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As wireless systems are increasingly utilized, the volume of data traffic in wireless networks 

continues to grow. To manage these demands and ensure quality service for each user, employing 

multiple-input multiple-output (MIMO) systems is seen as an effective approach for the future 

of telecommunications. Additionally, managing radio resources and controlling transmitted 

power are crucial in wireless systems. Various algorithms have been developed to address these 

power control challenges. Notably, machine learning algorithms are gaining traction for 

optimizing power allocation in MIMO systems because they offer lower computational 

complexity and faster processing times suitable for real-time applications. However, gathering 

training data for deep learning applications in telecommunications poses significant challenges. 

Deep neural networks require extensive data for training, and labeling this data is a complex 

process. In this paper, we explore a power allocation strategy in massive MIMO systems using a 

deep neural network that employs unsupervised learning, where a cost function updates the 

network instead of relying on labeled data. The objective is to maximize the signal-to-

interference-plus-noise ratio (SINR). The findings demonstrate that unsupervised deep learning 

can effectively allocate power while reducing computational complexity and processing time. 

Keywords: Multiple-input multiple-output, power allocation, deep neural network. 

 

1- Introduction 

In the evolving landscape of 5G networks, the integration of deep learning for resource allocation and spectrum 

sensing presents a transformative opportunity to enhance network performance and efficiency. The application of 

massive MIMO and mmWave technologies has been foundational in the advancement of 5G, with significant benefits 

and challenges identified in terms of spectral and energy efficiency, as well as hardware requirements [1][3][9]. The 

deployment of these technologies requires innovative approaches to manage the increased complexity and dynamic 

nature of 5G networks. Deep learning has emerged as a potent tool for optimizing resource allocation in these 

complex environments. Sanguinetti et al. highlighted the potential of deep learning in power allocation within 

massive MIMO systems, which is crucial for maximizing network throughput and minimizing interference [4]. This 

approach is supported by further studies that suggest deep learning can effectively handle the variable and high-

dimensional data characteristic of 5G networks, optimizing resource distribution in real-time [20][17]. Spectrum 

sensing, another critical aspect of resource management in 5G, also benefits from deep learning techniques. The 

ability to predict and adapt to the spectral environment allows for more efficient use of bandwidth and improves the 

overall quality of service. Techniques like unsupervised learning provide frameworks for developing adaptive 

algorithms that can enhance spectrum sensing without the need for extensive labeled data, which is often scarce in 

real-world scenarios [28][30]. Moreover, deep learning has been applied to specific challenges within 5G, such as 

non-orthogonal multiple access (NOMA) schemes, where it helps in managing co-channel interference and power 

allocation to maximize spectral efficiency [23]. Similarly, the integration of deep learning in mmWave 

communications assists in beamforming and channel estimation, which are critical for exploiting the high-speed 

potential of mmWave frequencies [8][6]. The potential of deep learning extends to various other applications within 

5G networks, such as caching and interference alignment, which are essential for enhancing network reliability and 

throughput [22][26]. Additionally, the iterative improvements in deep learning models, such as those introduced by 

Kingma and Ba with the Adam optimizer, provide robust methods for training deep neural networks efficiently, which 
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is vital for deploying complex models in dynamic network environments [32]. The benefits of integrating deep 

learning are especially apparent in the context of dynamic spectrum management, where it can predict network loads 

and optimize frequency allocation in real-time, significantly enhancing user experiences and network efficiency 

[17][20]. Deep learning's role in optimizing physical layer operations, such as encoding and decoding processes, also 

demonstrates its critical impact on improving the throughput and reliability of 5G networks. Techniques like deep 

reinforcement learning offer promising results in areas such as power control and signal optimization, which are 

crucial for maintaining service quality in dense urban environments with high user mobility [14][25]. Furthermore, 

the use of deep learning for security purposes in 5G networks cannot be understated. With the increasing number of 

connected devices and the surge in data traffic, securing these networks against a wide range of threats is paramount. 

