
Journal of Information Systems Engineering and Management
2025, 10(18s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Low Cost and High-Speed Implementation of K-Means

Algorithm for Image Analysis

Anuradha. M.G1*, L Basavaraj2
1*Department of Electronics and Communication, JSS Academy of Technical Education, (Affiliated to Visvesvaraya Technological University,

Belagavi), Dr. Vishnuvardhan road, Bengaluru-560060, India
2Department of Electronics & Communication, ATME College of Engineering, Bannur Rd, Mysuru, Karnataka 570028.

*Corresponding Author Email: anuradhamg@jssateb.ac.in

ARTICLE INFO ABSTRACT

Received: 19 Dec 2024

Revised: 29 Jan 2025

Accepted: 12 Feb 2025

Introduction: An image contains various patterns which need to be divided for further

analysis. The categorization of patterns can be carried out using unsupervised clustering

algorithm of which K-Means is the most popular and efficient algorithm. However, the

algorithm takes more time to divide the image into various groups as it is iterative and is

computationally intensive.

Objectives: Hence introduced a new technique and have devised a new architecture to

accelerate the K-Means operation. The technique uses image intensity levels without the spatial

information to accelerate the clustering operation. In any image, regardless of its pixel count,

the intensity values are always between 0 and 255. Once these intensity values are initially read

for an image, subsequent clustering iterations only use the frequency of each intensity level and

256 intensity levels to cluster.

Methods: This approach minimizes storage requirements and speeds up the algorithm.

Absolute distance is used to compare the distance between the input image pixel and the

cluster center to further accelerate the operation. An integer divider is employed to calculate

the cluster center. Its architecture is designed to function within a single clock cycle, enhancing

the overall speed of the operation

Results: Experimental results show efficacy of the proposed architecture in speeding up the

operation. When implemented on a Virtex-6 FPGA, the hardware accelerator can process 405

image frames per second for images of size 256 x 256. To adapt the design for a more cost-

effective FPGA with fewer logic gates, parallel computations were reduced, allowing

implementation on a Spartan 3 FPGA.

Conclusions: The modified design processes 106 images per second on the Spartan 3, making

it a compelling solution for clustering images with both low cost and high speed.

Keywords: Computer vision, Unsupervised clustering, K-means, FPGA, Hardware

accelerator.

1. INTRODUCTION:

A human being with his inherent ability can analyze any given image. To mimic the behavior of a human brain,

machines are being used. A machine can understand the pattern of an image by proper grouping or clustering.

Clustering involves in partitioning the vast data into certain number of groups. The data within a group has similar

characteristics while the data in different groups are dissimilar. Many clustering algorithms are available in

literature to group an image in real time such as K-Means, K-Median, K-Mode, Mean shift algorithm, KD tree, hash

table, fuzzy c-Means algorithm, density based algorithms and model based clustering algorithms. Of the available

algorithms, K-Means is the algorithm that is explored more due to its inherent simplicity and high efficiency. It is

used in variety of multimedia applications like quantizing an image, segmenting video and image streams,

recognition of speech and compression of video and audio.

588

J INFORM SYSTEMS ENG, 10(18s)

In 1967, Mac Queen proposed the famous K-Means clustering algorithm [1]. The algorithm was used by many

researchers from then due to its robustness and simplicity. The algorithm is iterated till it is converged to a local

optimum solution by minimizing the squared error between the cluster center and each input data. Due to this

comparison, the algorithm requires more computational resource and is slow. Also the algorithm is converged after

several iterations. Initially till early 2000’s, the algorithm was implemented in software and hence was slower.

To improve the speed of operation, hardware-software co-design technique was implemented [2] which increased

the speed 2 times compared to software implementations only. Since then, to accelerate the speed of operation,

many researchers used hardware. As a first attempt, Estlic [4] used FPGA to compute the distance and mean

computation was carried out using a microprocessor. The author showed that the hardware implementation was

carrying the operation 2 times faster than the algorithm built in software that is run in Pentium 3 machine. With

the advancement in technology, to accelerate the operation, many hardware architectures were proposed for

various applications like background subtraction, image segmentation and color quantization [5]. To improve the

speed, many techniques were used. To accelerate the speed, Author [6] read the entire image data for the first time

and later used only boundary points in successive iteration. An adaptive K-means algorithm was proposed by Boris

