for the 

second category. Even while this method is more effective, it still does not make full use of the valuable information 

that RGB-D saples contain. For recognition, most existing algorithms usually learn the RGB and depth images 

separately and then simply combine the two feature types [15,16]. Therefore, how to properly leverage the link 

between the RGB data and the depth feature remains one of the primary challenges in the field of RGB-D object 

recognition. 

Deep learning has gained a lot of popularity recently and has been effectively used in household RGB-D object 

detection. Socher et al. proposed a model based on a combination of Convolutional Neural Network (CNN) and 

Recursive Neural Networks (RNN) to learn features and categorize RGB-D images [17]. The RNN layer generates 

higher level features and the CNN layer extracts lower level characteristics. For RGB-D object recognition, Rahman 

et al. suggested deep neural network framework based on three cascaded multi-modal CNNs such as RGB, color 

and surface normal [18]. Tang et al. introduced multi-view convolutional neural networks based on canonical 

correlation analysis (CCA) for RGBD object recognition, which can successfully find the relationships between 

various viewpoints of the same shaped model [19]. Recent advancements in deep learning and multimodal fusion 

have significantly improved RGB-D object recognition. With the rise of Convolutional Neural Networks (CNNs) and 

Transformers, researchers developed deep learning architectures capable of extracting more robust and 

hierarchical representations from RGB and depth data. Two-stream CNNs [20] process each modality separately 

before fusion, whereas attention-based Transformer models [21] enable better cross-modal interactions. Despite 

these advances, deep learning models still struggle with uncertainty, often making overconfident and unreliable 

predictions when faced with noisy or out-of-distribution data.  

Evidential Deep Learning (EDL) is a framework that integrates uncertainty estimation into deep learning models by 

leveraging evidence theory. Instead of treating model outputs as deterministic probabilities, EDL represents them 

as belief distributions (Dirichlet distributions), allowing the model to express confidence in its predictions. 

Evidential Deep Learning (EDL) has emerged as a promising approach [22, 23] to enhance RGB-D object 

recognition by incorporating uncertainty quantification into deep learning models. Traditional deep networks, 

particularly those based on CNNs and Transformers, rely on softmax probabilities for classification, which can lead 

to overconfident predictions even in ambiguous or noisy scenarios. EDL addresses this limitation by leveraging 

Dempster-Shafer evidence theory, which models both model  uncertainty and data uncertainty through Dirichlet 

distributions. This is particularly beneficial for RGB-D object recognition, where sensor noise, occlusions, and 

modality imbalances often degrade performance. Recent works [24,25] have explored EDL-integrated multimodal 

fusion frameworks, where the model dynamically adjusts feature contributions from different streams based on 

their estimated uncertainty. Such uncertainty-aware learning not only improves robustness but also enables safer 

decision-making in robotic perception systems, ensuring that the model can defer predictions or request additional 

data when confidence is low. By integrating EDL with CNN-Transformer-based fusion mechanisms, modern RGB-

D recognition systems can achieve more reliable, interpretable, and adaptive performance in real-world 

applications. This work introduces a novel Evidential Multimodal Deep Learning (EMDL) framework for RGB-D 

household object recognition, incorporating uncertainty-aware feature fusion and classification. Our contributions 

are twofold: 

1. Uncertainty-Guided Feature Fusion: We propose a novel cross-modal attention based fusion strategy that 

dynamically adjusts RGB and depth contributions based on evidential uncertainty scores. 

2. Robust and Interpretable Predictions: By incorporating EDL with Dirchlet Distribution-based uncertainty 

estimation, our model not only enhances recognition performance but also provides confidence scores that 

aid in decision-making, especially in robotic and autonomous applications. 

By leveraging uncertainty-aware multimodal learning, our approach significantly improves robustness, 

adaptability, and interpretability in RGB-D object recognition, making it suitable for real-world robotic perception 

systems. 

