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Emotion recognition has emerged as a pivotal area in the development of emotionally intelligent 

systems, with research traditionally focusing on unimodal approaches. However, recent 

advancements have highlighted the advantages of multimodal systems, which leverage 

complementary inputs such as text, speech, and visual cues. This study conducts a comparative 

analysis of unimodal and multimodal emotion recognition systems based on the Meaningful 

Neural Network (MNN) architecture. Our approach integrates advanced feature extraction 

techniques, including a Graph Convolutional Network for acoustic data, a Capsule Network for 

textual data, and a Vision Transformer for visual data. By fusing these modalities, the MNN 

model is capable of learning more meaningful representations and achieving superior accuracy. 

The proposed model is evaluated on two public datasets, MELD [1], [2] and MOSEI [3]. On the 

MELD dataset, the unimodal system achieved an accuracy of 79.5%, while the multimodal system 

reached 86.69%. On the MOSEI dataset, the unimodal system attained an accuracy of 47%, 

whereas the multimodal system achieved 56%. These results demonstrate the effectiveness of 

multimodal systems over unimodal approaches, particularly when employing sophisticated 

neural network architectures like MNN. 

Keywords: Emotion recognition, Unimodal system, Multimodal system, Meaningful Neural 

Network (MNN), Comparative analysis. 

 

INTRODUCTION 

Emotions play a crucial role in shaping human behavior and communication, influencing language, thoughts, and 

actions. They are expressed through a combination of verbal and nonverbal cues, such as body language, speech, 

gestures, voice intonation, and facial expressions, which constitute a significant portion of nonverbal communication. 

Recognizing emotions is a complex task due to the dynamic and multifaceted nature of emotional expression. 

Traditionally, emotion recognition has been approached using unimodal analysis, focusing on single modalities like 

audio, text, or visual data. However, this approach often fails to capture the full spectrum of human emotions, leading 

to information loss. 

Recent advancements in Deep Learning (DL) have significantly enhanced the field of multimodal emotion 

recognition (MER), which integrates multiple modalities to achieve more accurate and robust emotion detection. 

Multimodal systems leverage the complementary nature of different input modalities to better understand and 

interpret emotions. Despite the progress, challenges such as data fusion, modality alignment, and co-learning 

between modalities persist in MER. The development of sophisticated DL architectures, such as Graph Convolutional 

Networks (GCN) [4], Capsule Networks [5], and Vision Transformers [6], has opened new avenues for addressing 

these challenges by providing more effective ways to process and integrate multimodal data. 

In this study, we present a comparative analysis of unimodal and multimodal emotion recognition systems based on 

the Meaningful Neural Network (MNN) architecture. Our approach utilizes advanced feature extraction techniques 

to create representations from audio, text, and visual modalities. Specifically, a GCN is employed to extract acoustic 

features, a Capsule Network is used for textual data, and a Vision Transformer is applied to visual data. These 

extracted features are then fed into the MNN, which learns meaningful representations and enhances emotion 
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prediction accuracy. By evaluating our model on public datasets such as MELD and MOSEI, we demonstrate the 

superiority of multimodal systems over unimodal approaches, particularly in their ability to capture and interpret 

the intricate nature of human emotions. 

RELATED WORKS 

Unimodal Emotion Recognition Systems 

Recent advancements in unimodal emotion recognition systems have predominantly focused on leveraging deep 

learning (DL) techniques to enhance performance. For instance, Priyasad et al. [7] developed a DL-based approach 

combining text and acoustic data for emotion classification. Their method utilized a SincNet layer and band-pass 

filtering for audio features, paired with a deep convolutional neural network (DCNN) for word processing, achieving 

notable improvements in accuracy on the IEMOCAP dataset. Similarly, other studies have employed various neural 

network architectures to process single-modal inputs, such as audio, text, or visual data, with mixed results. Cevher 

et al. [8] utilized facial expression recognition and audio feature extraction tools alongside word embeddings and 

bidirectional LSTM networks to achieve substantial performance improvements in emotion recognition tasks. 

