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The oscillatory criteria for solutions of fourth-order neutral difference equation of the form,    

∆ (𝑎(𝑛)∆3(𝑥(𝑛) + 𝑝(𝑛)𝑥(𝜎(𝑛)))) + 𝑞(𝑛)𝑥𝛾(𝜏(𝑛)) = 0 

where {𝑎(𝑛)} is positive, 0 ≤ {𝑝(𝑛)} < 1, {𝑞(𝑛)} > 0, 𝛼 and 𝛾 are non-negative integers are 

studied. The conditions for oscillatory criteria of above equation are obtained. The Philos type 

oscillatory criteria are gained by Riccati transformation technique and results are applied in 

Linear-Time-Invariant (LTI) system to study the dynamics of electromechanical devices.  There 

are examples for proving the results.  

Keywords: Oscillation, Neutral Difference Equations, Linear-Time-Invariant (LTI) system, 

Electromechanical Devices. 

INTRODUCTION 

The paper aims at establishing some oscillatory and asymptotic criteria for the solutions of fourth order neutral 

difference equation given by,  

∆ (𝑎(𝑛)∆3(𝑥(𝑛) + 𝑝(𝑛)𝑥(𝜎(𝑛)))) + 𝑞(𝑛)𝑥𝛾(𝜏(𝑛)) = 0  (1) 

where {𝑎(𝑛)} > 0, 0 ≤ {𝑝(𝑛)} < 1, {𝑞(𝑛)} > 0, 𝑛 ≥ 𝑛0, 𝛼 and 𝛾 are non-negative integers and satisfies  

                                                  ∑ (
1

𝑎(𝑠)
) = ∞

∞

𝑛=𝑛0

                                                                               (2) 

where 𝑛 ∈ 𝑁. A non-trivial solution of (1) is oscillating for every term of {𝑥𝑛} thus the sequence is neither eventually 

positive nor eventually negative; otherwise non-oscillatory. The difference equations have their applications in 

various fields and some includes, economics, biology, circuit system, control system, etc., for example see [1-14]. In 

recent times, the difference equations extend their growth in studying the dynamical system and respective 

behaviour for applications in real world problems. The difference equation studies the qualitative behaviour with 

analytical and numerical solutions of discrete dynamical system. Their application includes control systems, trade, 

signal processing, population dynamics, etc. The fourth order difference equations are important for modelling 

devices as they enhance the relations between mechanical and electrical components which include complex 

dynamics, thus providing complete illustration of dynamical behaviour. The electromechanical devices are 

incorporated in terms of Philos type neutral difference equations to enrich the performance and to hold a stable 

control by permitting predictive maintenance, adaptive tuning, and optimization of system parameters and fault 

detection. The reliability and accuracy of model can be improved using model updating algorithms, data fusion 

techniques, and sensor feedback, thus leading to efficient system operations and  enhanced accuracy. Also, the 

methodology of approaching the Philos type difference equations improves the knowledge of designing the devices 
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by utilising and understanding a systematic study about stability, oscillatory behaviour, and input responses. This 

facilitates the engineers over control strategy, and for optimizing the performance of system. The existing 

challenges for demonstrating the models via Philos type difference equations includes the uncertainties, handling 

nonlinearities, system disturbances and progressive control strategy. In practical applications these challenges can 

be minimised by adapting certain control measures, feedback mechanism and robust optimization. The Linear 

Time Invariant (LTI) systems play a vital role in dynamical systems. Here they are used to solve equations by 

converting the input of control signals and thus producing the output. In electromechanical device, the robots are 

considered and the result is applied in controlling the movements and gestures with respect to time. The paper aim 

at establishing new Philos-type conditions for all solutions of equation (1) and using LTI systems in 

electromechanical devices, say the robots under condition (2). This paper is arranged in multiple sections such as 

Methodology, Preliminaries and Definitions, Oscillatory criteria for Philos-type equations, Examples, the LTI 

system with its mathematical procedure in defining and solving the difference equations, and finally the limitations 

are conveyed. This is followed by the conclusion and future work.  Examples are provided. 

OBJECTIVES 

The objective is to understand the concept of Philos type difference equations and their applications. To  analyse 

the oscillatory and asymptotic behavior of neutral difference equations in electromechanical devices using Linear-

Time-Invariant (LTI) system.   

