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Image segmentation poses a significant challenge in the field of medical image analysis aiming 

to extract valuable information and enhance clinical diagnosis accuracy. The main aim of this 

paper is to explore the use of the baseline U-Net architecture and another model that combines 

the baseline U-Net with attention mechanisms called OrganFocusU-Net model in organ 

semantic segmentation and differentiation in laparoscopic hysterectomy. These models involve 

leveraging the UD Ureter-Uterine Artery-Nerve dataset, which is a comprehensive collection 

from laparoscopic surgeries, accompanied by corresponding multiclass masks and capable of 

pixel-wise detection and differentiation of three key organs: ureter, uterine artery, and nerves, 

with a specific emphasis on accurately distinguishing the ureter from the other organs. The 

experiments showed that the baseline U-Net model on the augmented dataset has a mean IoU 

score of 79.04%, while the proposed OrganFocusU-Net model achieved a mean IoU score of 

79.52% on the augmented dataset, indicating its effectiveness in accurately distinguishing critical 

organs. 

Keywords: Image Segmentation; Deep Learning; U-Net Architecture; Attention Mechanisms; 

Intersection over Union (IoU) 

 

1. INTRODUCTION 

Image segmentation means splitting an image into several segments or regions. It is an important subject in computer 

vision, which can be applied in object detection and medical imaging. In the dynamic and densely populated world, 

the prevalence of lifestyle-related diseases has increased significantly, disrupting normal human routines. This surge 

necessitates advanced approaches in medical image segmentation, particularly dealing with diverse tissues [1]. 

End-to-end learning with high-resolution medical images enhances segmentation accuracy, yet challenges arise from 

network depth, excessive parameters, and limited receptive fields in deep architectures. The absence of multi-scale 

contextual information further compromises segmentation performance due to variations in the sizes and shapes of 

regions of interest, so the incorporation and consolidation of multi-scale features become crucial for enhancing 

medical image segmentation performance [2]. 

The uterine arteries serve as the primary vessels responsible for providing blood to the uterus. These arteries emit 

branches that distribute blood to different segments of the uterus, playing a pivotal role in maintaining blood supply 

during physiological processes, such as the modifications in the endometrium throughout the menstrual cycle and 

the expansion of the uterus during pregnancy [3]. 

Convolutional neural networks (CNNs), notably the U-Net [4] and its variants, have emerged as leaders in this 

domain due to their exceptional performance. Characterized by ’U-shaped' architecture, these models consist of an 

encoder for global representation learning and a decoder for the gradual decoding of learned representations into 

pixel-wise segmentation. However, the limited encoding performance of CNN-based models stems from their 

localized receptive fields [5]. The encoder learns contextual features, reducing the resolution of medical images 

through convolution and pooling operations. Conversely, the decoder restores image resolution using an upsampling 

operation while enhancing abstract representation through convolution operations. Skip-connections in U-Net's 

architecture employ aggregation functions, either concatenation [6] or addition [7]. 
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Despite widespread use in CNN methods for medical image segmentation [6,8], U-Net architectures suffer from an 

excessive number of parameters. Cascaded strategies on U-Net have been explored, particularly in brain tumor 

segmentation [9,10] addressing overlapping label challenges. Cascaded U-Net involves multiple encoder-decoder 

networks to address segmentation complexities, such as the work by Baid et al. [10], where the first network segments 

the whole tumor, and the second focuses on the tumor core and enhancing prediction of tumor. However, applying 

cascading U-Net to solve multi-class segmentation problems introduces complications. 

Residual connections [11] in cascaded U-Net aim to prevent vanishing gradient issues in deeper networks. However, 

to address increased training parameters, researchers have replaced residual networks with dense connections, 

enabling short connections between layers and reducing parameters [12]. Dense connected U-Net models have been 

developed for multiple organ segmentation challenges [7,13]. 

Upon conducting a thorough examination of the available literature, several problems have been identified: A 

noteworthy concern observed in existing research work is the disregard for clinically attained databases. To increase 

the applicability of the proposed model, it is imperative to broaden the investigation by incorporating additional 

benchmark and clinically acquired datasets [14]. This inclusion ensures enabling the proposed model to adeptly 

handle a diverse array of real-world data. Many existing studies have predominantly concentrated on the 

classification process [15-17], with minimal attention directed toward segmentation. Only a few of studies have delved 

into the segmentation process [18-20]. However, the achieved accuracy rates in these studies are relatively modest, 

indicating the necessity for further enhancements in this domain [21]. 