Deep learning algorithms help in anomaly detection and in developing robust security frameworks that adapt to 

evolving threats without compromising network performance [17][18]. In addition to enhancing network operations, 

deep learning also facilitates the development of user-centric applications, such as personalized streaming and 

dynamic content delivery, by intelligently predicting user preferences and network conditions. This not only improves 

user satisfaction but also optimizes network resource usage, which is a critical concern for service providers aiming 

to reduce operational costs while improving service delivery [27][23]. Deep learning's role in optimizing physical 

layer operations, such as encoding and decoding processes, also demonstrates its critical impact on improving the 

throughput and reliability of 5G networks. Techniques like deep reinforcement learning offer promising results in 

areas such as power control and signal optimization, which are crucial for maintaining service quality in dense urban 

environments with high user mobility [14][25]. Furthermore, the use of deep learning for security purposes in 5G 

networks cannot be understated. With the increasing number of connected devices and the surge in data traffic, 

securing these networks against a wide range of threats is paramount. Deep learning algorithms help in anomaly 

detection and in developing robust security frameworks that adapt to evolving threats without compromising 

network performance [17][18]. In addition to enhancing network operations, deep learning also facilitates the 

development of user-centric applications, such as personalized streaming and dynamic content delivery, by 

intelligently predicting user preferences and network conditions. This not only improves user satisfaction but also 

optimizes network resource usage, which is a critical concern for service providers aiming to reduce operational costs 

while improving service delivery [27][23]. As 5G networks continue to evolve, leveraging the capabilities of deep 

learning will be essential in addressing the complexities and challenges associated with next-generation wireless 

systems. The ongoing research and development in this field promise to yield further innovations that will enhance 

the scalability, efficiency, and security of 5G networks, ultimately leading to more robust and user-friendly 

communications systems [26][28]. 

2- Research background 

Massive MIMO refers to a telecommunications technology where a base station is equipped with a large number 

of antennas and serves a very large number of users using spatial multiplexing. In recent years, significant 

advancements have been made in the utilization of this technology. In the industry, this technology has been 

integrated into the new radio standard G5 [26]. In this work, the use of deep neural networks for solving the power 

allocation problem using the max-product method in a massively parallel input-output link network has been 

employed. The neural network is utilized to optimize user positions to achieve near-optimal efficiency. While 

traditional algorithms based on precise mathematical models can provide satisfactory performance, they may not be 

suitable for real-time applications due to computational complexity delays. In fact, demands with minimal delays 

and low power consumption in next-generation wireless systems are becoming increasingly common. The potential 

of neural networks in feature extraction and presentation has garnered significant attention in the field of wireless 

communications. 

 [27], [28] are technologies using deep learning that demonstrate a process of offline learning followed by online 

utilization of the trained network. Compared to repetitive algorithms, these technologies significantly reduce time 

complexity. As the trained network only consists of simple linear and non-linear transformation units, the complexity 

of power allocation decreases fundamentally, enabling real-time power allocation execution, such as tracking users' 

position changes. 

In this paper, initially, a deep neural network is trained to learn the mapping between user locations and optimal 

resource allocation based on [4]. Subsequently, the trained neural network is used for predicting the allocated 

capacity to a set of new users. The significant improvement in performance complexity is achieved by utilizing deep 
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learning.  The applied method can ensure near-optimal efficiency. Furthermore, to enhance this process, an 

unsupervised neural network learning algorithm is utilized. The utilization of deep learning in telecommunication 

data collection and neural network training poses a significant challenge as neural networks require large volumes of 

data for learning, making the labeling process for this high volume of training data complex. Instead of labels, a cost 

function is employed here to update the deep neural network. The performance of both supervised and unsupervised 

deep neural network training methods is evaluated to achieve near-optimal efficiency. 