METHODS 

The fourth order neutral difference equations are studied for solutions of oscillatory behaviour using Riccati 

technique, summation averaging technique, summation by parts, comparison and substitution methods. Using LTI 

system the electromechanical devices using robots are studied. 

RESULTS 

Dynamical Systems: 

The dynamical system analyse the qualitative behaviour for solutions of both difference and differential equations. 

The difference equations involve the discrete dynamical systems where modelling techniques, analytical solutions, 

numerical solutions, modelling techniques, etc., are examined. In a state space, the dynamical systems consist of a 

state defined by a set of real numbers or a set of points in general. The dynamical systems exhibit both discrete and 

continuous dynamical behaviour where the system can flow and jump. The system that can flow is defined by the 

differential equations and the system that can jump is defined by automation or a state machine. There is a wide 

range of applications for the system which includes biology, engineering, medicine, economics, etc.  

Also a Hybrid Dynamical Systems consist of both the continuous and discrete systems. The digital process interacts 

with the mechanical environments. They are used in mathematical modelling to construct and solve intelligent or 

reactive system with high complexity. In every time step a constant number is being multiplied to the system, hence 

the solutions for a linear discrete dynamical system becomes exponential and the constants can be determined 

easily during iteration process. If the dynamical systems are expressed in difference form then it is transformed to 

function iteration form and then the process of solving is illustrated.  

Electromechanical Devices: 

This term typically indicates a device that produces a motion when an electrical signal is passed in the device and 

reverse also holds true. The electromechanical devices are a combined process of electrical and mechanical system 

and they use properties of both the systems to operate in a device. They are equiped in day-to-day life and few 

examples of them includes vacuum cleaners and refrigerators for household work; electric motors in automobile 

industry, power companies, all fuel based generators; hydraulic press and CD & DVD players. Since used in uel 

based generators and power companies, the renewable energies are produced. A brief description on working 

system of slectromechanical devices are given as follows: Three systems are commonly operated: 1) Electric motors, 

2) Solenoids and 3) Mechatronics.  

1) The electric motors has its significance for altering a mechanical energy by magnetic fields. In terms of electrical 

systems, a large amount of direct and indirect sources are used such as, inverters, batteries, etc. whereas, 

https://mathinsight.org/definition/difference_form
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2) the solenoids has its applications in inductor replacing any electromagnet delay that changes in electric current. 

They are cylindrical object where current flows take place in wires generating a magnetic field and thus creating a 

linear motion. They are controlled by currents and so valves and swtiches uses them in devices such as car, 

doorbell, fan etc. Finally,  

3) the Mechatronics, ehich is another vast study of telecommunications and electronics, robots and other 

engineering fields. They are a combined field of electrical, mechanical and computer system. Frequenrly seen as the 

future of automated manufacturing in industreis. Examples include anti lock brake, digital SLR cameras, consumer 

items, etc. 

Robots as Electromechanical Device: 

The Philos type difference equations of fourth order models many electromechanical devices like solenoids, robots, 

mechatronic systems, electric motors, etc. In the system of robotics, the microcontroller is the central control of 

directions and movements. The electromechanical end effectors are constructed by components called gripper, 

actuator with control systems. Using a gripper, the objects are griped; the component called actuator regulated the 

gripper in instructed direction. Finally they are operated in control system to produce gestures, signals, etc. Certain 

usual robot types includes Collaborative Robots, Cartesian, SCARA, Cylindrical type, Cartesian, Polar and Delta 

types. To implement electromechanical models of Philos type equations, software tools like simulation software, 

Python, MATLAB are extensively used in differential equations, difference equations and control systems. They are 

used for numerical analysis and in generating mathematical simulations.  

Linear-Time-Invariant (LTI) Systems: 

They are a class of system where many real world problems are studied and solved. Using a fixed rule, input signals 

𝑥(𝑛) are converted to output signals 𝑥(𝑡) with respect to time 𝑡 using any discrete signal. The working system of LTI 

includes 3 main perceptions: 1) the difference equation (1), the transfer function, and the block diagram. Each 

perspective has their own weakness and strength for choosing the necessary work factors to synthesis the process in 

systems. This is common feature in systems theory and signal processing.  