Identifying these shortcomings in the existing literature underscores the need to address these limitations and 

enhance current approaches. The proposed model endeavors to overcome these challenges by incorporating clinically 

attained databases and prioritizing accurate and effective segmentation of laparoscopic surgery. 

In this research, we introduce an approach to enhance semantic segmentation in laparoscopic surgery. Our 

contributions can be summarized as follows: 

•  Custom Dataset Utilization: Throughout our study, we leverage the UD Ureter-Uterine Artery-Nerve Dataset 

[22], a comprehensive collection of 586 high-resolution RGB images with corresponding masks. This dataset, 

meticulously annotated by gynecological experts, it forms the cornerstone of our experimentation. By training and 

evaluating models on this specific dataset, we ensure that our solutions are tailored to the intricacies of laparoscopic 

hysterectomy procedures. 

•  Proposed Model (OrganFocusU-Net): A proposed model, called OrganFocusU-Net, is developed, which 

combines the robust U-Net architecture with exploring attention mechanisms, to enhance the precision and accuracy 

of organ segmentation. This model specifically addresses the challenge of distinguishing critical organs during 

laparoscopic hysterectomy, showcasing the capability to intelligently focus on the most relevant regions within an 

image. 

•  Evaluation of the performance of the baseline U-Net and the proposed OrganFocusU-Net model: 

We evaluate and validate the segmentation models against ground truth masks, providing quantitative insights into 

their effectiveness. 

The rest of the paper is organized as follows, Section 2 provides a review of related work; Section 3 presents the 

proposed model; Section 4 presents the experimental results and discussion; and finally, Section 5 presents the 

paper's conclusions and future work. 

2. RELATED WORK 

The limitations associated with manual and semi-automated techniques in biomedical segmentation have led to the 

introduction of fully automated approaches. Utilizing automated techniques for image segmentation has emerged as 

an alternative to manual processing, facilitating faster and more efficient patient examinations by healthcare 

professionals. 

Fully convolutional networks (FCN) introduced by J. Long et al. in [23], and U-Net - introduced by Ronneberger et 

al. in [24] are based on a common key concept: skip connections. FCN sums upsampled feature maps with feature 

maps skipped from encoder while U-Net concatenates inserting convolutions and nonlinearities between each 

upsampling step. Following the intuition from DenseNet architecture Huang et al in [12] and Li et al. In [25], H- 
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denseunet for liver and liver tumor segmentation was introduced. Drozdzal et al. [26] systematically explored the 

importance of skip connections and introduced short skip connections within the encoder. Though there are minor 

architectural differences between the above approaches, they tend to fuse semantically dissimilar feature maps of 

encoder and decoder sub-networks, which compromise the segmentation performance based on experiments. 

Other related models used for segmentation include GridNet, which is an encoder-decoder model where feature maps 

are set in a grid fashion. It does not have upsampling layers between the skip connections and also does not represent 

UNet++. Mask-RCNN is an important meta-framework that offers object detection, classification, and segmentation. 

The UNet++ could be fitted as its backbone architecture with just simple skip connections combined with nested 

dense skip pathways. 

Another model called Pseudo-Mask Guided Feature Aggregation Network (PG-FANet) used in [29], it’s a novel semi- 

supervised learning framework designed for histopathology image segmentation. It employs a two-stage sub-network 

architecture that aggregates multi-scale and multi-stage features, incorporating inter- and intra-uncertainty 

regularization to enhance prediction consistency in a teacher-student model. 

To support this interest, the authors in [30] present a novel architecture for the diagnosis and segmentation of skin 

lesions using dermoscopy images named Cascade Knowledge Diffusion Network (CKDNet). It consists of three sub- 

networks: an initial coarse-level segmentation network, a classification network, and a fine-level segmentation 

network. It incorporates innovative feature entanglement modules (Entangle-Cls and Entangle-Seg) to facilitate 

knowledge diffusion between tasks, enhancing performance in both classification and segmentation. 

A solution proposed in [31] presents a contour-aware network for 3D multi-organ segmentation in CT scans, 

specifically targeting abdominal organs. It employs two loss functions: Region Dice Loss for overall segmentation 

accuracy and Contour Cross Entropy Loss for precise boundary detection. The proposed method evaluated on the 

BVTAMOS dataset consisting of 110 annotated CT scans of 14 abdominal organs, achieves a Dice Similarity 

Coefficient (DSC) of 83.32% and a 95 %Hausdorff Distance (95HD) of 3.63 mm, outperforming several state-of-the- 

art techniques. 