Maliatski [7] which could process 15 frames per second. Author Chen [8-12] has built many hardware accelerators

using TSMC 90nm technology for K-means algorithm each addressing various issues of the algorithm. Each of the

architecture built by the author operates at high speed but the maximum number of image frames that can be

operated is limited to less than 20 frames. The author [13] has implemented K-means on Virtex4 FPGA for bio-

informatics application. The author shows that the hardware accelerator built on FPGA works 10 times faster than

the software counterpart implemented using Matlab which is running in Intel Pentium core duo processor

operating at 3GHz speed. Deng [14] uses histogram as an input to accelerate the speed of clustering an image. The

author shows that 95-140 images frames of size 640X480 can be clustered in a second using FPGA. Further

Farivar[15] explored the use of Nvedia graphics card to perform clustering operation. He has experimentally shown

that the clustering operation can process 6 image frames per second.

Even though many accelerators are available in literature, the number of image frames that can be processed by

them still remains a challenge as image resolution is also increasing with advent of technology. The computational

complexity involved in clustering an image is increasing and new technique has to be adopted to group the image

pixel at real time.

The contributions of the article are as follows:

• Efficient architecture is proposed to compute the distance between the image pixel and cluster centers.

• The literature earlier proposed takes image input as multi-dimensional and compares the input each time

with the centers. The proposed accelerator considers only the intensity value of an image as input. Each

pixel input is not compared with the cluster center. But instead, each pixel input is compared with the

possible intensity values which may vary from 0 to 255 in any image and count of the corresponding

intensity is incremented. Later only the intensity values are compared with the cluster centers in further

iterations reducing the computations to only 256 irrespective of the image size and hence computations can

be done quickly compared to the previous hardware architectures available in the literature. Hence the

proposed accelerator operates very with less area and power. The proposed method can process 406 image

frames in a second and can process an image of size 16 M pixel using the same accelerator.

• The computation of the new cluster center needs division operation which takes multi-clock cycle making

the hardware pipeline difficult. A new methodology for division is proposed which operates in one cycle so

that the clustering operation can be operated as pipeline to increase the throughput of the clustering

operation.

Further the manuscript is organized as follows: The introduction and a brief survey are provided in section 1.

Section 2 provides the methodology used to formulate the architecture with each subsection explaining the

hardware architecture of each of the block used. Section 3 discusses the result and Section 4 summarizes the

research result.

589

J INFORM SYSTEMS ENG, 10(18s)

2. FORMULATED ALGORITHM AND ARCHITECTURE

The data or an image pixel that needs to be clustered into K groups is represented by 8 bit as illustrated in equation

(1)

𝑥𝑖 = { 𝑥𝑖7, 𝑥𝑖6, 𝑥𝑖5, … . 𝑥𝑖1, 𝑥𝑖0} (1)

Let there be ‘n’ such image pixels that needs to be clustered into ‘K’ groups. Let the cluster centers of each group are

represented as C1, C2…CK. The architecture are capable of dividing the images to maximum of 25 groups and hence

K can vary from 1 to 25. Initially, the ‘K’ cluster centers are chosen randomly from an input image which speeds up

the operation. The algorithmic steps used to implement the architecture are given below:

Step 1: Read one input data pixel xi in a clock cycle.

Step 2: Compare the input pixel value xi with the intensity values mj which has values fixed values ‘0’ to ‘255’ and

increment the corresponding register Nj which hold the number of pixels having the same intensity value. Hence

there are 256 registers to hold the corresponding intensity values. Equation (2) gives mathematical notation of the

same.

𝑁𝑗 = {
𝑁𝑗 + 1 𝑖𝑓 (𝑥𝑖 == 𝑚𝑗)

𝑁𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

The value of j and i vary from 0 to 255 and from 0 to (N-1) respectively.

Step 3: Repeat Step1 and Step2 to read and compare all the inputs in N clock cycles.

Step 4: Calculate the distance between each intensity value with all the cluster centers using absolute distance

calculation as shown in equation (3).