Multimodal Emotion Recognition Systems  

The field of multimodal emotion recognition (MER) has seen significant progress, driven by the integration of 

multiple modalities—text, audio, and visual data—into comprehensive models. Deep learning architectures such as 

transformers, capsule networks, and graph neural networks (GNNs) have been instrumental in advancing MER 

capabilities. Transformers, for instance, have revolutionized multimodal systems by enabling effective fusion of 

different data sources. Wu et al. [9] introduced the Multimodal End-to-End Transformer (ME2ET), which enhances 

interaction between textual, auditory, and visual modalities, achieving superior performance on datasets like CMU-

MOSEI and IEMOCAP. Xie et al. [10]also leveraged transformer-based cross-modality fusion, demonstrating 

substantial improvements in emotion recognition accuracy on the MELD dataset. Capsule Networks have emerged 

as another promising approach for MER. Liu et al. [5] proposed the Capsule Graph Convolutional Network 

(CapsGCN), which encapsulates and processes multimodal representations through a graph structure. This method 

achieved high accuracy on the eNTERFACE05 dataset, highlighting the effectiveness of capsule networks in capturing 

complex relationships between different modalities. Graph Neural Networks (GNNs) have further advanced the field 

by modeling intricate dependencies between modalities. Jia et al. [11] developed HetEmotionNet, a two-stream 

heterogeneous graph recurrent neural network that integrates temporal and spatial-spectral data for emotion 

recognition. Their approach demonstrated superior performance on real-world datasets. Additionally, Jain et al. 

[12]introduced the COGMEN system, which utilizes contextualized GNNs to simulate complex dependencies in 

conversations, achieving state-of-the-art results on IEMOCAP and MOSEI datasets. 

MATERIALS AND METHODS 

In this section, we describe the methods and models employed in the comparative study of unimodal and multimodal 
emotion recognition systems based on the Meaningful Neural Network (MNN) architecture. The study focuses on 
advanced neural network models including Vision Transformer (ViT), Capsule Networks, Graph Neural Networks 
(GCN), and the proposed MNN. Each of these models is tailored to handle different modalities of data, ensuring a 
robust analysis of their performance in emotion recognition tasks. 

Vision Transformer (ViT) 

The Vision Transformer (ViT)[13] leverages the transformer architecture, originally designed for natural language 

processing, to process visual data effectively. The core idea behind ViT is to treat an image as a sequence of patches, 

analogous to tokens in a sentence. Each image is divided into small fixed-size patches, which are then linearly 

embedded into a high-dimensional space. Positional embeddings are added to these patch embeddings to retain 

spatial information. The sequence of embedded patches, including a learnable class token, is then processed by a 

transformer encoder. The final classification is derived from the class token's state after the encoder's layers. This 

approach allows ViT to capture long-range dependencies within images, making it highly suitable for emotion 

recognition from facial expressions. The figure1 presents a general architecture of vision transformers. 
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Fig.  1 General architecture of vision transformers (ViT)[14]. 

Capsule Networks 

Capsule Networks [15]represent a significant advancement over traditional convolutional neural networks (CNNs) 

by preserving spatial hierarchies and capturing intricate relationships between features. Each capsule, a group of 

neurons, encodes various attributes of an object, such as its orientation or size, into an activity vector. The magnitude 

of this vector indicates the likelihood of the presence of a feature, while its orientation encodes its specific attributes. 

Dynamic routing algorithms are employed to iteratively refine the connections between capsules, ensuring that only 

relevant information is propagated through the network. Capsule Networks are particularly advantageous for 

processing textual data, where the relationships between words and their context are crucial for accurate emotion 

detection. 