Thus, 2) the transfer functions, which are used for tracking coefficients and delays of (1). It relates the input value 

𝑥(𝑛) to output 𝑦(𝑛) value specifying one variable of a polynomial system. Finally, 3) the Block diagrams, that 

represent a graph for any LTI system. Main parts included in block diagrams are gain, delay and summation. With 

gain, the input signal 𝑥(𝑛) is multiplied with a constant, say R and output is produced as 𝑅𝑥(𝑛). The delay specifies 

about a decrease or reduction of one unit at time t followed by the output production.  More than two signals are 

summed up to create the output signal in summation part. Each block is completely characterized by transfer 

function concerning inputs and outputs of the system. With validation technique, mathematical integration 

method, and appropriate discretization scheme the convergence and accuracy of solutions for the models are 

derived. 

Oscillatory results using Philos type equations:  

This section deals with a study on neutral difference equations and new oscillatory and asymptotic results for (1) 

are established. Some lemmas are given and Philos type theorems are proved using Riccati transformation. For 

each solution {𝑥(𝑛)} define a corresponding sequence{𝑦(𝑛)},   

𝑦(𝑛) = 𝑥(𝑛) + 𝑝(𝑛)𝑥(𝜎(𝑛))     (3) 

Consider the mapping 𝐺: 𝑁 × 𝑁 → 𝑅, 𝐺(𝑛, 𝑛) = 0   for 𝑛 ≥ 𝑛0, 𝐻(𝑛, 𝑡) > 0    for 𝑛 > 𝑡 ≥ 𝑛0,     

∆2𝐺(𝑛, 𝑡) ≤ 0, −∆2𝐺(𝑛, 𝑡) = 𝑔(𝑛, 𝑡)√𝐺(𝑛, 𝑡) 

where 𝑔(𝑛, 𝑡) = 𝐺(𝑛, 𝑡)∆𝑧(𝑡) and ∆2𝐺(𝑛, 𝑡) = 𝐺(𝑛, 𝑡 + 1) − 𝐺(𝑛, 𝑡). We consider the initial conditions, properties of 

equation and parameters for the system to establish the existence and uniqueness of solutions of fourth order 

difference equations and mathematical analysis is carried out.  

Lemma 1: If 𝑥(𝑛) is eventually non-negative result for (1), then below inequality is true. 

∆(𝑎(𝑛)∆3(𝑦(𝑛))
𝛼

) ≤ −𝑞(𝑛)(1 − 𝑝)𝛾𝑦𝛾(𝜏(𝑛)) 
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Proof: Here 𝑥(𝑛) is a positive result for (1) is the assumption and so ∃ 𝑛1 ≥ 𝑛0  ∋  𝑥(𝑛), 𝑥(𝜎(𝑛)), 𝑥(𝜏(𝑛))  are all 

positive for 𝑛 ≥ 𝑛1. Because ∆𝑎(𝑛) is also positive then, 𝑦(𝑛), ∆𝑦(𝑛), ∆3𝑦(𝑛), are positive but ∆(𝑎(𝑛)∆3(𝑦(𝑛)) ≤ 0 

and from (3) we have, 𝑥(𝑛) ≥ 𝑦(𝑛) − 𝑝𝑥(𝜏(𝑛)) ≥ 𝑦(𝑛) − 𝑝𝑦(𝜏(𝑛)) ≥ (1 − 𝑝)𝑦(𝑛). Thus above inequality 

becomes ∆(𝑎(𝑛)∆3(𝑦(𝑛))
𝛼

) + 𝑞(𝑛)(1 − 𝑝)𝛾𝑦𝛾(𝜏(𝑛)) ≤ 0 and the proof is completed.  

Lemma 2: Let 𝑥(𝑛) be a non-negative solution for (1). If Lemma 1 holds then,  

                           𝜓(𝑛) =
𝑎(𝑛)∆3(𝑦(𝑛))

𝛼

𝑦𝛾(𝜏(𝑛))
                                                            (4) 

then ∆𝜓(𝑛) ≤ 0.  