2. Proposed Methodology 

The Evidential Deep Learning (EDL) framework shown in Fig. 1 for RGB-D household object recognition follows a 

structured pipeline that incorporates uncertainty estimation into the classification process. Prior to being rescaled 
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to their normalized size during the training phase, the RGB and depth images undergo preprocessing to minimize 

noise. Then, using the HHA encoding method [26–30], we calculate the depth image's three channels. The HHA 

code stands for the horizontal disparity, height above ground, and angle with gravity. Initially, feature extraction is 

performed separately on RGB and depth data of household object images using deep neural networks such as CNNs 

capturing both appearance-based (RGB) and geometric (depth) features. These extracted features are then 

combined using a multimodal fusion strategy, which is an attention-driven, ensuring that the network effectively 

leverages both modalities. The fused representation is processed by an evidential output layer, with a Dirichlet 

distribution-based evidence model. Instead of directly outputting class probabilities, the model predicts evidence 

scores, representing the level of belief assigned to each class. The uncertainty quantification is computed based on 

the total evidence, where lower evidence across all classes signifies higher uncertainty. Training is guided by a 

modified loss function, which optimizes the model to increase confidence for correct classifications while 

discouraging overconfident incorrect predictions. This uncertainty-aware approach makes EDL particularly useful 

in real-world RGB-D applications, where sensor noise, occlusions, and missing depth data can lead to unreliable 

predictions. The detailed discussion of each block is discussed in this section. 

2.1 Preprocessing of RGB-D Image  

In this study, the Washington RGB-D object dataset [31] is used to evaluate the suggested RGB-D object 

recognition algorithm. From Point Gray Research, a firewire camera and RGBD camera were used to gather the 

dataset, which consists of 300 home items arranged into 51 categories. Some of those household object categories 

from the Washington RGB-D object collection are shown in Fig. 2. To capture image of each object, the cameras 

were located at three different heights and in three distinct directions. Approximately 600 RGB-D samples per 

object make up the total of 207,920 images.  

The RGB and depth images given as input to the system shown in Fig. 3a-c are initially scaled to 227 × 227 in order 

to satisfy the needs of the two CNNs. The two CNNs employ the fundamental AlexNet architecture. The simplest 

method is to directly resize the samples to the desired size. The direct approach, however, may alter the object's 

original geometric structure and ratio shown in Fig. 3d-e, which will affect the identification performance. 

Therefore, we applied the scaling processing technique suggested in [19].  

 

 

Figure 1. Proposed Methodology  
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Initially, we adjusted the original image to make its long side 227 pixels long. To create a square image, we then 

enlarged the resized picture along its short side. The resized image should be situated in the center of the 

expansion-scaled image, with both sides of the image expansion being equal. Black pixels are added to the samples 

to make them larger. The scaled pictures are displayed in Fig. 3g–i. Figure 3 shows that the scaled photographs 

successfully maintain the objects' shape information when compared to the resized ones. 

The image from R, G and B channels obtained from scaled RGB image are the three inputs to RGB CNN First, we 

use the median filters to decrease noise and fill in the holes in the scaled depth image. A HHA encoding method is 

used to get H, H, and A channels which are the three input images for the depth. Several RGB-D image-based 

efforts have successfully exploited the HHA representation, which may store the geocentric pose features that 

highlight complementing discontinuities in the image [26–30]. 

 

Figure 2: Samples from different categories in Washington RGBD dataset 

 

Figure 3: samples of RGB and corresponding Depth images from Washington RGBD dataset (a-c), The direct 

Resized saples (d-f), Rescaled images (g-i) 
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2.2 The architecture of multimodal CNN 

The multi-modal convolution network that has been proposed for the task of household object recognition is shown 

in Fig. 4 aims to extract RGB and depth feature attributes from the household objects. On it, there are two 

branches. Each branch is a CNN with the same architecture as AlexNet [33]. The inputs of the first branch are the 

three channels of the RGB images, and the inputs of the second branch are the HHA encoding results of the depth 

images. The AlexNet consists of three completely linked layers, five convolutional layers, and a final 1000-way 

softmax. It has over 60 million features and 650,000 neurons. The first, second, and fifth convolutional layers are 

followed, successively, by max-pooling layers. For all convolutional and fully-connected layers, the activation 

function is the rectified linear unit (ReLU). The training of the proposed network is divided into two stages. In the 

first stage, the RGB and depth characteristics are learned separately using the relevant CNNs. In the second stage, 

the multi-modal network is fine-tuned using the RGB and depth pictures. The optimization method considers both 

the discriminative information of each modality and the correlation information between two modalities. The RGB 

and Depth CNN features obtained from this modal will fused using cross-modal attention based fusion method 

which is discussed in detail in next section. 