𝑑𝑗 = | 𝑚𝑗 − 𝑐𝑘| (3)

To compare the distance, squared distance computations can also be used as indicated in equation (4)

𝑑𝑗 = (𝑚𝑗 − 𝑐𝑘)
2
 (4)

Step 5: Assign the intensity value mj to the nearest cluster centers as described in equation (5)

𝑁 (
𝑥

𝑚𝑗
) = 𝐶𝑘 𝑖𝑓 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑑(𝑚𝑗 , 𝐶𝑘) (5)

Step 6: For cluster center Ck, new center is computed for all intensity valas in equation (6), (7) and (8). The mj in

the equation represents the intensity pixel nearest to the cluster and Nj represents the number of pixels in an image

having the intensity value mj.

𝑁𝑐𝑘 = {
𝑁𝑐𝑘 + (𝑚𝑗 ∗ 𝑁𝑗) 𝑖𝑓 𝑁 (

𝑥

𝑚𝑗
) = 𝐶𝑘

𝑁𝑐𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

𝑑𝑐𝑘 = {
𝑑𝑐𝑘 + (𝑁𝑗) 𝑖𝑓 𝑁 (

𝑥

𝑚𝑗
) = 𝐶𝑘

𝑑𝑐𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

𝐶𝑘,𝑛𝑒𝑤 =
𝑁𝑐𝑘

𝑑𝑐𝑘
 (8)

Step 7: Repeat steps 4 to 6 till the cluster center do not change its value.

The algorithm automatically stops if the cluster center does not change or if the maximum iteration has reached.

Maximum of 10 iterations are fixed. After the algorithm converges, the image pixels are read again and the output

for each image pixel read is the value of the nearest cluster center.

The architecture built using the above algorithmic steps to group the image pixels using K-Means algorithm is

shown in Figure 1. The image given to the accelerator is pre-processed to remove any outliers as the K-means is

sensitive to noise and would impact on the results of clustering. Hence an image free of noise or outliers is fed to

the acclereator.

590

J INFORM SYSTEMS ENG, 10(18s)

The input “Pixel-in” is an 8 bit image pixel to receive the input pixel serially in raster scan order. The size of a

digital image is specified by a 24 bit “Imsz” input and hence the accelerator can support the comparison of the input

pixel with the cluster center up to 16 mega pixel. The “K” input is a 5 bit input which specifies the number of groups

and hence the image can be divided into maximum of 32 groups. Due to area constraints in the hardware, the

accelerator can divide an image from 2 to 25 groups. The clock and enable signals used in the architecture are “En”

and “Clk”. The dotted line indicates the control signal and solid line indicates the data signals. The “K” initial

cluster centers are chosen randomly from an image. The subsequent sections explain the functionality and

architecture formulated for each of the individual blocks used.

Figure 1: Architecture of the proposed algorithm

2.1. Intensity comparing unit:

The image pixel from “Pixel-in” is fed serially for each clock cycle and is compared against 256 possible intensity

values, ranging from 0 to 255, corresponding to an 8-bit grayscale image. Registers R0 to R255 represent register

which holds the frequency of these 256 intensity levels. The relevant register is incremented when the input pixel

matches its corresponding intensity.

As observed, the comparator's output functions as an enable signal for the adder. When enabled, the adder

increments the current value in the register by 1. The comparator compares the input with a specified value,

reducing its complexity to an 8-bit AND gate, as illustrated in Figure 2. For instance, when comparing the input

with the pixel value '0', the Data_in input is inverted and sent to the 8-input AND gate. Conversely, when

comparing with the pixel value '255', the Data_in input is directly passed to the 8-input AND gate.

Initial cluster centers are selected randomly from the image. After reading the complete image, the count of each

pixel intensities are available in the specified 256 registers. Hence, irrespective of the image size the architecture

uses only 256 registers and 256 comparators reduced as AND gate.

Output

FSM

Controller

Pixel

in

 Imsz

 K

En

Intensity

comparing unit

Nearest-Center

computing unit

New-center

computing unit

Add unit

Output module

Clk

591

J INFORM SYSTEMS ENG, 10(18s)

Figure 2: Intensity comparing unit

2.2. Nearest center computing unit:

The intensity values of the pixel are compared with the cluster centers. The intensity value can span from 0 to 255.

The accelerator supports maximum of 25 cluster centers that can be compared. Hence to compute the distance we

require 6400 distance computing unit which calculates the distance in parallel between the intensity levels and the

cluster center.

Two types of distance computing engines are examined in the architecture namely Absolute distance computer and

squared distance computer as illustrated in Figure 3 represented by equation (3) and (4).