Proof: Here 𝑥(𝑛) is positive solution of (1) is our assumption and with (4), 𝜓(𝑛) > 0 for 𝑛 ≥ 𝑛1 then,  

          ∆𝜓(𝑛) ≤
∆(𝑎(𝑛)∆3(𝑦(𝑛))

𝛼
)

𝑦𝛾(𝜏(𝑛))
− 𝛾

𝑎(𝑛)∆3(𝑦(𝑛))
𝛼

𝑦𝛾+1(𝜏(𝑛))
                

By Lemma 1 we get, ∆𝜓(𝑛) ≤ −𝑞(𝑛)(1 − 𝑝)𝛾𝑦𝛼−𝛾(𝜏(𝑛)) − 𝛾
𝑎(𝑛)∆3(𝑦(𝑛))

𝛼

𝑦𝛾+1(𝜏(𝑛))
. From last inequality we get,   

  ∆𝜓(𝑛) + 𝑞(𝑛)(1 − 𝑝)𝛾𝑦𝛼−𝛾(𝜏(𝑛)) + 𝛾
𝑎(𝑛)∆3(𝑦(𝑛))

𝛼

𝑦𝛾+1(𝜏(𝑛))
≤ 0 

The proof is completed.  

Theorem 1: Assume 𝐺 to be a function of  𝑦(𝑛) and if there exists another function 𝑔: 𝑁0 × 𝑁0 such that, 

∑ 𝑔 
2(𝑛, 𝑡)

𝑛

𝑠=𝑛0

< ∞  

for every fixed value 𝑛 ≥ 𝑛0, then (1) is said to be oscillatory if the following condition is satisfied 

lim
𝑛→∞

𝑠𝑢𝑝
1

𝐺(𝑛, 𝑛0)
∑ [𝐻(𝑛, 𝑡)(𝑞(𝑡)𝑥𝛾(𝜏(𝑡)) − 𝛾

1

4
𝑔2(𝑠, 𝑡)]

𝑛

𝑡=𝑛0

= ∞ 

Proof: The contradiction method is used to prove the result and 𝑥(𝑛) is not an oscillatory solution for (1) then 

∃ an integer 𝑁 ≥ 𝑛0  ∋  𝑥(𝑛) > 0 ∀ 𝑁 ≤ 𝑛. By Riccati transformation define a condition,  

𝑧(𝑛) =
𝑎(𝑛)∆3(𝑦(𝑛))

𝛼

𝑥𝛾(𝜏(𝑛))
 

then we have, 𝑞(𝑛)𝑥𝛾(𝜏(𝑛)) = 𝛾∆𝑧(𝑛) − ∆2(𝑧(𝑛). If  𝐺(𝑛, 𝑛) = 0 then using summation-by-parts implies, 

∑ 𝐺(𝑛, 𝑡)(𝑞(𝑡)𝑥𝛾(𝜏(𝑡))

𝑛

𝑡=𝑁

= ∑ 𝐺(𝑛, 𝑡)𝛾∆𝑧(𝑡)

𝑛−1

𝑡=𝑁

− ∑ 𝐺(𝑛, 𝑡)∆2(𝑧(𝑡))

𝑛−1

𝑡=𝑁

                    

                = 𝛾𝐺(𝑛, 𝑁)𝑧(𝑁) + 𝛾 ∑ 𝑔(𝑛, 𝑡)√𝐺(𝑛, 𝑡)𝑧(𝑡)

𝑛−1

𝑡=𝑁

− ∑ 𝐺(𝑛, 𝑡)∆2(𝑧(𝑡))

𝑛−1

𝑡=𝑁

      (5) 

∑ 𝐺(𝑛, 𝑡)(𝑞(𝑡)𝑥𝛾(𝜏(𝑡))

𝑛

𝑡=𝑁

= 𝛾𝐺(𝑛, 𝑁)𝑧(𝑁) + ∑ (𝛾𝑔(𝑛, 𝑡)√𝐺(𝑛, 𝑡)𝑧(𝑡) − 𝐺(𝑛, 𝑡)∆2(𝑧(𝑡))

𝑛−1

𝑡=𝑁

         (6) 

where 𝑛 ≥ 𝑁 and now using the perfect-square expression we get,  

𝛾𝑔(𝑛, 𝑡)√𝐺(𝑛, 𝑡)𝑧(𝑡) − 𝐺(𝑛, 𝑡)∆2(𝑧(𝑡)) = 𝛾
1

4
𝑔2(𝑠, 𝑡) + 𝛾 (

1

2
𝑔(𝑛, 𝑡) − √𝐺(𝑛, 𝑡)𝑧(𝑡))