The work in [32] discusses the development and performance of a novel 3D medical image segmentation model called 

UNesT, which employs a hierarchical transformer-based approach to effectively capture local and global information 

in high-resolution medical images. UNesT has demonstrated state-of-the-art performance across multiple 

challenging datasets, including whole brain segmentation with 133 tissue classes and a newly created renal sub- 

structures CT dataset. The model outperforms previous methods, including an ensemble of models, by efficiently 

aggregating spatially adjacent patches and addressing the challenges of data inefficiency in medical imaging. 

Additionally, the authors emphasize the clinical utility of their work through accurate volumetric analysis and robust 

reproducibility, while also providing public access to their codes and trained models. 

In the context of Diabetic Retinopathy (DR), an improved U-Net for segmentation has been proposed, replacing max- 

pooling functions with convolutional functions to retain multiple feature-related details [33]. The system 

demonstrated satisfactory outcomes in terms of Correspondence Ratio (CR) and Dice Similarity Coefficient (DSC) 

coefficients compared to FCN and Max-pooling U-Net models [19]. 

3. PROPOSED ORGANS SEGMENTATION FRAMEWORK 

The detection of the three labeled organs: ureter, uterine artery, and nerves, or distinguishing the ureter from the 
other organs, is considered the main concern and challenge when the surgeons perform laparoscopic hysterectomy. 

This paper proposes a framework for automatic organ segmentation and differentiation during laparoscopic 
hysterectomy using different semantic segmentation models. 

Figure 1 shows the basic framework for organs semantic segmentation. This framework consists of three components: 
the dataset, data preprocessing, semantic segmentation model. These components are described below: 
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Figure 1. The basic framework for organs segmentation 

3.1. Dataset 

The dataset used in this work is the UD Ureter-Uterine Artery-Nerve dataset [22], which consists of 586 high-
resolution RGB images obtained from 38 laparoscopic surgeries, The labels are as follows: 0 - background, 1 - uterine 
artery, 2 - ureter, 3 - nerve. These images are accompanied by corresponding masks designed for both binary and 
multiclass semantic segmentation. Gynecological experts from the University of Debrecen meticulously annotated 
this dataset. 

The primary objective of the UD Ureter-Uterine Artery-Nerve dataset is to serve as a valuable resource for 
automatic organ segmentation. This dataset can be utilized to train semantic segmentation models, enabling pixel- 
wise detection of the three labeled organs: ureter, uterine artery, and nerves. Furthermore, the dataset is versatile 
enough to train models to distinguish the ureter from other organs, addressing a crucial concern and challenge faced 
by surgeons during laparoscopic hysterectomy. 

3.2. Data preprocessing 

The following section focuses on preparing the dataset for subsequent model training and evaluation. It 
involves organizing the dataset into 'images and masks', standardizing image sizes, encoding labels, and splitting 
data. 

a. Organize the dataset into 'images and masks' for structured access to ensure a consistent pairing of images 
and masks, a challenging step that we successfully addressed. This difficulty stemmed from the observation that 
all mask images are rendered as black images. So, to make sure that each image is accompanied by the proper 
mask, the pixel values in each mask were adjusted so that the mask becomes visible, as shown in Figure 2. But 
it should be noted that the presented work uses the original images and masks without pixel adjustment. 

   

(a) A mask image that includes a 
nerve (shown in green) 

(b) A mask image that includes a 
ureter (shown in blue) 

(c) A mask image that includes a 
uterine artery (shown in red) and 

ureter (shown in blue) 

Figure 2. Example of mask images after adjusting their pixels 

b. Resize the images to 128 x 128 and standardize resolution using nearest-neighbor interpolation. This step 
ensures uniform input dimensions for the models, facilitating comparisons [34]. 

c. Data augmentation [35] is performed to expand the dataset and improve model robustness. the data 
augmentation technique was employed in this framework to generate additional images from the original 
dataset. After applying data augmentation, the number of images increased to 1,218, and the number of masks 
of each class before and after applying data augmentation is shown in Table 1. 

Table 1. Number of masks of each class before and after applying data augmentation 

Class Name Before Data Augmentation After Data Augmentation 

Uterine artery 210 masks 429 masks 

Ureter 254 masks 530 masks 
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Nerves 183 masks 388 masks 

d. Normalize the images to ensure consistent intensity values, reducing the risk of model biases towards specific 
intensity ranges. 

e. Encoding organ pixels to map organ label classes to numerical values, as shown in Table 2. 