Figure 3: (a) Absolute distance computer (b) Squared distance computer

The nearest computing unit for computing the distance between an intensity pixel with 8 cluster centers is

illustrated in Figure 4 as an example.

592

J INFORM SYSTEMS ENG, 10(18s)

Figure 4: Nearest center computing unit shown with eight cluster centers

The input intensity pixel ‘Di’ is compared with all the eight cluster centers simultaneously to compute the distance.

Later the computed distance is compared to select the least distance. Depending on the ‘K’ value, the nearest center

is computed. The output of the nearest centre computing unit is the nearest cluster center value. For example, if

‘K’=2, then the multiplexer selects ‘X1’. The ‘X1’ contains the value of either C1 or C2. If distance between input

intensity ‘Di’ is nearer to ‘C1’ then X1 contains ‘C1’ else it contains ‘C2’. If ‘K’ is 3 then multiplexer selects the nearest

cluster center as ‘X2’ which contains the nearest pixel center which may have the value ‘C1’, ‘C2’ or ‘C3’ depending

on the distance between ‘Di’ and cluster center. The same concept is extended for comparing the input ‘Di’ with all

-

-

-

-

-

-

-

-

ABS

ABS

ABS

ABS

ABS

ABS

ABS

ABS

>

 >

>

>

>

>

>

C1

C2

C3

C4

C5

C6

C7

C8

Di

X1 C1

C2

X2

X3

X4

X5

X6

X7

 X1
 C3

 X2
 C4

 X3
 C5

 X4
 C6

 X5
 C7

 X6
 C8

 K

Distance calculation Least distance calculation

593

J INFORM SYSTEMS ENG, 10(18s)

the eight clusters. Since, the ‘K’ input has 5 bits to support 25 groups, the ‘Nearest center computing unit’ has 24

comparators and 25 multiplexers to compare intensity with possible 25 cluster centers.

2.3. Add unit:

The output of the ‘Nearest computing unit’ is the corresponding nearest cluster center value for an intensity ‘Di’.

For each intensity value, the corresponding nearest center value is stored in the internal register. There are 256

registers each corresponding to an intensity level which hold the value of corresponding nearest cluster center. The

‘Add unit’ sums up all the pixel intensities which is nearer to the cluster center. Depending on the cluster centers,

the pixel intensities nearer to all the cluster centers are summed up and stored in a register called Si. Also, the total

number of pixels having same intensity ii is also stored in register ‘Ci’.

The Pseudo code for the algorithm to compute addition is shown below

The registers ‘Si’ corresponds to register having the sum of all intensities having same cluster center and ‘Ci’

correspond to total count of intensity value. For example, in a single cluster if there are ni pixels having intensity xi

and mi pixels having intensity yi then the new cluster center is computed as shown in equation (3)

New cluster center = ((ni*xi) + (mi*yi)) / (ni + mi) (9)

The division in equation (3) is computed using 24 bit divider whose Pseudo code is shown in Algorithm 2. Due to

parallel hardware, the division operation is performed in single cycle.

594

J INFORM SYSTEMS ENG, 10(18s)

2.4. Output module:

The output module compares the previous cluster center with the present cluster center. If they are same, then the

clustering operation stops else again the new cluster center is computed in the same procedure. The accelerator

runs with maximum iteration of ‘10’. The entire operation is controlled by the ‘FSM controller’.

3. RESULTS AND DISCUSSIONS

The architecture for K-means was designed using Verilog HDL which is simulated in Xilinx I-Sim simulator and

synthesized using Virtex 6 FPGA to examine the hardware characteristics in terms of area, timing and power. The

cluster size was varied and the hardware utilization was examined.

The first step in the verification of the architecture is testing the clustering operation for various standard images.

MATLAB tool was used to convert the images in jpeg format to binary format. These binary values of the image

pixels were stored in an external memory and the image pixel was fed serially into the designed hardware

accelerator. The clustering hardware accelerator designed clusters the image data into specified number of groups

and for each of the pixel intensity it sends the nearest cluster center and stores it in an external memory for further

analysis.

The clustered binary output data stored in binary format is again visualized using MATLAB for different values of K

and the visual results obtained are depicted in Figure 5.