2
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𝑔(𝑛, 𝑡)√𝐺(𝑛, 𝑡)𝑧(𝑡) − 𝐺(𝑛, 𝑡)∆2(𝑧(𝑡)) ≥
1

4
𝑔2(𝑠, 𝑡) 

for every (𝑛, 𝑡) ∈ 𝑁0 and converges to a finite value eventually. Therefore the following inequality is obtained, 

∑ 𝛾𝑔(𝑛, 𝑡)√𝐺(𝑛, 𝑡)𝑧(𝑡) − 𝐺(𝑛, 𝑡)∆2(𝑧(𝑡)

𝑛

𝑡=𝑁

≤ 𝛾
1

4
∑ 𝑔2(𝑠, 𝑡)

𝑛

𝑡=𝑁

< ∞ 

where 𝑛 ≥ 𝑁. When the above inequality is combined with (6) then,  

∑ (𝐺(𝑛, 𝑡)(𝑞(𝑡)𝑥𝛾(𝜏(𝑡)) − 𝛾
1

4
𝑔2(𝑠, 𝑡))

𝑛

𝑡=𝑁

≤ 𝛾𝐺(𝑛, 𝑁)𝑧(𝑁) 

Therefore,  

∑ (𝐺(𝑛, 𝑡)(𝑞(𝑡)𝑥𝛾(𝜏(𝑡)) − 𝛾
1

4
𝑔2(𝑠, 𝑡))

𝑛

𝑡=𝑛0

= ∑ (𝐺(𝑛, 𝑡)(𝑞(𝑡)𝑥𝛾(𝜏(𝑡)) − 𝛾
1

4
𝑔2(𝑠, 𝑡))

𝑁

𝑡=𝑛0

+ ∑ (𝐺(𝑛, 𝑡)(𝑞(𝑡)𝑥𝛾(𝜏(𝑡)) − 𝛾
1

4
𝑔2(𝑠, 𝑡))

𝑛

𝑡=𝑁

≤ ∑ (𝐺(𝑛, 𝑡)(𝑞(𝑡)𝑥𝛾(𝜏(𝑡)) − 𝛾𝐺(𝑛, 𝑁)𝑧(𝑁))

𝑛

𝑡=𝑛0

 

Considering our assumption of −∆2𝐺(𝑛, 𝑡) we know that  𝐻(𝑛, 𝑛0) ≥  𝐻(𝑛, 𝑡) > 0. Thus,  

1

𝐺(𝑛, 𝑛0)
∑ (𝐺(𝑛, 𝑡)(𝑞(𝑡)𝑥𝛾(𝜏(𝑡)) − 𝛾

1

4
𝑔2(𝑠, 𝑡))

𝑛−1

𝑠=𝑀

≤ ∑ (
𝐺(𝑛, 𝑡)

𝐺(𝑛, 𝑛0)
(𝑞(𝑡)𝑥𝛾(𝜏(𝑡)) −

𝐺(𝑛, 𝑁)

𝐺(𝑛, 𝑛0)
𝑧(𝑁))

𝑁

𝑡=𝑛0

≤ ∑ ((𝑞(𝑡)𝑥𝛾(𝜏(𝑡)) − 𝛾𝑧(𝑁))

𝑁

𝑡=𝑛0

< ∞ 

for every 𝑛 > 𝑛0,  implies contradiction which completes the proof.  

 

Theorem 2: Considering our previous assumptions, −∆2𝐺(𝑛, 𝑠) for every 𝑛 > 𝑠 ≥ 𝑛0, then,  

lim
𝑛→∞

𝑠𝑢𝑝
1

𝐺(𝑛, 𝑁)
∑ [𝐺(𝑛, 𝑠)𝑞(𝑛) −

𝑔(𝑛, 𝑠)𝑧(𝑛 + 1)

𝐺(𝑛, 𝑠)𝑞(𝑠)
]

𝑛−1

𝑠=𝑁

= ∞ 

then all solutions of (1) become oscillatory or tends to 0 when 𝑛 tend to ∞.  