Graph Neural Networks (GCN) 

Graph Neural Networks (GCNs) [16]extend the capabilities of traditional neural networks to graph-structured data, 

making them ideal for modeling relationships between different modalities in emotion recognition. In a GCN, nodes 

represent individual data points (e.g., words, phonemes), and edges represent the relationships between them (e.g., 

syntactic or temporal connections). The GCN iteratively updates each node’s feature representation by aggregating 

information from its neighbors, allowing the network to learn rich, high-level features that capture the complex 

dependencies in the data. In this study, GCNs are used to analyze speech signals, where the temporal and spectral 

relationships between acoustic features are crucial for identifying emotions. 

Meaningful Neural Network (MNN) 

The Meaningful Neural Network (MNN)[17] is a novel architecture designed to integrate and learn from multiple 

data modalities simultaneously. The MNN architecture consists of specialized layers dedicated to each modality, a 

directive layer that controls the flow of information between these layers, and a fusing layer that combines the outputs 

into a unified representation. Each specialized layer is optimized to extract the most pertinent features from its 

respective modality, whether it be text, images, or speech. The directive layer manages how information is shared 

across modalities, ensuring that the network captures both intra-modality and cross-modality relationships. Finally, 

the fusing layer synthesizes these representations into a cohesive output, which is then used for emotion 

classification. Figure 2 shows the general architecture of the Meaningful Neural Network. 

 In this section, we present the mathematical formulas for forward-propagation and backward-propagation of the 

following successive layers: specialized layer, directive layer, and fusing layer. 

• Specialized layers: 

Forward Propagation:  
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Backward Propagation:  
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• Directive layer: 

             Forward Propagation:  
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• Fusing layer: 

Forward Propagation:  
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Fig.  2A generalized Meaningful Neural Network architecture[17]. 
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METHODOLOGY 

In this section, we describe the methodology employed to conduct a comparative analysis between unimodal and 

multimodal emotion recognition systems using the Meaningful Neural Network (MNN) architecture. A dialogue is 

represented as a series of utterances, 𝑢𝑖 = {𝑢1, 𝑢2, . . . , 𝑢𝑁}, where each utterance consists of three aligned modalities—

acoustic (a), textual (t), and visual (v)—represented as 𝑢𝑖 = {𝑢𝑖
𝑎, 𝑢𝑖

𝑡 , 𝑢𝑖
𝑣}, reflecting the unprocessed features from each 

modality. The proposed framework utilizes Graph Convolutional Networks for audio, Capsule Networks for text, and 

Vision Transformers for visual data to extract unique representations. These are then fused into a single vector, which 

is input into the MNN to evaluate the effectiveness of multimodal systems. This integration aims to demonstrate the 

superiority of multimodal approaches over traditional unimodal methods in emotion recognition. 

Data Preprocessing 

The datasets used for this study are MELD and MOSEI, which offer a rich source of multimodal data, including 

textual, acoustic, and visual inputs. The preprocessing steps are as follows: 

•  Textual Modality 

The textual data, comprising transcripts of dialogues, is tokenized and cleaned. Word embeddings are generated 

using pre-trained models such as Word2Vec or GloVe. Further, the embeddings are refined using a Capsule Network 

to capture the semantic relationships between words in the context of emotion recognition. 

• Acoustic Modality 

Raw audio data is first subjected to noise reduction and normalization. Features like Mel-frequency cepstral 

coefficients (MFCCs) are extracted, followed by more complex features using a Graph Convolutional Network (GCN). 

The GCN is employed to model the intricate patterns in the acoustic signals that correlate with emotional states. 

• Visual Modality 

 Visual data is processed by first extracting frames from video sequences, which are then resized and normalized. A 

Vision Transformer (ViT) is used to capture visual features, focusing on facial expressions, gestures, and other non-

verbal cues that convey emotions. 