2.3 Cross-Modal Attention based fusion 

An expansion of the conventional attention mechanism, cross-modal (or multi-modal) attention allows for the 

interaction of many data modalities, such as RGB and depth data, or images and text, inside a single framework. By 

concentrating on the most instructive aspects of each modality when processing and combining the data, this 

technique enables a model to discover the complementary relationships between modalities. 

In attention mechanisms (especially in Transformer architectures), each feature or token is transformed into three 

components: Queries (Q), Keys (K), Values (V). In cross-modal attention, these components can come from 

different modalities. For example: Use the RGB features to form queries. Use the depth features to form keys and 

values. 

The attention weights are computed by taking the dot product between the queries and keys, scaling by the square 

root of the key dimension, and then applying the softmax function. Mathematically, for each query qi  and for each 

kj , the attention weight aij is given by equation (1). In matrix form equation (1) can be given by equation (2) 

 𝑤𝑖𝑗 =
𝑒𝑥𝑝

𝑞𝑖∙𝑘𝑗

√𝑑𝑘

∑ 𝑒𝑥𝑝
(

𝑞𝑖∙𝑘𝑗

√𝑑𝑘
)

𝑁𝐵
𝑗=1

                                            (1) 

𝑀 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)    𝑤𝑖𝑡ℎ 𝑀 ∈ 𝑅𝑁𝐴×𝑁𝐵                               (2) 

Here, the queries from one modality interact with keys from another, generating weights that dictate how much 

each depth feature (value) should contribute to the final fused representation for each RGB feature.  

Once the attention weights are computed, the model aggregates the information from the second modality (depth) 

and integrates it with the first modality (RGB). This can be done by either Concatenation: Combining the attended 

features with the original features or Addition: Adding the attended features to the original features. Once you have 

the attention weights M, you compute the cross-modal fused representation by weighting the values V. 

𝑍 = 𝑀𝑉 𝑤𝑖𝑡ℎ 𝑍 ∈ 𝑅𝑁𝐴×𝑑𝑣                                        (3) 

Here, each row zi  in Z is a weighted sum of the values from modality B, where the weights  wij indicate the 

relevance of each value vj to the query qi. These fused features are sent to Evidential output layer from which the 

training process begins. 
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Figure 4: Architecture of Multi-modal CNN 

2.4 Evidential output layer 

An evidential output layer is designed to produce not only class predictions but also an associated measure of 

uncertainty by outputting parameters of a probability distribution—typically a Dirichlet distribution in 

classification tasks. This approach, often referred to as “evidential deep learning,” moves beyond point estimates 

(like softmax probabilities) and instead characterizes uncertainty directly in the Traditional neural network 

classifiers typically output a probability vector using a softmax layer, which represents the network’s confidence in 

each class. However, these probabilities can be overconfident, even when the input is ambiguous or out-of-

distribution. Evidential deep learning addresses this by: 

Modeling Uncertainty Explicitly: Instead of outputting a single probability, the network outputs parameters 

that define a Dirichlet distribution over class probabilities. 

Quantifying Evidence: The network learns to predict “evidence” for each class. The total amount of evidence 

influences both the predicted probabilities and the degree of uncertainty. 

2.4.1 Dirichlet Distribution 

The Dirichlet distribution, a probability distribution over a set of probabilities, is widely used in multi-class 

classification problems and uncertainty modeling. Its ability to generalize the Beta distribution to multiple 

categories makes it useful in Evidential Deep Learning (EDL). To help measure classification uncertainty, the 

model predicts a range of probabilities instead of assigning a single probability to each class. 

For the classification task with K classes, Dirichlet Distribution is defined as in equation (4). 
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𝐷(𝑝 | 𝛼) =
1

𝐵(𝛼)
∏ 𝑝𝑘

𝑎𝑘−1

𝐾

𝐾=1

                            (4) 

Where, 

P=(p1,p2, p3.....,pk) is a probability vector (pk≥0 and ∑ 𝑝𝑘 = 1𝐾
𝑘=1 ) 

𝛼 = (𝛼1, 𝛼2, … . . 𝛼𝐾) are concentration parameters. 

𝐵(𝛼) is the multivariate beta function ensuring proper normalization. 