2.1 System Model 

Considering the down link system as described in [4], we consider a massive multiple-input multiple-output 

network with L cells, each containing a base station with M antennas and K users. hij
l ∈ C𝑀 represents the channel 

between user i in cell l and base station j, and we assume: 

ℎ𝑙𝑖
𝑗
~𝑁𝐶  (0𝑀. 𝑅𝑙𝑖

𝑗
) (1-2) 

Where 𝑅𝑙𝑖
𝑗
∈ C𝑀×𝑀 is the known spatial correlation matrix at base station j. Based on 2.3, the average channel gain 

from one antenna at base station j to user i in cell l is expressed as follows: 

𝛽𝑙𝑖
𝑗
= 𝛾 − 10 𝛼 𝑙𝑜𝑔10  (

𝑑𝑙𝑖
𝑗

1𝑘𝑚
)    𝑑𝐵 (1-2) 

where γ =-148 and α =3.76 are considered. Additionally, 𝑑𝑙𝑖
𝑗

is the distance of user i in cell l from base station j. It 

is defined as 𝑑1𝑖
𝑗
= ‖𝑥1𝑖

𝑗
‖, where 𝑥1𝑖

𝑗
 ∈ 𝑅2 represents the spatial location of the user in Euclidean space. Similar to [4], 

channel training with the use of pilots is employed for estimating channel vectors at base station j. The base station 

and users operate using TDD protocol. In the base station, the standard method of MMSE channel estimation is 

utilized to obtain the channel estimate ℎ𝑙𝑖
𝑗

. 

2.1.1 Spectral Efficiency in downlink 

The base station in cell 1 sends the down link signal 𝑋1 = ∑ 𝑊1𝑖𝜁1𝑖
𝐾
𝑖=1   , where 𝜁1𝑖~𝑁𝐶  (0𝑀. 𝜌1𝑖)is the data signal of 

the uplink for user i in cell 1, accompanied by the precoding vector 𝑊1𝑖 ∈ C
𝑀 specifying the spatial direction of the 

transmitter, is defined. The pre coding vector ensures condition 𝐸{‖𝜔1𝑖‖
2} = 1, where 𝜌1𝑖is the allocated transmit 

power to the user. The spectral efficiency of the downlink for user k in cell j, considering 2.16, is defined as follows: 

𝑆𝐸𝑗𝑘
𝑑𝑙 =

𝜏𝑑
𝜏𝑐
log2(1 + 𝛾𝑗𝑘

𝑑𝑙)     (𝑏𝑖𝑡/ 𝑠/𝐻𝑧) (3-2) 

Where SINR is as follows: [4] 

𝑆𝐸𝑗𝑘
𝑑𝑙 =

𝜌𝑗𝑘|𝐸{𝜔𝑗𝑘
𝐻 ℎ𝑗𝑘

𝑗
}|
2

∑ ∑ 𝜌𝑙𝑖|𝐸{𝜔𝑙𝑖
𝐻ℎ𝑗𝑘

𝑙 }𝐻|
2
− 𝜌𝑗𝑘|𝐸{𝜔𝑗𝑘

𝐻 ℎ𝑗𝑘
𝑙 }𝐻|

2
+ 𝜎 

2𝑘𝑙
𝑖=1

𝐿
𝑙=1

 (4-2) 

The coefficient before the logarithm (
𝜏𝑑

𝜏𝑐
) is the ratio of the samples used for the uplink data per each coherence 

block. It is important to note that this high band is accessible for channels that have implemented channel hardening 

[3]. 

2.1.2 Design of Pre coder 

Precoding at the transmitter can be used in downlink links to focus each signal on a terminal's desired usage. 