Original

image

Color

clustering

for K=15

Color

clustering

for K=12

Color

clustering

for K=10

595

J INFORM SYSTEMS ENG, 10(18s)

Color

clustering

for K=8

Color

clustering

for K=6

Color

clustering

for K=4

Original

Image

Color

clustering

for K=3

Color

clustering

for K=2

Figure 5: Clustered output for varied value of K

The clustered output image visualized in MATLAB is analyzed for peak signal to noise ratio (PSNR) as illustrated

Figure 6.

596

J INFORM SYSTEMS ENG, 10(18s)

Figure 6: Obtained PSNR for various output images

The second part is to analyze the hardware characteristics of the proposed accelerator. For comparison, the original

K-means algorithm that compares each of the pixel intensity with the cluster center was also implemented. Both the

accelerators were synthesized using Virtex-6 FPGA and the area occupied is tabulated in Table 1

Table 1: Area comparison of original and proposed K-means accelerator

Logic utilization in Virtex 6

FPGA(XC6VLX75)
Original accelerator Proposed Accelerator

Slice Registers 6767 6813

Slice LUTs 140098 41143

LUT-FF pairs 4615 2405

DSP block 236 2

As seen, the original accelerator occupies 3.4 times more slice LUTs compared to the proposed accelerator. Also to

analyze the hardware cost, the number of grouping factor ‘K’ is varied and the plot is shown in Figure 7 where it is

seen that the slice LUTs vary linearly with ‘K’. This is because, ‘Nearest center computing unit’ requires more

comparators and multiplexers as K is increased.

Figure 7: Variation of Slice LUTs with ‘K’

The accelerator as mentioned earlier was tested for 2 types of distance computations. Parallel architectures using

Absolute distance computer and squared distance computer was implemented. These distance computers compute

the distance between the image pixel and the cluster centers in parallel using 256 computing engines where one of

the computing engines is shown in Figure 8.

0.0

5.0

10.0

15.0

20.0

B O A T L E N A M A N D R I L C A M E R A M A N

P
SN

R

IMAGES

PSNR OF THE OUTPUT IMAGE
K=15

K=12

K=10

K=8

K=6

K=4

K=2

0

100000

200000

1 2 3 4

Sl
ic

e
 L

U
Ts

Cluster number

Comaparison of area for varied K

K

Slice LUT

597

J INFORM SYSTEMS ENG, 10(18s)

Figure 8: (a) Absolute distance computer (b) Squared distance computer

The hardware utilized by both the distance computing engines is depicted in Figure 9. The squared distance

computer (Euclidean) as seen uses multiplier and hence occupies 3 times more area than absolute distance

computer (Manhattan) . Both the distance computer selects the nearest cluster center and hence the PSNR

obtained for both the architecture remains same for the given image.

Figure 9: Hardware utilization of accelerators using two types of distance computers.

Next step is to analyze the number of clock cycles required to process the image of the given size. The accelerator

proposed has five internal blocks namely ‘Intensity computing unit’, ‘Nearest center computing unit’, ‘New center

computing unit’, ‘add unit’ and ‘Output unit’. Except output unit, rest all of the blocks completes its operation in

single clock cycle due to parallel hardware and hence 256 intensity levels of an image are processed simultaneously.

The intensity computing unit require the clock cycle depending on the image size. If the size of an image is 256 X

256, then it takes ‘65536’ clock cycles to read all the pixel intensities of an image and compare it with the 256

intensity levels in parallel. After initial comparison, ‘Nearest center computing unit’, ‘New center computing unit’

and ‘add unit’ requires one clock cycle each for parallel computations. These units work iteratively till the cluster

center is converged. The maximum iteration provided by the accelerator is 10 and hence maximum of 40 clock

cycles are required if the clustered data is stored in internal memory for further processing. The accelerator

operates at a clock frequency of 26.569MHz for all value of ‘K’ and hence the given 256 X256 image can be

processed in 2.46 ms. Hence such 405 images can be processed in one second which clearly indicate that the

proposed accelerator can be used in real time applications.

The proposed accelerator uses parallel architecture. Hence to reduce the area, the architecture was modified to

accommodate the accelerator in low end FPGAs. Instead of using 256 parallel computations in ‘Nearest center

computing unit’, if only one comparison is done with one intensity unit with all the cluster centers, then the unit

requires 256 clock cycles to complete the operation. Now the total clock cycle required to complete the clustering

operation is 68126 clock cycles which is divided as 65536 clock cycles for initial comparisons and totally 259 clock

cycles for rest of the computations in other units. As the total maximum iteration is 10, it requires 2590 clock cycles

to converge. The accelerator operates at a clock frequency of 26.569MHz for all value of ‘K’ and hence the given 256

X256 image can be processed in 2.56ms. Hence such 390 image frames can be processed in a second.