High value of 𝛼𝐾 indicates strong evidence of the class k. Low total evidence (i.e. ∑ 𝑎𝑘
𝐾
𝑘=1 ) implies high uncertainty 

while high total evidence indicates confident prediction. 

2.4.2 Loss Functions 

Training an evidential output layer typically involves specialized loss functions that encourage both correct 

predictions and appropriate uncertainty estimation. The Evidential Loss Function for household object recognition 

is derived from the log-likelihood of the Dirichlet distribution computed using equation (4) and consists of two 

terms: 

Data Fit Term: Encourages the expected probabilities to match the true labels. The Data Fit Term is a Mean 

Squared Error (MSE) loss between the predicted belief pk and the one-hot encoded true label yk. 

Uncertainty Regularization: Penalizes overconfident predictions when there is insufficient evidence. A 

common choice is to include a Kullback–Leibler (KL) divergence term between the predicted Dirichlet distribution 

𝐷(𝛼) and uniform Dirichlet D(1). By Combining these two terms we define our Evidential Loss function as shown in 

equation (5). The computed loss is going to be used for training a CNN models by Stochastic Gradient Descent 

(SGD) with back propagation method discussed in next section. 

𝐿(𝛼, 𝑦) = ∑(𝑦𝑘 − 𝑝𝑘) 2
𝐾

𝑘=1

+ 𝜆𝐾𝐿(𝐷(𝛼) ∥ 𝐷(1))                               (5) 

Where, 

∑ (𝑦𝑘 − 𝑝𝑘) 2𝐾
𝑘=1  indicate data-fit, 

y is the one-hot encoded ground truth, 

𝜆 is the hyperparameter balancing the terms 

 

2.5 Training 

After obtaining fused featured of household objects and loss, next is to train the RGB CNN and the depth CNN, 

respectively, using the Stochastic Gradient Descent (SGD) method with back-propagation.  It combines two key 

ideas: 

Stochastic Gradient Descent: An iterative optimization method that updates the model parameters using the 

gradient of the loss function computed using equation (5) on a small (often random) subset of the training data 

(called a mini-batch). Rather than computing gradient over the entire dataset, SGD uses mini-batch of m samples 

at each iteration. Let B ⸦ {1,2.......N} be the indices of samples in mini-batch. The mini-batch loss is given by 

equation (6). SGD updates its parameter using equation (7). 

𝐿𝐵(𝜃) =
1

𝑚
∑ 𝐿(𝑓(𝑥(𝑖); 𝜃), 𝑦(𝑖))𝑖∈𝐵                                 (6) 

𝜃 ← 𝜃 − ƞ∇θ𝐿B(θ)                                                         (7) 

Where: 

ƞ is learning rate 

∇θ𝐿B(θ) is the gradient of mini-batch loss with respect to θ 
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Back-propagation: It is a method for efficiently computing gradients of the loss with respect to the network’s 

parameters using the chain rule of calculus. Suppose you have a neural network with parameter θ and a training 

dataset {(𝑥(𝑖), 𝑦(𝑖))}
𝑖=1

𝑁
. The goal is to minimize the 𝐿𝐵(𝜃) that measures the discrepancy between the network’s 

predictions and the true labels. The overall objective is depicted in equation (8). 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑁
∑ 𝐿(𝑓(𝑥𝑖; 𝜃), 𝑦(𝑖))

𝑁

𝑖=1

                                        (8) 

Where 𝑓(𝑥𝑖; 𝜃) denotes the network’s output given input x (i)  

3. Experimentation 

We trained the suggested multi-modal network before implementing it. The three steps of the training stage were as 

follows: (1) rescale the RGB and depth images to 227 × 227; (2) train the RGB and depth CNNs, respectively; (3) 

train the multi-modal network; The trained AlexNet on the ImageNet dataset was used to initialize the RGB CNN 

and the depth CNN. The pretrained network was used to initialize the CNNs' weights. With the performance 

improvement, the learning rate was adjusted from its initial setting of 0.01 to 0.001. 128 was chosen as the batch 

size, N.  

When testing a neural network with an evidential output layer, the goal is not only to obtain class predictions but 

also to quantify the associated uncertainty. During testing, each input sample is processed by the network just as in 

training in three stages. 

Feature Extraction: The trained CNN features (both RGB and Depth) are extracted from the input household 

image (e.g., an image or multimodal data). 