 

Table 2. Organ classes encoding 

Class Name Label (Pixel Value) 

Background 0 
Uterine artery 1 

Ureter 2 
Nerves 3 

f. Data Split: To effectively train and evaluate the models, the dataset is split 80% for training, 10% for 
validation, and 10% for testing, and test sets, in a manner that maintains class balance. 

3.3. Semantic segmentation model 

In the semantic segmentation stage, we applied and tested two models: the baseline U-Net and the proposed 
model which is called OrganFocusU-Net. 

3.3.1. Baseline U-Net model 

The segmentation model used to perform pixel-wise detection and differentiation of organs is U-Net 
architecture, which is a widely used baseline model for semantic segmentation. 

 

Figure 3. Architecture of baseline U-Net model 

The U-Net architecture [4] is a CNN architecture that is commonly used for image segmentation tasks. As 
shown in Figure 3, it includes four parts:  

1. Encoder Path: Part (A) of U-Net consists of a contracting path or an encoder. This path is responsible for 
capturing the context and extracting features from the input image. The encoder is composed of a series of 
convolutional layers followed by rectified linear unit (ReLU) activations and max-pooling operations. These 
operations progressively reduce the spatial dimensions of the input while increasing the number of feature 
channels. 

2. Bottleneck: At part (B) of U-Net, there is a bridge layer that connects the encoder to the decoder. This bridge 
layer retains high-level abstract features learned by the encoder. Skip connections are employed, connecting 
corresponding layers from the encoder to the decoder. These skip connections help in preserving fine-grained 
details during the upsampling process. 

3. Decoder Path: Part (C) of U-Net is an expansive path or a decoder. This path is responsible for upsampling 
the features to generate the final segmentation map. The decoder uses transposed convolutions (also known 
as deconvolutions or upsampling) to increase the spatial resolution of the feature maps. Each block in the 
decoder consists of transposed convolutions, followed by concatenation with the corresponding feature maps 
from the encoder, and then applying convolutional and activation layers. 

4. Output Layer: The final part of the U-Net is a 1x1 convolutional layer with softmax activation function. This 
layer produces the segmentation map, where each pixel in the map represents the likelihood of belonging to 
the target class. 
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3.3.2. The proposed semantic segmentation model 

The aim of the proposed semantic segmentation model, OrganFocusU-Net, is to enhance the precision and 
accuracy of organ segmentation in medical imaging by combining the proven power of the U-Net architecture with 
exploring attention mechanisms. This model specifically addresses the challenge of distinguishing critical organs 
during laparoscopic hysterectomy, showcasing the capability to intelligently focus on the most relevant regions within 
an image. 

OrganFocusU-Net effectively captures intricate features and structures within images while addressing the 
challenge of distinguishing critical organs like the ureter, uterine artery, and nerves during laparoscopic 
hysterectomy. The OrganFocusU-Net architecture employs a series of convolutional and attention blocks that enable 
it to intelligently focus on the most relevant regions within an image. This architecture of the proposed model enables 
it to capture fine details and differentiate between organs, which makes it well-suited for applications where pixel-
wise detection and differentiation of organs are paramount, revolutionizing the way complex surgical procedures are 
approached. 

 

Figure 4. OrganFocusU-Net model architecture 

The main components of OrganFocusU-Net architecture, shown in Figure 4, are described below: 

1. Convolutional Block: The Conv Block function defines a pair of convolutional layers with batch normalization 
and ReLU activation. This block is responsible for capturing and processing features within the network. 

2. Encoder Block: The Encoder Block function combines a convolutional block with max-pooling. It captures 
features and reduces spatial dimensions to create feature maps at different scales. 

3. Attention Gate: The Attention Gate function calculates attention weights based on the feature maps from the 
encoder and decoder. It uses two convolutional layers and applies a sigmoid activation to produce attention 
masks. 

4. Decoder Block: The Decoder Block function consists of an upsampling step, an attention gate, and 
concatenation. This block takes high-level features from the encoder and the attention-guided features from 
the decoder to refine the segmentation. 

The OrganFocusU-Net model works as follows: 

• It starts with an input layer followed by an encoder section. The encoder gradually reduces spatial 
dimensions while capturing important features. 