The area utilization using Virtex 6 FPGA with single and parallel hardware in ‘Nearest center computing unit’ is

shown in Table 2 which depicts that the LUT utilization reduces from 88% to 31%. Also the area utilization for

various ‘K’ using single computing unit is shown in Figure 10.

0 20000 40000 60000 80000 100000 120000 140000

Number of Slice Registers

Number of Slice LUTs

Number of LUT Flip Flop pairs used

Utilization of LUTs using parallel distance computing engines

598

J INFORM SYSTEMS ENG, 10(18s)

Table 2: Comparison of Logic utilization using Virtex 6 using single distance computation in nearest center

computing unit’

Logic utilization in Virtex 6

FPGA(XC6VLX75)
With parallel architecture Using single computing unit

Slice Registers 6813 (7% utilization) 6845 (7% utilization)

Slice LUTs 41143 (88% utilization) 14812 (31% utilization)

LUT-FF pairs 2405 (5% utilization) 2492 (5% utilization)

DSP block 2 (0.0001% utilization) 2 (0.0001% utilization)

Figure 10: Area utilization for various K using single distance computation in ‘Nearest center computing unit’

As the utilization of area is less in Virtex-6, the accelerator was implemented in Spartan-3 FPGA. The accelerator

when implemented on Spartan-3 FPGA operates at a clock frequency of 7.259MHz for all value of ‘K’ and hence the

given 256 X256 image can be processed in 9.39ms. Hence such 106 images can be processed in a second.

The power dissipated by the accelerator is analyzed using Xilinx X-Power which is shown in Figure 11.

Figure 11: Power analysis of the designed accelerator for various K.

0

10,000

20,000

30,000

40,000

K=25 K=20 K=15 K=12 K=8 K=6

Area utilization for various K
Number of
Slice
Registers

Number of
Slice LUTs

Clock
power

Logic
power

Signal
power

I/O
power

Leakage
power

Total on-
chip

power

Total
supply
power

Dynamic
supply
power

Leakage
supply
power

K=4 0.025 0.0001 0.003 0.001 0.483 0.513 0.557 0.03 0.528

K=6 0.025 0.001 0.004 0.001 0.483 0.514 0.559 0.031 0.528

K=8 0.027 0.001 0.004 0.001 0.483 0.516 0.561 0.033 0.528

K=12 0.028 0.006 0.01 0.001 0.483 0.528 0.573 0.045 0.528

K=15 0.029 0.007 0.011 0.001 0.483 0.531 0.575 0.047 0.528

K=20 0.03 0.009 0.012 0.001 0.483 0.535 0.58 0.052 0.528

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Po
w

er
 in

 W
at

ts

Power Analysis of proposed acclerator

599

J INFORM SYSTEMS ENG, 10(18s)

The comparison of the designed K-means hardware accelerator with the existing techniques is given in Table 3.

Table 3: Comparison of proposed accelerator with the literaturue

Implementation
Algorithm

implemented

Fabric used for

implementation

Operating

frequency

Supported

image size

No. of

frames

processed

in seconds

Reference [3] K-Means
Hardware software

co design
40MHz 614x512 Not specified

Reference [6] K-Means FPGA- Virtex II 66 MHz Upto 768x512 20-30 fps

Reference [10]
K-Means with

automatic K

selection

ASIC-90nm 233 MHz 320X240
1 frame takes

less than 2 sec

Reference [11]
Hierarchical K-

Means
ASIC-90nm 333 MHz 320X240

18fps when

K=16

Reference [12] Online clustering ASIC-90nm 400 MHz 256X256 8 fps

Reference [16] Mean shift FPGA- Stratix III Not specified Upto 300K Not specified

Reference [17] Mean shift FPGA 125MHz 128 samples Not specified

Implementation
Algorithm

implemented

Fabric used for

implementation

Operating

frequency

Supported

image size

No. of

frames

processed

in seconds Reference [18] Fuzzy C-Means Simulation Not specified 185X185 <1

Reference [19] Mean shift FPGA- Spartan 6 122MHz 300X420 351

Reference [20] K-Means Xilinx Zedboard 150MHz 640X480 82

Proposed

Accelerator
K-Means FPGA Virtex 6 26.6MHz Upto 16Mp

405 fps for an

image size of

256X256

The proposed hardware accelerator can process more images compared to the existing literature even though the

operating frequency is less.