Unlike uplink links, finding an optimized pre coder in downlink links poses a challenge because the spectral efficiency 

in downlink links depends on pre coding vectors used by all users in the network as a whole. Due to the bidirectional 

nature of uplink and downlink channels in Time-Division Duplexing (TDD) mode, there is a strong relationship 

between the receiver combiner in the uplink and the transmitted precoding in the downlink. Inspired by the up-down 

link duality method in Eq. 2-2, the X precoding vector can be selected as follows: 

𝜔𝑗𝑘 =
𝑣𝑗𝑘

‖𝑣𝑗𝑘‖
 (5-2) 
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where 𝑣𝑗𝑘specifies the received combiner vector identifying the usage of the transmitted signal from the uplink by 

user k in cell j. In this process, 𝑣𝑗𝑘is chosen to maximize the selected rate based on the combiner method, which 

utilizes channel estimation of each terminal to maximize the power and strength of the desired signal from that 

terminal [29]. 

𝑣𝑗𝑘
𝑀𝑅 = ℎ̂𝑗𝑘

𝑗
 (6-2) 

The choice of this pre-encoding method is because it has the least complexity among the combined methods, but 

yields a suboptimal result. 

3- Proposed Method 

3.1 Problem Formulation 

The downlink spectral efficiency for user k in cell j is defined as in Eq. 3-1. As mentioned in previous Section, 

among various power allocation techniques, the max product SINR method is utilized. In fact, the main objective is 

to maximize the SINR product of all users, which can be formulated as follows: 

max
{𝜌𝑗𝑘∶ ∀ 𝑗.𝑘}

∏∏𝛾𝑗𝑘
𝑑𝑙

𝐾

𝑘=1

𝐿

𝑗=1

 

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝜌𝑗𝑘

𝐾

𝑘=1

≤ 𝑝𝑚𝑎𝑥
𝑑𝑙 .    𝑗 = 1.⋯ . 𝐿     

(1-3) 

Where 𝑃𝑚𝑎𝑥
𝑑𝑙  determines the maximum transmitting power of the downlink. In [4], initially, the Monte Carlo 

method presented in the following is used for calculating optimal powers: 

1) Macroscopic Diffusion Effects: 

a) Randomly delete the user deletes at position 𝑋1𝑖
𝑗

. 

b) Calculation of the large-scale fading coefficients 𝛽𝑙𝑘
𝑗

. 

c) Calculation of the channel correlation matrix 𝑅1𝑘
𝑗

. 

2) Microscopic Diffusion Effects: 

a) Generation of a random channel estimate vector using the MMSE estimator. 

3) Spectral Efficiency Calculation: 

a) Calculation of the pre-coding vectors MR. 

b) Channel estimate averaging for calculating the channel gain and interference mean gain. 

4) Power Allocation with Solution 4-7 

Solution 4.7 is obtained through geometric programming. However, polynomial complexity is required for its 

resolution. When the solution must be obtained promptly, even polynomial complexity can be considerable. In other 

words, the presented solution must be so rapid that it can be implemented in the system before user positions change, 

necessitating a re-solving of the power allocation problem. 

3.2 Resource Allocation based on Supervised Deep Learning 

The supervised learning approach functions as an approximation tool, training the neural network to approximate 

the accurate output as closely as possible. In this process, initially [4] using spatial information from users, which 

have the key features of channel propagation and interference in the network, is employed. Therefore, for each cell j, 

the learning problem is unknown mapping between the solution of 4-7, 𝜌𝑗
∗ = [𝜌𝑗1

∗ . ⋯ . 𝜌𝑗𝐾
∗ ] ∈ 𝑅𝐾,  and the position of 

the  2KL user (𝑋 = {𝜌1𝑖
𝑗
; ∀𝑗. 𝑙. 𝑖} ∈ 𝑅2𝐾𝐿. This is achieved by the well-known feature of neural networks, which are global 

approximation functions. A feed-forward neural network is considered, which consists of: an input layer with 

dimensions 2KL, N hidden layers, and an output layer with dimensions K+1. Ultimately, the network provides an 
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optimal power allocation vector estimate. As observed, the size (number of neurons) of the output layer is K+1 instead 

of K, as we aim for the neural network to also learn ∑ 𝜌𝑗𝑘
∗𝐾

𝑘=1 for enforcing power allocation constraints in Eq. 4-7 and 

achieving high estimation accuracy. The problem involves learning the weights and biases of the network, thereby 

reducing the mapping of input to output in the neural network, following the conventional mapping approach. Here, 

a training set is required, including NT optimal power allocation samples for the training input x(n). Considering 