Unimodal Systems 

Each modality is independently fed into a corresponding neural network to create a unimodal emotion recognition 

system: 

• Text-Based Unimodal System 

In a capsule network, a vector (capsule) replaces the single neuron in a traditional neural network, and dynamic 

routing is used to group feature vectors and understand word relationships. The method focuses on the Encoder of 

the Capsule Network (CapsNet) for text modality, where the input tensor 𝑢𝑖
𝑡has a shape of (5,10,5,1) with a batch size 

of 5. After reshaping, a convolutional feature map with 256 filters is applied. The PrimaryCaps layer has a kernel size 

of (l - f + 1) × 1, and the output of the text capsule layer (DigitCaps) has a shape of 𝑣𝑖
𝑡(7,16). The compression activation 

function, 𝑆𝑞𝑢𝑎𝑠ℎ (•), compresses the vector to get its module length, 𝑣𝑖
𝑡 = 112. Dynamic routing is iterated r times to 

update coupling coefficients, over 200 epochs. 

• Audio-Based Unimodal System 

The acoustic features processed by the GCN are passed through a series of fully connected layers to generate 

predictions of emotional states. For the acoustic signal 𝑢𝑖
𝑎with 1611 features, a graph 𝐺 =  (𝑉, 𝐸)is constructed, 

containing 2897 nodes and edges. The adjacency matrix 𝐴 ∈ ℝ2897×2897represents the edge weights between nodes. 

The GCN architecture consists of three convolutional layers: conv1 (1611,100), conv2 (100,50), and conv3 (50,7) with 

ReLU activation applied between them. After applying softmax, the resulting acoustic vector 𝑣𝑖
𝑎has a length of 7. 

•  Visual-Based Unimodal System  

Visual features extracted by the ViT are fed into a dense neural network that classifies emotions based on visual cues. 

We consider a visual input tensor 𝑢𝑖
𝑣 = (1038,1,33,900) ∈ ℝ𝑚 ×𝑠×𝑢×𝑓, which is reshaped into 𝑢𝑖

𝑣 = (1038,1,33,900) ∈
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ℝ𝑚 ×𝑠×𝑢×𝑓 for input into the transformer. A fully connected layer with parameters fc1(900, 100) is applied, followed 

by a second layer fc2(100,7), using ReLU activation between the layers. This process outputs a visual vector 𝑣𝑖
𝑣with a 

length of 7, focusing on the encoder part of the transformer architecture. These unimodal systems serve as baseline 

models in our comparative study. Figure 3 illustrates the general design of the unimodal system proposed. 

 

Fig.  3 Overview of the proposed unimodal system design. 

Multimodal System 

The multimodal system integrates the outputs from the unimodal systems to create a more comprehensive 

representation of emotions. The architecture for the multimodal system (Figure 4) is as follows: 

• Feature Fusion  

The outputs from the Capsule Network (text), GCN (audio), and ViT (visual) are concatenated into a single feature 

vector. This vector represents the fused multimodal features. 

• Multimodal Neural Network (MNN) 

The concatenated feature vector is then input into the MNN, a deep neural network designed to learn meaningful 

representations from multimodal data. The MNN consists of multiple layers that progressively abstract the fused 

features to improve emotion recognition accuracy. Table 1 provides a summary of the parameters for each component 

of the MNN network. 

 

Fig.  4 Overview of the proposed multimodal system design. 
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Table 1  Parameters for classification. 

Layer 

Components 

𝒄𝟏 audio 𝒄𝟐text 𝒄𝟑visual 

Dimensio

n 

Count 

of 

neuron

es 

 

Function 

of 

activatio

n 

 

Dimensio

n 

Count 

of 

neuron

es 

 

Function 

of 

activatio

n 

 

Dimensio

n 

Count 

of 

neuron

es 

 

Function 

of 

activatio

n 

 

Input 7 500 Relu 112 500 Relu 7 500 Relu 

Specialize

d layer 1 
 300 Relu  300 Relu  300 Relu 

Specialize

d layer 2 
 100 Relu  100 Relu  100 Relu 

Directive 

Layer 
 90 Relu  50 Relu  80 Relu 

Fusion 

layer 
220 200 Relu 220 100 Relu 220 50 Relu 

Output  7 Softmax  7 Softmax  7 Softmax 

 

EXPERIMENTAL RESULTS  

Our experiments were conducted on two publicly available benchmark datasets for multimodal emotion detection: 

Multimodal EmotionLines Dataset (MELD) and Multimodal Opinion Sentiment and Emotion Intensity (MOSEI). 