• After the bottleneck, the decoder section brings the features back to the original resolution using the 
decoder blocks, where the attention gates refine the information at each stage. 

• The output layer uses a 1x1 convolution with softmax activation function to produce a probability 
map for pixel-wise classification. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents the results of the experiments that we have conducted to evaluate the performance of the 
baseline U-Net model and the proposed OrganFocusU-Net model on the UD Ureter-Uterine Artery-Nerve Dataset. 
The presented models were trained and tested using python version (3.7.11). All experiments were conducted using 
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(a) (b) 

a single NVIDIA GeForce RTX 2060 GPU, Intel Core i7 10750H CPU and 32GB RAM. The models were trained for 
50 epochs, which were enough for convergence with a learning rate (LR) of 0.0001 and a batch size of 4. 

To evaluate the performance of the presented models, we calculate the Intersection over Union (IoU) score [36], 
which is a common metric that provides a quantitative measure of the model's segmentation accuracy. It is used to 
assess the overlap between predicted and ground truth segmentation masks, and is calculated as follows: 
 

 
 

In addition, for each of the presented models, we will show the result of the model’s segmentation and  
prediction on a sample image. 

Figure 5 (a) presents the training and validation accuracies and Figure 5 (b) illustrates the training loss and 
validation loss for baseline U-Net. Figure 6 (a) and Figure 6 (b) show the training and validation accuracies and losses 
for OrganFocusU-Net model, respectively. 

 

 

Figure 5. (a) Training accuracy and validation accuracy for baseline U-Net model, (b)Training loss and validation 
loss for baseline U-Net Model 

 
Figure 6. (a) Training accuracy and validation accuracy, (b) Training loss and validation loss for OrganFocusU-Net. 

Table 3 presents the mean IoU score of the baseline U-Net model and proposed model which achieved 79.04% and 
79.52% respectively, also in this table we displayed the class-wise results for two models, class-wise means the mean 
IoU for each class from four classes. Table 4 shows the classification report for baseline U-Net model and proposed 
model. 

Table 3. Mean IoU class-wise scores  

Class Name Baseline U-Net mean IoU (%) Proposed mean IoU (%) 

Background 99.05 99 
Uterine artery 72.92 72.5 

Ureter 77.1 75.43 

Nerves 67.08 71.03 

Mean IoU 79.04 79.52 

IoU = 
Area of Overlap                     

Area of Union                          
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Both the baseline U-Net model and the proposed model achieved very high accuracy in segmenting the background 
class, with performance exceeding 99% across all metrics. However, as shown in Table 4, the main differences emerge 
in the segmentation of smaller anatomical structures such as the uterine artery, ureter, and nerves. For the uterine 
artery, the proposed model demonstrated higher precision (91.17% vs. 87.57%) but slightly lower recall (78.06% vs. 
81.34%), leading to comparable F1-scores between the two models. In the case of the ureter, both models achieved 
similar balanced results with F1-scores of approximately 86%. For the nerve class, the proposed model yielded a clear 
improvement in recall (84.55% vs. 82.31%), which contributed to a higher overall F1-score (83.06% vs. 80.3%). 
Overall, these results highlight the ability of the proposed model to improve the trade-off between precision and 
recall, particularly for more challenging structures, while preserving high performance across all classes. 

Table 4. Classification report for baseline U-Net model and proposed model 

Model Class Precision (%) Recall (%) F1-score (%) 

Baseline U-Net model 

Background 99.34 99.71 99.52 

Uterine Artery 87.57 81.34 84.34 

Ureter 93.73 81.29 87.07 

Nerve 87.38 82.31 80.3 

Proposed Model 

Background 99.31 99.71 99.51 

Uterine Artery 91.17 78.06 84.11 

Ureter 91.17 81.39 86 

Nerve 81.63 84.55 83.06 

 

The following Figure 7 depicts the model's segmentation and prediction on the sample test image using 
baseline U-Net model. 

 

 

Figure 7. The baseline U-Net model prediction on the sample test image, (a) the original test image, (b) the ground 
truth of test image, (c) the prediction result 

Figure 8 displays the OrganFocusU-Net model’s segmentation and prediction on the same test image which 
is used in baseline U-Net. 