𝜌̂𝑗(𝑛) as the output of the neural network, the learning process involves minimizing the cost function. 

min
𝜔.𝑏

1

𝑁𝑇
=∑ 𝑙 (𝜌̂𝑗(𝑛). 𝜌𝑗

∗(𝑛))

𝑁𝑇

𝑛=1

 (2-3) 

Where l (.,.)  can be any measure of distance measurement between the output data of a neural network and 

labeled data. Accordingly, with the forward and backward propagation, the parameters 𝜔  and  b  are adjusted, 

enabling the network to predict for new input vectors that were not part of the training data. 

3.2.1 Implementation of Online Learning and Complexity 

The complexity of supervised deep learning methods mainly relies on the generation of training data. Assuming 

each layer has Ni neurons, the calculation of the output of the neural network only requires ∑ 𝑁𝑖−1
𝑁+1
𝑖=1 𝑁𝑖 real 

multiplications. The learning process is carried out by implementing the gradient descent algorithm and the 4-4-1-3 

back propagation algorithm. However, in this method, for the generation of training data, we need to execute the 

optimal power allocation algorithm offline to find the desired labels. 

3.3 Power Allocation with Unsupervised Deep Learning 

Power control is a means to prevent performance inequalities among users. Defining a suitable cost function 

enables optimizing the transmitted power to achieve the desired balance in users' Signal-to-Interference-Plus-Noise 

Ratio (SINR). Similar to the previous section, we will aim to maximize the product of SINRs. The unsupervised 

learning framework avoids the calculation and creation of labeled training data and accelerates the retraining of the 

neural network model when changes occur in the system and network. In this work, large-scale fading behavior is 

considered, while small-scale fading changes, which occur in milliseconds, are not taken into account; this ensures 

relatively stable power transmission capability. 

3.3.1 Presentation Method Feature 

In this case, only user location data has been utilized, noting that the channel model can be statistically defined 

as a function of distance. A deep learning model has been employed to train on a large dataset, ensuring that after 

training, all users have learned the same model. This enhances the feasibility of implementing the proposed method. 

The decision-making time for power allocation has been reduced by minimizing computations. In supervised deep 

learning, the training process requires more time compared to unsupervised methods for label computations. 

3.3.2 Cost Function 

In deep learning, the cost function is a way to provide rewards or penalties for updating a deep neural network. 

Unlike the previous section where we had labeled data and considered the Mean Squared Error (MSE) as the objective 

function, calculating the difference between the estimated output of the neural network and the optimal power with 

the aim of minimizing it, in this continuation of the work without having the optimal output, we consider the loss 

function as the max product Signal-to-Interference-Plus-Noise Ratio (SINR). We seek to maximize the product of 

SINRs or equivalently take their logarithm. This can define the loss function with respect to [30] as follows: 

𝐶𝑜𝑠𝑡 =∑∑log (𝑧1 +
1

𝑆𝐼𝑁𝑅𝑗𝑘 + 𝑧2
)

𝐾

𝑘=1

𝐿

𝑗=1⏟                        
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒

+ 0 ∙ 1∑∑log (𝜌𝑗𝑘 − 𝑝𝑚𝑎𝑥)

𝐾

𝑘=1

𝐿

𝑗=1⏟              
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

 
(3-3) 

To prevent the solution provided from focusing too much on users with very high or very low Signal-to-