Proof: If the solution, 𝑥(𝑛) is not oscillatory for (1) then take 𝑥(𝑛) to be positive. Only this case is considered as the 

proof is similar for 𝑥(𝑛) to be a solution which is non-positive for (1). From 𝑛1 ∈ (𝑛0, ∞) there is 𝑛2 ∈ (𝑛1, ∞) such 

that, ∆3𝑦(𝑛) > 0 and 𝑎(𝑛)∆3(𝑦(𝑛)) < 0. Define the function ∋ 𝑥(𝑛) be the solution of (1) for 𝑛 = 𝜂 then,  

𝑧(𝜂) =
𝑎(𝜂)∆3(𝑦(𝜂))

𝛼

𝑥𝛾(𝜏(𝜂))
 

for 𝛼 > 0, 𝛾 > 0 then,  

∆𝑧(𝜂) ≤
𝑞(𝜂)𝑥𝛾(𝜏(𝜂))

𝑥𝛾(𝜏(𝜂 + 1))
−

𝑧(𝜂 + 1)

𝑥(𝜏(𝜂 + 1))
+ 𝛾𝑥𝛾+1(𝜏(𝜂))𝑧(𝜂) 

From above inequality we have,  

∑ 𝐺(𝜂, 𝑠)
𝑞(𝑠)𝑥𝛾(𝜏(𝑠))

𝑥𝛾(𝜏(𝑠 + 1))

𝜂−1

𝑠=𝑁

≤ − ∑ 𝐺(𝜂, 𝑠)
𝑧(𝑠 + 1)

𝑥(𝜏(𝑠 + 1))

𝜂−1

𝑠=𝑁

+ ∑ 𝐺(𝜂, 𝑠)𝛾𝑥𝛾+1(𝜏(𝑠))𝑧(𝑠)

𝜂−1

𝑠=𝑁
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By applying summation by parts, we get 

∑ 𝐺(𝜂, 𝑠)𝛾𝑥𝛾+1(𝜏(𝑠))𝑧(𝑠)

𝜂−1

𝑠=𝑁

≤ 𝑥𝛾+1(𝜏(𝑁))𝑧(𝑁) − ∑ 𝑧(𝑘) (𝐺(𝜂, 𝑠)𝑥𝛾+1(𝜏(𝑘 + 1)) − 𝐺(𝜂, 𝑠)𝑥𝛾+1(𝜏(𝑘)))

𝜂

𝑘=1

 

By substitution we obtain,  

∑ 𝐺(𝜂, 𝑠)
𝑞(𝑠)𝑥𝛾(𝜏(𝑠))

𝑥𝛾(𝜏(𝑠 + 1))

𝜂−1

𝑠=𝑁

≤ − ∑ 𝐺(𝜂, 𝑠)
𝑧(𝑠 + 1)

𝑥(𝜏(𝑠 + 1))

𝑛−1

𝑠=𝑁

+ 𝛾 (𝑥𝛾+1(𝜏(𝑁))𝑧(𝑁) − ∑ (𝑧(𝑘) (∆𝐺(𝜂, 𝑠)𝑥𝛾+1(𝜏(𝑘))))

𝜂

𝑘=1

)                     (7) 

Hence from (7) we have,   

∑ 𝐺(𝜂, 𝑠)
𝑞(𝑠)𝑥𝛾(𝜏(𝑠))

𝑥𝛾(𝜏(𝑠 + 1))

𝜂−1

𝑠=𝑁

≤ − ∑ 𝐺(𝜂, 𝑠)
𝑧(𝑠 + 1)

𝑥(𝜏(𝑠 + 1))

𝑛−1

𝑠=𝑁

+ 𝛾𝑥𝛾+1(𝜏(𝑁))𝑧(𝑁) − 𝛾 ∑ 𝑧(𝑘) (∆𝐺(𝜂, 𝑠)𝑥𝛾+1(𝜏(𝑘)))

𝜂

𝑘=1

 

≤ 𝛾𝑥𝛾+1(𝜏(𝑁))𝑧(𝑁) − ∑ 𝐺(𝜂, 𝑠)
𝑧(𝑠 + 1)

𝑥(𝜏(𝑠 + 1))

𝜂−1

𝑠=𝑁

− 𝛾 ∑ 𝑧(𝑘) (∆𝐺(𝜂, 𝑠)𝑥𝛾+1(𝜏(𝑘)))