Evidence Generation: The evidential output layer takes the feature representation and computes evidence for 

each class. This is usually done via a linear transformation followed by a non-negative activation (e.g., ReLU or 

softplus): 

Constructing Dirichlet Parameters: Using the Dirichlet parameters, we derive both the predictive 

probabilities and an uncertainty measure: where a larger value indicates higher uncertainty (i.e., less total 

evidence). Alternatively, you might compute the variance of the Dirichlet distribution or other uncertainty metrics 

that capture how peaked or flat the predicted distribution is.  

Ten recognition accuracies of our suggested approach employing ten cross-validation splits are shown in Table 1. 

Table 1 shows that the variance of the 10 recognition accuracies is very low and that they are comparable to their 

mean value. Therefore, our suggested approach is reliable for many splits. We directly provide the mean and 

standard deviation values of ten recognition findings in the experimental data that follow in this research.  

Table 1. Result of 10-fold cross validation 

1 2 3 4 5 6 7 8 9 10 Mean Var 

90.5 92.7 91.8 93.1 89.8 90.2 92.2 91.2 91.8 90.8 91.45 1.38 

 

3.1 Comparison with Different Baselines 

We experimented with RGB and depth images using the following distinct baselines as [32] in order to verify the 

efficacy of the proposed Evidential Multimodal Deep Learning (EMDL) framework  

1. RGB CNN + Softmax: Added a softmax layer to the network's end for categorization after using the CNN to 

learn RGB characteristics. 

2. Depth CNN+ Softmax: Added a softmax layer to the end of the network for classification after using the CNN 

to learn depth features. 

3. RGB-D CNNs+Softmax: Initially, the RGB images are used to train the RGB CNN, and then the depth CNN. 

Then, transmitted the connected RGB and depth features to the softmax layer for object recognition. 
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4. RGBD CNNs+Attention-Based-Fusion+Softmax: To fuse RGB and Depth CNN features cross-modal 

attension based technique is used and transmitted to softmax layer. 

5. RGBD CNNs + attention –based fusion +  EDL-Dirichlet (Proposed): Instead of Softmax, evidential 

output layer with Dirchelet Distribution is used. 

The Washington RGB-D object dataset is used to evaluate all the first three baseline methods and a proposed 

method. The recognition accuracy is displayed in Table 2, and the best method's score is bolded. The third baseline 

method RGB-D image-based technique outperform single modality-based  (first 2) techniques by a wide margin. 

This is due to a certain complementary between the identity information found in the depth image and the RGB 

image.  

Still the recognition performance can be enhanced by applying some feature fusion techniques on multi-modal 

data. Cross-modal attention based fusion technique is used and fused features are transmitted to softmax layer for 

prediction.  The accuracy is improved than those without fusion techniques. At last the limitation of softmax was 

identified that is softmax probabilities for classification can lead to overconfident predictions even in ambiguous or 

noisy scenarios.  Hence the accuracy still can be improved by replacing this with evidential based output layer with 

Dirchlet Distribution.  

Therefore, we may say that our Evidential Multimodal Deep Learning with cross-modal attention based fusion 

approach works better than other baseline approach. Our suggested multi-modal learning approach allows us to 

extract more effective discriminative features from the RGB-D images. Nonetheless, several classes are frequently 

misclassified. The primary cause of the misclassifications is that samples from many classes share a similar color 

and form.  

Table 2. Comparision of Different Baselines on the Washington RGBD Object Dataset 

Method Accuracy 

RGB-CNN+Softmax 85.7±2.3 

Depth-CNN+Softmax 81.3±2.2 

RGBD-CNNs + Softmax 90.2± 1.8 

RGBD CNNs + attention –based fusion+Softmax 88.9 ±1.9 

RGBD CNNs + attention –based fusion +  

EDL-Dirichlet (Proposed Approach) 

92.2 ±1.3 

 

3.2 Comparasion with State-of-the-Art Methods 

We contrasted our suggested method's recognition accuracy with that of the 9 most advanced techniques listed 

below: (1) Linear SVM [31]: Texton histograms and color histograms are utilized for RGB feature extraction, while 

spin images and SIFT descriptors are employed for depth feature extraction. For classification, the linear support 

vector machine is employed. (2) Nonlinear SVM [31]: The Gaussian kernel SVM is used for classification, and the 

selected features are same to those used in the "Linear SVM" method. (3) HKDES [34]: RGB and depth features are 

extracted using a mixture of hierarchical kernel descriptors, and classification is done using a linear SVM. (4) 