Interference-Plus-Noise Ratio (SINR) in the learning process, we introduce two small constant values to the cost 

function. The value of z1=0.01 is added to reduce the impact of users with high SINR, and z2=0.01 is added to reduce 

the impact of users with low SINR [30]. 
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3.3.3 Deep Learning Process 

If multiple models are tailored to different users, each model will be trained on a different dataset. In such a 

scenario, ambiguity arises concerning which model should be used for which user. The use of online learning instead 

of pre-trained models can introduce another issue. In online learning, the model is influenced by a large number of 

new data points, which can lead to over fitting. Therefore, using a single large model to achieve the same result is less 

suitable than employing multiple models. 

Input data and labels are crucial components for successful deep learning. Deep learning is trained to produce an 

output that closely resembles the label of the input data. Hence, a successful learning process may not be guaranteed 

for unlabeled input data. However, the proposed method resolves this issue. Instead of using a fixed optimal solution-

derived label, we utilize the deep learning cost function 4-9 as the cost function. In Algorithm 1, the Train () function 

is the core part of the learning process, where X is the input to the neural network, and the output is P, representing 

the assigned power to users. This output is then passed to the function 4-9. Subsequently, the Adam optimizer, by 

computing the derivatives of the cost function, follows the changes to minimize the cost function. Therefore, θ is 

adjusted by the optimizer to minimize the cost function. 

 

4. Performance Evaluation 

The assumptions of the problem, as discussed in the article [4], are considered as summarized in Table 4.2. The 

training and test data used were obtained from [31]. The neural network considered for deep supervised and 

unsupervised learning is described in Table 4-3. 

It is assumed that k equals 5 users distributed randomly and uniformly in each cell. The results are averaged over 

100 different user distributions. The bandwidth considered in these data is 20 MH. The total receiver noise power is 

-94 dBm. 

The neural network uses a set of NT comprising 340,000 independent samples of user locations ( 𝑥(𝑛);  𝑛 =

1.⋯ .𝑁𝑇 ) and optimal power allocation { 𝜌𝑗
𝑗
(𝑛);  𝑛 = 1.⋯ .𝑁𝑇} for 𝑗 = 1.⋯ . 𝐿 which is obtained through solving (4-7). 

90% of the data is used for training and 10% for validation which is independent of the training data and is used for 

testing. 10000 samples, that are independent from the training data, are used for test. The learning rate is determined 

by trial and error. 

To evaluate the improvement that the proposed method brings in reducing execution time and solving the power 

allocation problem, the execution time of the deep neural network algorithm without supervision for each set of 

random user locations is compared with the execution time and solving (4-7) using CVX in Table 4.1. 

 



757  
 

J INFORM SYSTEMS ENG, 10(17s) 

Table 4.1: Comparison table of execution time of two methods (Max-Prod CVX, Unsupervised-NN) in seconds. 

 Max-prod CVX Unsupervised-NN 

CPU 2.7 1.58 × 10-4 

Considering Table 4.1, the execution time and achieving results by allocating power using unsupervised deep 

learning algorithm is less than the execution time of solving the optimization problem with CVX. This is due to the 

reduced computational complexity in neural networks compared to optimization methods. Additionally, in 

comparison to supervised learning methods, there is no requirement for the time needed to generate labeled data to 

solve the optimization problem. Therefore, the proposed method has computational complexity superiority over the 

compared methods. 

For performance evaluation, the power allocation results based on neural networks have been compared with the 

power allocation results using optimization problem solving. Initially, the cumulative distribution function of spectral 

efficiency for each user in downlink link has been illustrated. Fig. 4.1 demonstrates that the presented neural network 

has provided results close to the optimal. The slight discrepancy in matching can be explained as follows; 

Even though the neural network is given the complete information of all users in the network, in the precursor 

coding of MR, power is allocated solely based on the desired signal, neglecting the use of all this information leading 

to a slight loss compared to the optimal method. When comparing the two approaches of supervised and 

unsupervised learning used for neural networks, we observe that the performance of the unsupervised deep learning 

method is closer to optimal compared to supervised deep learning. This is because the effectiveness of supervised 

deep neural network learning is limited by locally optimal solutions obtained by the Max Product optimization 

problem-solving approach and is focused on finding a mapping between defined inputs and outputs. On the other 

hand, the unsupervised deep neural network learning method aims to optimize this objective function itself. 