4. CONCLUSION:

The proposed hardware accelerator for clustering and image using K-Means clustering can process 256 X2 56

images at 405 frames per second, outperforming other accelerators while requiring less area. The newly proposed

method can handle images up to 16MP using less area and hence can be implemented using low end FPGA

significantly reducing the cost of embedded systems used for image analysis. However more robust accelerator can

be built which would automatically cluster itself into the optimum groups.

600

J INFORM SYSTEMS ENG, 10(18s)

REFERENCE:

[1] J. MacQueen, “Some methods for classification and analysis of multivariate bservations,” in Proc. 5th Berkeley

Symp. Math. Stat. Probab., 1967, pp. 281–297.

[2] Kanungo, Tapas, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y.

Wu. "An efficient k-means clustering algorithm: Analysis and implementation." IEEE Transactions on Pattern

Analysis & Machine Intelligence 7 (2002): 881-892.

[3] A. G. d. S. Filho, A. C. Frery, C. C. de Araújo, H. Alice, J. Cerqueira,J. A. Loureiro, M. E. de Lima, M. d. G. S.

Oliveira, and M. M. Horta, “Hyperspectral images clustering on reconfigurable hardware using the K-means

algorithm,” in Proc. Symp. Integr. Circuits Syst. Des., Sep.2003, pp. 99–104.

[4] Estlick, Mike, Miriam Leeser, James Theiler, and John J. Szymanski. "Algorithmic transformations in the

implementation of K-means clustering on reconfigurable hardware." In Proceedings of the 2001 ACM/SIGDA

ninth international symposium on Field programmable gate arrays, pp. 103-110. ACM, 2001

[5] V. Bhaskaran, "Parametrized Implementation of K-means Clustering on Reconfigurable Systems", M.S. thesis,

Dept. Elect. Eng., Univ. of Tennessee, Knoxville, TN, 2003.

[6] T. Maruyama, “Real-time K-Means clustering for color images on reconfigurable hardware,” in Proc. Int. Conf.

Pattern Recog., 2006, pp. 816–819.

[7] Boris Maliatski and Orly Yadid-Pecht. “ Hardware-Driven Adaptive k-Means Clustering for Real-Time Video

Imaging”, IEEE transactions on circuits and systems for video technology, volume 15, no 1(2005)

[8] T.-W. Chen, C.-H. Sun, J.-Y. Bai, H.-R. Chen, and S.-Y. Chien, “Architectural analyses of K-Means silicon

intellectual property for image segmentation,” in Proc. IEEE Int. Symp. Circuits Syst., May 2008, pp. 2578–

2581.

[9] T.-W. Chen and S.-Y. Chien, “Bandwidth adaptive hardware architecture of K-means clustering for video

analysis,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 6, pp. 957–966, Jun. 2010.

[10] Tse-Wei Chen, Chih-Hao Sun, Hsiao-Hang Su, Shao-Yi Chien, Daisuke Deguchi, Ichiro Ide, Hiroshi Murase”

Power-efficient hardware architecture of K-means clustering with Bayesian-information-criterion processor

for multimedia processing applications” ,” IEEE Journal. Circuits and system. vol. 1, no. 3, pp. 357-368, Sep.

2011.

[11] Tse-Wei Chen and Shao-Yi Chien, Member, IEEE” Flexible Hardware Architecture of Hierarchical K-Means

Clustering for Large Cluster Number”. IEEE transactions on very large scale integration (VLSI) systems, vol.

19, no. 8, august 2011.

[12] Tse-Wei Chen and Makoto Ikeda” Design and Implementation of Low-Power Hardware Architecture With

Single-Cycle Divider for On-Line Clustering Algorithm” IEEE Transctions on Circuits and system., vol. 60, no.

8, pp. 2168-2175, Aug. 2013

[13] Hussain, Hanaa M., Khaled Benkrid, Huseyin Seker, and Ahmet T. Erdogan. "Fpga implementation of k-

means algorithm for bioinformatics application: An accelerated approach to clustering microarray data."