Kernel Descriptor [35]: Linear SVM is utilized for classification, and a collection of kernel descriptors is employed 

for feature extraction. (5) CNN-RNN [36]: To learn features and categorize RGB-D pictures, a model comprising 

CNN and RNN is utilized. (6) The VGGNet+3D CNN+ VGG3D [34] approach, which employs the 16-layer VGGNet 

to learn features from RGB images, obtained the highest recognition accuracy for RGB image-based object 

recognition. The deep network's scale is greater than that of the CNN that we employed in our suggested method, 

and its recognition performance is marginally superior. (7) and (8) RGB CNN-SVM and Depth CNN-SVM  [32]: It  

used a CNN to learn RGB  and depth properties properties respectively, and then added a softmax layer at the end 

of the network for categorization. (9) Multimodal CNNs+DS [32]: Here first they  used multi-modal learning for 

feature extraction. Second, in order to successfully fuse the classification outcomes of the two SVMs, they created 

the DS evidence theory-based decision fusion scheme. Our suggested approach outperformed the majority of the 

state-of-the-art techniques for RGB-D object recognition in general.  
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Table 2. Comparison with state-of-the-art methods on the Washington RGBD object dataset 

 

Method 

Accuracy 

RGB Depth RGBD 

Linear SVM [21] 74.3±3.3 53.1±1.7 81.9±2.8 

kSVM [21] 74.5±3.1 64.7±2.2 83.8±3.5 

HKDES [34] 76.1±2.2 75.7±2.6 84.1±2.2 

Kernel Descriptor [22] 77.7±1.9 78.8±2.7 86.2±2.1 

CNN-RNN [30] 80.8±4.2 78.9±3.8 86.8±3.3 

VGGnet+3DCNN+VGG3D [37] 88.9±2.1 78.4±2.4 91.8±1.4 

RGB-CNN+SVM [32] 87.5±2.1 - - 

Depth-CNN+SVM [32] - 84.8± 2.0 - 

Multimodal CNNs+DS [32] 87.5±2.1 84.8±2.0 91.8±1.4 

Proposed  88.9±1.1 84.9±1.0 92.2±1.3 

   

3.3 Experimentation with Real Time Household Object Images   

Some of the real time household objects like Bottle, Cup, Knife, Spoon, Apple, Cell phone, Clock, Scissor, Tooth 

brush, Fork are considered to evaluate the system performance. In this evaluation step, 50 samples of each are 

tested, and the confusion matrix for the same is depicted in Fig. 5. An average accuracy of 90% is obtained. 

 

Figure 5: Confusion Matrix 

4. Conclusion 

In this work, a cross-modal attention-based fusion strategy is included into a unique uncertainty-aware Evidential 

Multimodal Deep Learning (EMDL) framework for RGB-D household object detection. The suggested model 

improves classification accuracy and offers a trustworthy measure of uncertainty by utilizing Evidential Deep 

Learning (EDL) and the Dirichlet distribution. This is crucial for real-world applications that demand sound 

decision-making. A distribution across categorical probabilities is modeled by the Dirichlet distribution, which 

enables the model to capture differing degrees of belief in various classes. The network predicts Dirichlet 

parameters rather than a single probability value for each class, allowing for uncertainty-aware classification and 

avoiding overconfident wrong predictions. Additionally, by dynamically highlighting informative characteristics 
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while suppressing less pertinent ones, the cross-modal attention mechanism guarantees the successful merger of 

RGB and Depth modalities.  Experiments demonstrate that the proposed approach works better in terms of 

classification accuracy (92.2%) and uncertainty estimates than conventional multimodal strategies. The ability to 

quantify uncertainty allows the model to recognize ambiguous or out-of-distribution occurrences, enhancing its 

robustness in assistive AI and real-world robotic vision applications. Future research could look into extending this 

approach to open-set recognition, few-shot learning, and continual learning in order to further improve adaption 

and generalization. 