Table 4.2: Parameters of an extensive multi-input-multi-output network 

Cell area  

Bandwidth  

Number of cells  

Number of UEs per cell  

UL noise power  

UL transmit power 

Samples per coherence 

block 

1 km×1 km 

200 MHz 

L = 4 

K=5 

-94 dBm 

20 dBm 

𝜏𝑐 = 200 

 

Table 4.3: Neural Network Parameters 

 Size Activation Function 

Input 

Layer 1 (Dense 

Layer 2 (Dense) 

Layer 3 (Dense) 

Layer 4 (Dense) 

Layer5 (Dense) 

Output 

40 

512 

256 

128 

128 

5 

6 

- 

elu 

elu 

elu 

elu 

elu 

Linear 
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Fig. 4.1: The cumulative distribution function of the spectral efficiency of the downlink of the downlink with the 

max-product cost function. 

 

Fig. 4.2: Cumulative distribution function of SINR for the downlink with the max-product cost function is 

illustrated. 

Moreover, Fig. 4.2 depicts the cumulative distribution function in the downlink. Here, it is also observed that the 

neural network provides results close to the optimal solution. At low SINRs, the results of the optimal solution 

perfectly match those of the deep neural network, but at higher SINRs, there is a slight discrepancy between the 

neural network results and the optimal solution due to the use of pre coding MR, which allocates power solely based 

on desired signal efficiency and does not utilize all user location information, hence resulting in a slight loss compared 

to the optimal method. 

5- Conclusion 

In this work, the problem of power allocation in the downlink of a multi-input multi-output massive network with 

4 cells and 5 users in each cell is considered. To reduce computational complexity in solving the power allocation 

problem, the use of a deep neural network is proposed. The training process of this neural network is based on 

unsupervised learning method, avoiding the complex process of obtaining labels. Initially, the users' positions with 
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their main characteristics of channel propagation and network interference are provided as inputs to the neural 

network. Then, the neural network performs the training process using gradient descent algorithm and back 

propagation. Here, unlike supervised training where labeled data is available, a cost function is considered and the 

Adam optimizer (based on [32]) works towards minimizing this cost function. As demonstrated, the trained neural 

network has effectively learned how to allocate power to each user in each cell. In fact, it has reduced the solved 

instances. It can be stated that algorithms based on deep neural networks exhibit a certain amount of efficiency loss 

compared to the optimal maxprod optimization method, but they have superiority in terms of computational 

complexity and processing time. Telecommunications resource management, including transmission power for 

enhancing desired signals and controlling interference signals, is crucial. On the other hand, the number of users in 

each cell is continuously changing in practice, necessitating quick decision-making and responses in allocating power 

to users. One proposed solution could be utilizing reinforcement learning tools. In reinforcement learning methods, 

we do not have explicit instructions; rather, we choose the best course of action through various experiences. In 

reinforcement learning, the training does not stop; leveraging this very property, network changes can be monitored 

continuously, and new decisions can be made for emerging situations. Another aspect that could be explored is the 

use of distributed deep neural networks. In this approach, each cell operates independently, and the neural network 

input is restricted solely to the connectivity coefficients available to that cell. A drawback of fully connected neural 

networks is that as the dimensions of optimization vectors increase, the number of neuron connections and training 

parameters also increase. To address this issue, various other neural network architectures, such as convolutional 

neural networks (CNNs), can be employed to reduce the number of training parameters in the model. 
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