 

 

Figure 8. The proposed model prediction on the same test image, (a) the original test image, (b) the ground truth of 
test image, (c) the prediction result 

                          (a)                          (b)          (c) 

            (a)                        (b)       (c) 
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Comparing the results in Figures 7 and 8, we can observe the enhanced segmentation capability achieved by 
combining the U-Net architecture with attention mechanisms, instead of using only the baseline U-Net model. 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed models for automatic organ segmentation and differentiation during laparoscopic 
hysterectomy using semantic segmentation models. Leveraging the UD Ureter-Uterine Artery-Nerve Dataset, which 
is capable of pixel-wise detection and differentiation of critical organs, namely the ureter, uterine artery, and nerves 
with a specific emphasis on accurately distinguishing the ureter from other organs. 

Our investigations encompassed the implementation of the baseline U-Net model, and OrganFocusU-Net model, 
which combines the baseline U-Net with attention mechanisms, for enhanced precision in organ segmentation. 

Experiments have been conducted to evaluate the performance of the baseline U-Net model and the proposed 
OrganFocusU-Net model on the UD Ureter-Uterine Artery-Nerve Dataset, it indicated that OrganFocusU-Net 
achieved a high mean IoU score on the augmented dataset, followed by the baseline U-Net, which signifies the 
capability of OrganFocusU-Net in accurately segmenting ureter in images. 

While the proposed model represents a significant advancement in laparoscopic organ segmentation, ongoing 
research and development are essential for addressing the challenges and advancing the capabilities of these models 
for practical clinical applications. 

REFRENCES 

[1] W. Jakob, H.-C. Breit, M. T. Meyer, M. Pradella, D. Hinck, A. W. Sauter, T. Heye, D. Boll, J. Cyriac, S. Yang, 
M. Bach, and M. Segeroth, "TotalSegmentator: Robust Segmentation of 104 Anatomical Structures in CT 
Images," Radiology: Artificial Intelligence, 2022. doi:10.1148/ryai.230024. 

[2] P. Ahmad, H. Jin, R. Alroobaea, S. Qamar, R. Zheng, F. Alnajjar, and F. Aboudi, "MH UNet: A Multi-Scale 
Hierarchical Based Architecture for Medical Image Segmentation," IEEE Access, vol. 9, pp. 148384–148408, 
2021. doi:10.1109/ACCESS.2021.3122543. 

[3] S. Hafez, "Comparative Placental Anatomy: Divergent Structures Serving a Common Purpose," Progress in 
Molecular Biology and Translational Science, vol. 145, pp. 1–28, 2017. doi:10.1016/bs.pmbts.2016.12.001. 

[4] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image 
Segmentation," in International Conference on Medical Image Computing and Computer-Assisted 
Intervention, Springer, pp. 234–241, 2015. doi:10.1007/978-3-319-24574-4_28. 

[5] H. Hu, Z. Zhang, Z. Xie, and S. Lin, "Local Relation Networks for Image Recognition," in Proc. IEEE/CVF 
Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), 15-20 June 2019, pp. 3464–3473. 
doi:10.48550/arXiv.1904.11491. 

[6] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, "Brain Tumor Segmentation and 
Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge," arXiv, 2018. 
doi:10.48550/arXiv.1802.10508. 

[7] M. Khened, V. A. Kollerathu, and G. Krishnamurthi, "Fully Convolutional Multi-Scale Residual Densenets 
for Cardiac Segmentation and Automated Cardiac Diagnosis Using Ensemble of Classifiers," Med. Image 
Anal., vol. 51, pp. 21–45, Jan. 2019. doi:10.1016/j.media.2018.10.004. 

[8] G. Wang, T. Song, Q. Dong, M. Cui, N. Huang, and S. Zhang, "Automatic Ischemic Stroke Lesion 
Segmentation from Computed Tomography Perfusion Images by Image Synthesis and Attention-Based Deep 
Neural Networks," 2020. doi:10.1016/j.media.2020.101787. 

[9] M. Ghaffari, A. Sowmya, and R. Oliver, "Brain Tumour Segmentation Using Cascaded 3D Densely-Connected 
U-Net," arXiv, 2020. doi:10.48550/arXiv.2009.07563. 

[10] U. Baid, N. A. Shah, and S. Talbar, "Brain Tumor Segmentation with Cascaded Deep Convolutional Neural 
Network," in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, A. Crimi and S. 
Bakas, Eds. Cham, Switzerland: Springer, 2020, pp. 90–98. doi:10.1007/978-3-030-46643-5_9. 

[11] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in Proc. IEEE Conf. 
Comput. Vis. Pattern Recognit. (CVPR), 7-12 June 2015. doi:10.48550/arXiv.1512.03385. 