References 

[1] Wong, S.C.; Stamatescu, V.; Gatt, A.; Kearney, D.; Lee, I.; McDonnell, M.D. Track Everything: Limiting 

Prior Knowledge in Online Multi-Object Recognition. IEEE Trans. Image Process. 2017, 26, 4669–4683. 

[CrossRef] [PubMed]  

[2] Aldoma, A.; Tombari, F.; Stefano, L.D.; Vincze, M. A Global Hypothesis Verification Framework for 3D 

Object Recognition in Clutter. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1383–1396. [CrossRef] 

[PubMed]  

[3] Oliveira, F.F.; Souza, A.A.F.; Fernandes, M.A.C.; Gomes, R.B.; Goncalves, L.M.G. Efficient 3D Objects 

Recognition Using Multifoveated Point Clouds. Sensors 2018, 18, 2302. [CrossRef] [PubMed]  

[4] Chuang, M.C.; Hwang, J.N.; Williams, K. A Feature Learning and Object Recognition Framework for 

Underwater Fish Images. IEEE Trans. Image Process. 2016, 25, 1862–1872. [CrossRef] [PubMed]  

[5] Gandarias, J.M.; Gómez-de-Gabriel, J.M.; García-Cerezo, A.J. Enhancing Perception with Tactile Object 

Recognition in Adaptive Grippers for Human–Robot Interaction. Sensors 2018, 18, 692. [CrossRef] 

[PubMed] 

[6] Sanchez-Riera, J.; Hua, K.L.; Hsiao, Y.S.; Lim, T.; Hidayati, S.C.; Cheng, W.H. A comparative study of data 

fusion for RGB-D based visual recognition. Pattern Recognit. Lett. 2016, 73, 1–16. [CrossRef]  

[7] Ren, L.; Lu, J.; Feng, J.; Zhou, J. Multi-modal uniform deep learning for RGB-D person re-identification. 

Pettern Recognit. 2017, 72, 446–457. [CrossRef] 

[8] Xu, X.; Li, Y.; Wu, G.; Luo, J. Multi-modal deep feature learning for RGB-D object detection. Pattern 

Recognit. 2017, 72, 300–313. [CrossRef]  

[9] Bai, J.; Wu, Y.; Zhang, J.; Chen, F. Subset based deep learning for RGB-D object recognition. 

Neurocomputing 2015, 165, 280–292. [CrossRef]  

[10] Li, X.; Fang, M.; Zhang, J.J.; Wu, J. Learning coupled classifiers with RGB images for RGB-D object 

recognition. Pattern Recognit. 2017, 61, 433–446. 

[11] Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–

110. 

[12] Bay, H.; Tuytelaars, T.; Gool, L.V. SURF: Speeded up Robust Features. In Proceedings of the European 

Conference on Computer Vision, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, 

Germany, 2006; Volume 3951, pp. 404–417. 

[13] Johnson, A.E.; Hebert, M. Surface matching for object recognition in complex three-dimensional scenes. 

Image Vis. Comput. 1998, 16, 635–651. [CrossRef]  

[14] Johnson, A.E.; Hebert, M. Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes. 

IEEE Trans. Pattern Anal. Mach. Intell. 2015, 21, 433–449. [CrossRef]  

[15] Schwarz, M.; Schulz, H.; Behnke, S. RGB-D object recognition and pose estimation based on pre-trained 

convolutional neural network features. In Proceedings of the IEEE International Conference on Robotics 

and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 1329–1335.  

[16] Cheng, Y.; Zhao, X.; Huang, K.; Tan, T. Semi-supervised learning and feature evaluation for RGB-D object 

recognition. Comput. Vis. Image Underst. 2015, 139, 149–160. [CrossRef] 

[17] Socher, R.; Huval, B.; Bhat, B.; Manning, C.D.; Ng, A.Y. Convolutional-Recursive Deep Learning for 3D 

Object Classification. In Proceedings of the International Conference on Neural Information Processing 

Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 656–664. 

[18] Rahman, M.M.; Tan, Y.; Xue, J.; Lu, K. RGB-D object recognition with multimodal deep convolutional 

neural networks. In Proceedings of the IEEE International Conference on Multimedia and Expo, Hong 

Kong, China, 10–14 July 2017; pp. 991–996. 