𝜂

𝑘=1

 

From Theorem 1 we get,   

∑ 𝐺(𝜂, 𝑠)
𝑞(𝑠)𝑥𝛾(𝜏(𝑠))

𝑥𝛾(𝜏(𝑠 + 1))

𝜂−1

𝑠=𝑁

≤ 𝛾𝑥𝛾+1(𝜏(𝑁))𝑧(𝑁) + ∑ 𝑔(𝜂, 𝑠)
𝑧(𝑠 + 1)

𝑥(𝜏(𝑠 + 1))

𝜂−1

𝑠=𝑁

− 𝛾 ∑ 𝑧(𝑘) (∆𝐺(𝜂, 𝑠)𝑥𝛾+1(𝜏(𝑘)))

𝜂

𝑘=1

 

Now letting the assumptions such that, 𝑢 = 𝐺(𝜂, 𝑠)𝑞(𝑠), 𝑣 = 𝑥(𝜏(𝑠)), 𝐴 = 𝛾𝑥𝛾+1(𝜏(𝑁))𝑧(𝑁), 𝐵 = 𝑔(𝜂, 𝑠)𝑧(𝑛 + 1),

𝐶 = 𝑥(𝜏(𝑠 + 1)), 𝐷 = 𝛾𝑧(𝑘) (∆𝐺(𝜂, 𝑠)𝑥𝛾+1(𝜏(𝑘))). By the last inequality we have,  

𝑢 (
𝑣

𝐶
)

𝛾

− 𝐴 +
𝐵

𝐶
+ 𝐷 ≤

𝐵

𝑢
(

∆𝑣

𝐶 − 𝑣
) 

Therefore,  

∑ 𝐺(𝑛, 𝑠)
𝑞(𝜂)𝑥𝛾(𝜏(𝜂))

𝑥𝛾(𝜏(𝜂 + 1))

𝜂−1

𝑠=𝑁

− 𝛾𝑥𝛾+1(𝜏(𝑁))𝑧(𝑁) − ∑ 𝑔(𝜂, 𝑠)
𝑧(𝜂 + 1)

𝑥((𝜂 + 1))

𝜂−1

𝑠=𝑁

+ 𝛾 ∑ 𝑧(𝑘) (∆𝐺(𝜂, 𝑠)𝑥𝛾+1(𝜏(𝑘)))

𝜂

𝑘=1

≤ ∑
𝑔(𝜂, 𝑠)𝑧(𝑛 + 1)

𝐺(𝜂, 𝑠)𝑞(𝑠)

𝜂−1

𝑠=𝑁

 

With (7) and since 𝐺(𝜂, 𝜂) = 0 then,   

∑ [𝐺(𝜂, 𝑠)𝑞(𝑛)𝑥𝛾(𝜏(𝜂)) −
𝑔(𝜂, 𝑠)𝑧(𝜂 + 1)

𝐺(𝜂, 𝑠)𝑞(𝑠)
]

𝑛−1

𝑠=𝑁

≤ 𝛾𝑥𝛾+1(𝜏(𝑁))𝑧(𝑁) 

For 𝜂 ≥ 𝑁,  

lim
𝑛→∞

𝑠𝑢𝑝
1

𝐺(𝜂, 𝑁)
∑ [𝐺(𝑛, 𝑠)𝑞(𝑛) −

𝑔(𝜂, 𝑠)𝑧(𝜂 + 1)

𝐺(𝜂, 𝑠)𝑞(𝑠)
]

𝑛−1

𝑠=𝑁

≤ 𝛾𝑥𝛾+1(𝜏(𝑁))𝑧(𝑁) 

This implies a contradiction to our assumption and the proof is complete.    

 

Examples: To prove the main results, some examples are provided.  

Example 1: Consider the difference equation given as, 
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∆(𝑛 + 1)∆3𝑥(𝑛) + (16𝑛 + 24)𝑦(𝑛 + 1) = 0    (8) 

Here {𝑥(𝑛)} = {(−1)𝑛} becomes the solution for (8). Hence every solution in (1) oscillates.   