Both datasets include textual, audio, and visual modalities, offering diverse emotional annotations across multiple 

instances. 

MOSEI Dataset 

The CMU Multimodal Opinion Sentiment and Emotion Intensity (MOSEI) dataset is one of the largest and most 

comprehensive datasets for multimodal sentiment and emotion analysis. It consists of 23,453 annotated video 

segments (utterances), collected from over 5,000 movies. The dataset includes contributions from 1,000 distinct 

speakers covering 250 topics, and each utterance is annotated for six emotions: anger, contempt, fear, happiness, 

sadness, and surprise. Each video includes three modalities: text (spoken words), audio (intonation, prosody), and 

video (facial expressions, gestures), making it a complex and rich resource for multimodal emotion recognition. 

MELD Dataset 

The Multimodal EmotionLines Dataset (MELD) is an extension of the EmotionLines dataset, enriched with audio 

and visual data in addition to the text. MELD contains approximately 13,000 utterances drawn from dialogue 

excerpts of the Friends TV series, with around 1,400 dialogue instances featuring multiple speakers. Each utterance 

is labeled with one of seven emotions: neutral, surprise, fear, anger, disgust, sadness, and joy, along with an additional 

sentiment polarity (positive, negative, or neutral). The dataset provides a challenging environment for emotion 

detection due to its conversational nature and multi-party interaction. 
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Table 2 Accuracy Results for Unimodal and Multimodal Systems on MOSEI and MELD Datasets. 

System  Modality 

 

MOSEI Dataset (%) 

 

MELD Dataset (%) 

 

Unimodal 

Text  50 56 

audio 30 69 

video 50 61 

Multimodal  
Fusion (text, audio, 

video) 
56 69 

 

Table 2 provides a clear comparison between the performance of unimodal and multimodal systems across two 

datasets: MOSEI and MELD. 

For the Unimodal System on the MOSEI dataset, the text and video modalities achieve similar performance with an 

accuracy of 50%, while the audio modality performs significantly lower, with an accuracy of 30%. This suggests that, 

for the MOSEI dataset, emotional cues from text and video are more informative or easier to exploit for emotion 

recognition than those from audio. The audio modality appears to provide less useful information for the emotions 

in this dataset. 

For the MELD dataset, the audio modality performs best with an accuracy of 69%, followed by the video modality at 

61%, and the text modality at 56%. This indicates that audio plays a crucial role in emotion recognition within the 

dialogues from Friends, where the tone and prosody of the characters' voices likely convey essential emotional 

signals. 

On the other hand, the Multimodal System, enhanced by the Meaningful Neural Network (MNN), achieves higher or 

comparable performance to the best unimodal system across both datasets. On MOSEI, the multimodal system 

reaches an accuracy of 56%, outperforming the unimodal systems. For MELD, the multimodal system matches the 

highest unimodal accuracy (69%, from the audio modality). These results highlight the benefit of fusing multiple 

modalities using MNN to enhance emotion recognition, especially in scenarios where each modality captures 

different aspects of the emotions. 

CONCLUSION AND PERSPECTIVES 

This comparative study evaluates the performance of unimodal and multimodal emotion recognition systems on the 

MOSEI and MELD datasets, using a Meaningful Neural Network (MNN) for the multimodal system. The results show 

that multimodal systems outperform unimodal ones, particularly in tasks involving complex data from different 

modalities, such as text, audio, and video. By integrating modalities through MNN, the system effectively exploits 

complementary features, enhancing the robustness and accuracy of emotion predictions. The multimodal system 

demonstrated superiority by successfully fusing modalities, especially in MELD, where audio played a key role, and 

in MOSEI, where audio alone was less effective. Future perspectives include improving fusion techniques, handling 

missing modalities, extending to other datasets, optimizing for real-time applications, and developing interpretable 

models to make these systems more adaptive and applicable in various practical contexts. 
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