[12] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks," 
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, 21-26 July 2017, pp. 2261–2269. 
doi:10.48550/arXiv.1608.06993. 

[13] J. Dolz, I. B. Ayed, and C. Desrosiers, "Dense Multi-Path U-Net for Ischemic Stroke Lesion Segmentation in 
Multiple Image Modalities," arXiv, 2018. doi:10.48550/arXiv.1810.07003. 

[14] N. Sambyal, P. Saini, R. Syal, and V. Gupta, "Modified U-Net Architecture for Semantic Segmentation of 
Diabetic Retinopathy Images," Biocybernetics and Biomedical Engineering, vol. 40, no. 3, pp. 1094–1109, 
2020. doi:10.1016/j.bbe.2020.05.006. 

https://doi.org/10.1148%2Fryai.230024
https://doi.org/10.1109/ACCESS.2021.3122543
https://doi.org/10.1016/bs.pmbts.2016.12.001
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.48550/arXiv.1904.11491
https://doi.org/10.48550/arXiv.1802.10508
https://doi.org/10.1016/j.media.2018.10.004
https://doi.org/10.1016/j.media.2020.101787
https://doi.org/10.48550/arXiv.2009.07563
https://doi.org/10.1007/978-3-030-46643-5_9
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1608.06993
https://doi.org/10.48550/arXiv.1810.07003
https://doi.org/10.1016/j.bbe.2020.05.006


106  

 
 

 J INFORM SYSTEMS ENG, 10(18s) 

[15] X. Li, X. Hu, L. Yu, L. Zhu, C.-W. Fu, and P.-A. Heng, "CANet: Cross-Disease Attention Network for Joint 
Diabetic Retinopathy and Diabetic Macular Edema Grading," IEEE Transactions on Medical Imaging, vol. 
39, no. 5, pp. 1483–1493, May 2020. doi:10.1109/TMI.2019.2951844. 

[16] R. K. Singh and R. Gorantla, "DMENet: Diabetic Macular Edema Diagnosis Using Hierarchical Ensemble of 
CNNs," PLoS One, vol. 15, no. 2, e0220677, 2020. doi:10.1371/journal.pone.0220677. 

[17] L. Luo, D. Xue, and X. Feng, "Automatic Diabetic Retinopathy Grading via Self-Knowledge Distillation," 
Electronics, vol. 9, no. 9, p. 1337, 2020. doi:10.3390/electronics9091337. 

[18] Y. Fu, J. Chen, J. Li, D. Pan, X. Yue, and Y. Zhu, "Optic Disc Segmentation by U-Net and Probability Bubble 
in Abnormal Fundus Images," Pattern Recognition, vol. 117, p. 107971, 2021. 
doi:10.1016/j.patcog.2021.107971. 

[19] S. Kundu, V. Karale, G. Ghorai, G. Sarkar, S. Ghosh, and A. K. Dhara, "Nested U-Net for Segmentation of Red 
Lesions in Retinal Fundus Images and Sub-Image Classification for Removal of False Positives," J. Digit. 
Imaging, vol. 35, no. 5, pp. 1111–1119, 2022. doi:10.1007/s10278-022-00629-4. 

[20] C. Kou, W. Li, W. Liang, Z. Yu, and J. Hao, "Microaneurysms Segmentation with a U-Net Based on Recurrent 
Residual Convolutional Neural Network," J. Med. Imaging, vol. 6, no. 2, 2019, Art. no. 025008. 
doi:10.1117/1.JMI.6.2.025008. 

[21] A. Meshal and D. Gupta, "Segmentation of Diabetic Retinopathy Images Using Deep Feature Fused Residual 
with U-Net," Alexandria Engineering Journal, vol. 83, pp. 307-325, 2023. doi:10.1016/j.aej.2023.10.040. 

[22] N. Norbert, "UD Ureter-Uterine Artery-Nerve Dataset," IEEE Dataport, July 10, 2023. doi:10.21227/q2dd-
yt09. 

[23] J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," in Proc. 
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 7-12 June 2015, pp. 3431–3440. 
doi:10.1109/TPAMI.2016.2572683. 

[24] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image 
Segmentation," in International Conference on Medical Image Computing and Computer-Assisted 
Intervention, Springer, pp. 234–241, 2015. doi:10.1007/978-3-319-24574-4_28. 