[19] Tang, L.; Yang, Z.X.; Jia, K. Canonical Correlation Analysis Regularization: An Effective Deep Multi-View 

Learning Baseline for RGB-D Object Recognition. IEEE Trans. Cogn. Dev. Syst. 2018. [CrossRef] 



674  
 

J INFORM SYSTEMS ENG, 10(17s) 

[20] Andreas Eitel, Jost Tobias Springenberg, Luciano Spinello, Martin Riedmiller, and Wolfram Burgard. 2015. 

Multimodal deep learning for robust RGB-D object recognition. In 2015 IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS). IEEE Press, 681–687. 

https://doi.org/10.1109/IROS.2015.7353446 

[21] Y. Zhang, M. Yin, H. Wang and C. Hua, "Cross-Level Multi-Modal Features Learning With Transformer for 

RGB-D Object Recognition," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, 

no. 12, pp. 7121-7130, Dec. 2023, doi: 10.1109/TCSVT.2023.3275814. 

[22] Gao, Junyu & Chen, Mengyuan & Xiang, Liangyu & Xu, Changsheng. A Comprehensive Survey on 

Evidential Deep Learning and Its Applications. (2024) 10.48550/arXiv.2409.04720. 

[23] Murat Sensoy, Lance Kaplan, and Melih Kandemir. 2018. Evidential deep learning to quantify classification 

uncertainty. In Proceedings of the 32nd International Conference on Neural Information Processing 

Systems (NIPS'18). Curran Associates Inc., Red Hook, NY, USA, 3183–3193. 

[24] Juan Baz, Mikel Ferrero-Jaurrieta, Irene Díaz, Susana Montes, Gleb Beliakov, and Humberto Bustince. 

2024. Probabilistic study of Induced Ordered Linear Fusion Operators for time series forecasting. Inf. 

Fusion 103, C (Mar 2024). https://doi.org/10.1016/j.inffus.2023.102093. 

[25] Mendonça, Hildeberto & Lawson, Jean-Yves & Vybornova, Olga & Macq, Benoit & Vanderdonckt, Jean. 

(2009). A fusion framework for multimodal interactive applications. 161-168. 10.1145/1647314.1647344. 

[26] Gupta, S.; Girshick, R.; Arbeláez, P.; Malik, J. Learning Rich Features from RGB-D Images for Object 

Detection and Segmentation. In Proceedings of the European Conference on Computer Vision, Zurich, 

Switzerland, 6–12 September 2014; pp. 345–360.  

[27] Gupta, S.; Arbeláez, P.; Malik, J. Perceptual Organization and Recognition of Indoor Scenes from RGB-D 

Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, 

OR, USA, 23–28 June 2013; pp. 564–571.  

[28] Song, S.; Lichtenberg, S.P.; Xiao, J. SUN RGB-D: A RGB-D scene understanding benchmark suite. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 

June 2015; pp. 567–576. 

[29] Gupta, S.; Hoffman, J.; Malik, J. Cross Modal Distillation for Supervision Transfer. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 

2827–2836.  

[30] Song, S.; Xiao, J. Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images. In Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; 

pp. 808–816 

[31] Lai, K.; Bo, L.; Ren, X.; Fox, D. A large-scale hierarchical multi-view RGB-D object dataset. In Proceedings 

of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 

1817–1824 

[32] Zeng, H., Yang, B., Wang, X., Liu, J., & Fu, D. (2019). RGB-D Object Recognition Using Multi-Modal Deep 

Neural Network and DS Evidence Theory. Sensors, 19(3), 529. https://doi.org/10.3390/s19030529 

[33] Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural 

networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, 

Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. 

[34] Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and 

Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. 

[35] Bo, L.; Ren, X.; Fox, D. Depth kernel descriptors for object recognition. In Proceedings of the IEEE/RSJ 

International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 

2011; pp. 821–826 

[36] Socher, R.; Huval, B.; Bhat, B.; Manning, C.D.; Ng, A.Y. Convolutional-Recursive Deep Learning for 3D 

Object Classification. In Proceedings of the International Conference on Neural Information Processing 

Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 656–664. 

[37] Zia, S.; Yüksel, B.; Yüret, D.; Yemez, Y. RGB-D Object Recognition Using Deep Convolutional Neural 

Networks. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, 

Italy, 22–29 October 2017; pp. 887–894. 

https://doi.org/10.1016/j.inffus.2023.102093