Example 2: The following difference equation is considered,  

∆4𝑥𝑛 −
128

(2 + 3𝑛)2
(

3𝑛

8
+

(−1)𝑛

2𝑛+4
) 𝑥𝑛

2 =
(−1)𝑛+1

2𝑛−3
                         (8.1) 

for 𝑛 ≥ 3  that satisfies all the conditions of Theorem 2. Here the solution of (8.1) is {𝑥𝑛} = {2 + 3𝑛}. Thus (7) has 

non-oscillatory solution that approaches a non-zero real number.  

Linear Time Invariants (LTI) System in Robotics: 

The Philos type fourth order neutral difference equation is formulated denoting the accuracy of dynamical 

behaviour for electromechanical devices such as generators and motors. This involves recognition of key 

components of system, interactions and its dynamics. The mechanical and electrical properties, external influences 

and control inputs are considered and integrated while formulating the equation. We know from section 2 that LTI 

forms a significant role for controllers. Here robots are taken as an example of electromechanical device. For a 

difference equation, the LTI system can be developed easily in a unique way. Thus the LTI system is used for 

moving the parts of robots such as movement of arms and several other complex joints with certain degrees of 

freedom. The key components and variables for the systems to influence the formulation and structure of Philos 

type fourth order neutral difference equations consist of capacitance, inductance, electrical resistance, control 

signals, damping coefficients, time delays, mechanical inertia, and external loads.  They play a vital role to define 

the dynamics of the system and to determine respective terms and coefficients of the equation. The function of an 

integer for any discrete signal converts the input function 𝑥(𝑛) to an output function 𝑦(𝑛) with time 𝑡.  

Now we consider (1) and the fourth order difference equation is, ∆(𝑎(𝑛)∆3(𝑥(𝑛) + 𝑝(𝑛)𝑥(𝜎(𝑛))𝛼) such that by [14] 

the input function is defined and given as {𝑥(𝑛)} then, 

(𝑎(𝑛 + 1) − 𝑎(𝑛)){𝑥(𝑛 + 4) − 4𝑥(𝑛 + 3) + 6𝑥(𝑛 + 2) − 4𝑥(𝑛 + 1) + 𝑥(𝑛)} 

Then the respective output function {𝑦(𝑛)} of (1) become,    

(𝑎(𝑛 + 1) − 𝑎(𝑛)){𝑦(𝑛 + 4) − 4𝑦(𝑛 + 3) + 6𝑦(𝑛 + 2) − 4𝑦(𝑛 + 1) + 𝑦(𝑛)} 

The delay in philos difference equations indicates the time taken for the system to respond for inputs or variations 

or any stimuli. This influence oscillatory behavior, complete dynamics and stability of the system.  

Limitations: 

The neutral difference equations are appropriate to model dynamical systems as they possess the capability in 

integrating past and present time data which makes them compatible for systems having memory effects or delays. 

Also they are able to capture the interactions between various components and their relations over a period of time. 

However, in real time there are challenges while employing philos type fourth order neutral difference equations for 

electromechanical devices of dynamic systems which include stability issues, computational complexity, need for 

fast response times and parameter uncertainties. Overcoming such issues can be attained using multiple techniques 

such as model simplification techniques, advanced control algorithms, hardware-in-the-loop simulations and 

adaptive strategies which helps in validating the performance of the model. In practical applications deviations in 

environmental condition and material properties significantly affect the efficiency in accuracy for Philos type 

difference equations based models. The variations in factors like temperature, friction, external disturbances, etc 

leads to discrepancy in predicting the model compared to actual model predictions. Thus the sensitivity analysis 

and robust conditions are vital while the uncertainties are considered. 

CONCLUSION  

The paper shows that the Philos type fourth order neutral difference equations gives an understanding about the 

interaction between mechanical and electrical components. When comparing to other mathematical model the 

Philos type difference equations provide a better insight in dynamics with oscillatory behavior. We conclude from 

this paper that the Philos type oscillatory criteria of (1) are obtained by Riccati technique and summation averaging 
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method. A study on electromechanical devices led to the application of fourth order difference equation in robots 

using LTI system.  

FUTURE WORK 

The future work include a study on models of Philos type difference equations with higher order and develop 

advanced strategies by investigating the disturbances and uncertainties and also to study on the technique of 

Hybrid modelling for establishing the behaviour of electromechanical systems with varying parameters. The work 

also includes a study on dynamics of hand-control robots using higher order difference equations. 
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