[25] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng, "H-DenseUNet: Hybrid Densely Connected UNet 
for Liver and Liver Tumor Segmentation from CT Volumes," 2017. doi:10.1109/TMI.2018.2845918. 

[26] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal, "The Importance of Skip Connections in 
Biomedical Image Segmentation," in LABELS/DLMIA 2016: Lecture Notes in Computer Science, G. 
Carneiro et al., Eds. Cham, Switzerland: Springer, 2016, vol. 10008, pp. 179–187. doi:10.1007/978-3-319-
46976-8_19. 

[27] D. Fourure, R. Emonet, E. Fromont, D. Muselet, A. Tremeau, and C. Wolf, "Residual Conv-Deconv Grid 
Network for Semantic Segmentation," arXiv, 2017. doi:10.48550/arXiv.1707.07958. 

[28] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask R-CNN," in 2017 IEEE International Conference on 
Computer Vision (ICCV), Venice, Italy, 2017, pp. 2961–2969. doi:10.48550/arXiv.1703.06870. 

[29] Jin Q, Cui H, Sun C, et al. "Inter- and Intra-Uncertainty Based Feature Aggregation Model for Semi-
Supervised Histopathology Image Segmentation," Expert Systems with Applications, vol. 238, p. 122093, 
2024. doi:10.1016/j.eswa.2023.122093. 

[30] Jin Q, Cui H, Sun C, et al. "Cascade Knowledge Diffusion Network for Skin Lesion Diagnosis and 
Segmentation," Applied Soft Computing, vol. 99, p. 106881, 2021. doi:10.1016/j.asoc.2020.106881.  

[31] Gao H, Lyu M, Zhao X, et al. "Contour-Aware Network with Class-Wise Convolutions for 3D Abdominal 
Multi-Organ Segmentation," Medical Image Analysis, vol. 87, p. 102838, 2023. 
doi:10.1016/j.media.2023.102838. 

[32] Yu X, Yang Q, Zhou Y, et al. "UNesT: Local Spatial Representation Learning with Hierarchical Transformer 
for Efficient Medical Segmentation," Medical Image Analysis, vol. 90, p. 102939, 2023. 
doi:10.1016/j.media.2023.102939. 

[33] D. Yang, G. Liu, M. Ren, B. Xu, and J. Wang, "A Multi-Scale Feature Fusion Method Based on U-Net for 
Retinal Vessel Segmentation," Entropy, vol. 22, no. 8, p. 811, 2020. doi:10.3390/e22080811. 

[34] N. Jiang and L. Wang, "Quantum Image Scaling Using Nearest Neighbor," Quantum Inf. Process., vol. 14, 
pp. 1559–1571, 2015. doi:10.1007/s11128-014-0841-8. 

[35] E. Goceri, "Medical Image Data Augmentation: Techniques, Comparisons," Artificial Intelligence Review, 
vol. 56, pp. 12561–12605, 2023. doi:10.1007/s10462-023-10453-z. 

[36] A. Simonelli, S. R. Bulo, L. Porzi, M. Lopez-Antequera, and P. Kontschieder, "Disentangling Monocular 3D 
Object Detection," in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 15-20 June 2019, pp. 1991-1999. 
doi:10.48550/arXiv.1905.12365. 

https://doi.org/10.1109/TMI.2019.2951844
https://doi.org/10.1371/journal.pone.0220677
https://doi.org/10.3390/electronics9091337
https://doi.org/10.1016/j.patcog.2021.107971
https://doi.org/10.1007/s10278-022-00629-4
https://doi.org/10.1117/1.JMI.6.2.025008
https://doi.org/10.1016/j.aej.2023.10.040
https://dx.doi.org/10.21227/q2dd-yt09
https://dx.doi.org/10.21227/q2dd-yt09
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/TMI.2018.2845918
https://doi.org/10.1007/978-3-319-46976-8_19
https://doi.org/10.1007/978-3-319-46976-8_19
https://doi.org/10.48550/arXiv.1707.07958
https://doi.org/10.48550/arXiv.1703.06870
https://doi.org/10.1016/j.eswa.2023.122093
https://doi.org/10.1016/j.asoc.2020.106881
https://doi.org/10.1016/j.media.2023.102838
https://doi.org/10.1016/j.media.2023.102939
https://doi.org/10.3390/e22080811
https://doi.org/10.1007/s11128-014-0841-8
https://doi.org/10.1007/s10462-023-10453-z
https://doi.org/10.48550/arXiv.1905.12365