In 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 248-255. IEEE, 2011.

[14] Deng, Tiantai, Danny Crookes, Fahad Siddiqui, and Roger Woods. "A New Real-Time FPGA-Based

Implementation of K-Means Clustering for Images." In Intelligent Computing and Internet of Things, pp. 468-

477. Springer, Singapore, 2018.

[15] Farivar, Reza, Daniel Rebolledo, Ellick Chan, and Roy H. Campbell. "A Parallel Implementation of K-Means

Clustering on GPUs." In Pdpta, vol. 13, no. 2, pp. 212-312. 2008.

[16] Craciun S, Kirchgessner R, George AD, Lam H, Principe JC. A real-time, power-efficient architecture for mean-

shift image segmentation. J Real-Time Image,Springer, Proc. 2014

[17] CH Tsai, HH Lee, WJ Yu, CY Lee “A 2 GOPS quad-mean shift processor with early termination for machine

learning applications” IEEE Transctions on Circuits and system, vol. 60, no. 8, pp. 2168-2175, Aug. 2014

[18] Raval, Khushbu, Ravi Shukla, and Ankit K. Shah. "Color Image Segmentation using FCM Clustering Technique

in RGB, L* a* b, HSV, YIQ Color spaces." European Journal of Advances in Engineering and Technology 4, no.

3 (2017): 194-200

[19] Tehreem, Amna, Sajid Gul Khawaja, Asad Mansoor Khan, Muhammad Usman Akram, and Shoab A. Khan.

"Multiprocessor architecture for real-time applications using mean shift clustering." Journal of Real-Time

Image Processing (2017): 1-14.

601

J INFORM SYSTEMS ENG, 10(18s)

[20] Deng, Tiantai, Danny Crookes, Fahad Siddiqui, and Roger Woods. "A New Real-Time FPGA-Based

Implementation of K-Means Clustering for Images." In Intelligent Computing and Internet of Things, pp. 468-

477. Springer, Singapore, 2018.

[21] K. Makarychev, A. Reddy, L. Shan, Improved guarantees for K-means++ and K-means++ Parallel, Adv. Neural

Inf. Proces. Syst. 33 (2020) 16142–16152.

[22] Y. Mao, D. Gan, D.S. Mwakapesa, Y.A. Nanehkaran, T. Tao, X. Huang, A MapReduce-based K-means

clustering algorithm, J. Supercomput. 78 (4) (2022) 5181–5202.

[23] P. Olukanmi, F. Nelwamondo, T. Marwala, B. Twala, Automatic detection of outliers and the number of

clusters in k-means clustering via Chebyshevtype inequalities, Neural Comput. & Applic. 34 (8) (2022) 5939–

5958.

[24] Zhu, Z., & Liu, N. (2021). Early warning of financial risk based on K-means clustering algorithm. Complexity,

2021.

[25] Zhuang, Y., Mao, Y., & Chen, X. (2016). A limited-iteration bisecting K-means for fast clustering large datasets.

In 2016 IEEE Trustcom /BigDataSE /ISPA, 2257-2262.

[26] M. Zubair, M.D. Iqbal, A. Shil, M.J.M. Chowdhury, M.A. Moni, I.H. Sarker, An improved K-means clustering

algorithm towards an efficient datadrivenmModeling,, Annals of Data Science 2022 (2022),

https://doi.org/10.1007/s40745-022-00428-2.

[27] A. Abernathy, M.E. Celebi, The incremental online k-means clustering algorithm and its application to color

quantization, Expert Syst. Appl. 207 (2022) 117927.

[28] K. Abhishekkumar, C. Sadhana, Survey report on K-means clustering algorithm, Int. J. Mod. Trends Eng. Res

4 (2017) 218–221.

[29] L. Abualigah, A. Diabat, Z.W. Geem, A comprehensive survey of the harmony search algorithm in clustering

applications, Appl. Sci. 10 (11) (2020) 3827.

[30] Ikotun, Abiodun M., Absalom E. Ezugwu, Laith Abualigah, Belal Abuhaija, and Jia Heming. "K-means

clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data."

Information Sciences 622 (2023): 178-210.

https://doi.org/10.1007/s40745-022-00428-2

