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Introduction: An image contains various patterns which need to be divided for further 

analysis. The categorization of patterns can be carried out using unsupervised clustering 

algorithm of which K-Means is the most popular and efficient algorithm. However, the 

algorithm takes more time to divide the image into various groups as it is iterative and is 

computationally intensive. 

Objectives: Hence introduced a new technique and have devised a new architecture to 

accelerate the K-Means operation. The technique uses image intensity levels without the spatial 

information to accelerate the clustering operation. In any image, regardless of its pixel count, 

the intensity values are always between 0 and 255. Once these intensity values are initially read 

for an image, subsequent clustering iterations only use the frequency of each intensity level and 

256 intensity levels to cluster. 

Methods: This approach minimizes storage requirements and speeds up the algorithm. 

Absolute distance is used to compare the distance between the input image pixel and the 

cluster center to further accelerate the operation. An integer divider is employed to calculate 

the cluster center. Its architecture is designed to function within a single clock cycle, enhancing 

the overall speed of the operation 

Results: Experimental results show efficacy of the proposed architecture in speeding up the 

operation. When implemented on a Virtex-6 FPGA, the hardware accelerator can process 405 

image frames per second for images of size 256 x 256. To adapt the design for a more cost-

effective FPGA with fewer logic gates, parallel computations were reduced, allowing 

implementation on a Spartan 3 FPGA. 

Conclusions: The modified design processes 106 images per second on the Spartan 3, making 

it a compelling solution for clustering images with both low cost and high speed. 

Keywords: Computer vision, Unsupervised clustering, K-means, FPGA, Hardware 

accelerator. 

 

1. INTRODUCTION: 

A human being with his inherent ability can analyze any given image. To mimic the behavior of a human brain, 

machines are being used. A machine can understand the pattern of an image by proper grouping or clustering. 

Clustering involves in partitioning the vast data into certain number of groups. The data within a group has similar 

characteristics while the data in different groups are dissimilar. Many clustering algorithms are available in 

literature to group an image in real time such as K-Means, K-Median, K-Mode, Mean shift algorithm, KD tree, hash 

table, fuzzy c-Means algorithm, density based algorithms and model based clustering algorithms.  Of the available 

algorithms, K-Means is the algorithm that is explored more due to its inherent simplicity and high efficiency. It is 

used in variety of multimedia applications like quantizing an image, segmenting video and image streams, 

recognition of speech and compression of video and audio. 
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In 1967, Mac Queen proposed the famous K-Means clustering algorithm [1]. The algorithm was used by many 

researchers from then due to its robustness and simplicity. The algorithm is iterated till it is converged to a local 

optimum solution by minimizing the squared error between the cluster center and each input data. Due to this 

comparison, the algorithm requires more computational resource and is slow. Also the algorithm is converged after 

several iterations. Initially till early 2000’s, the algorithm was implemented in software and hence was slower. 

To improve the speed of operation, hardware-software co-design technique was implemented [2] which increased 

the speed 2 times compared to software implementations only. Since then, to accelerate the speed of operation, 

many researchers used hardware. As a first attempt, Estlic [4] used FPGA to compute the distance and mean 

computation was carried out using a microprocessor. The author showed that the hardware implementation was 

carrying the operation 2 times faster than the algorithm built in software that is run in Pentium 3 machine. With 

the advancement in technology, to accelerate the operation, many hardware architectures were proposed for 

various applications like background subtraction, image segmentation and color quantization [5].  To improve the 

speed, many techniques were used. To accelerate the speed, Author [6] read the entire image data for the first time 

and later used only boundary points in successive iteration. An adaptive K-means algorithm was proposed by Boris 

Maliatski [7] which could process 15 frames per second. Author Chen [8-12] has built many hardware accelerators 

using TSMC 90nm technology for K-means algorithm each addressing various issues of the algorithm. Each of the 

architecture built by the author operates at high speed but the maximum number of image frames that can be 

operated is limited to less than 20 frames. The author [13] has implemented K-means on Virtex4 FPGA for bio-

informatics application. The author shows that the hardware accelerator built on FPGA works 10 times faster than 

the software counterpart implemented using Matlab which is running in Intel Pentium core duo processor 

operating at 3GHz speed. Deng [14] uses histogram as an input to accelerate the speed of clustering an image. The 

author shows that 95-140 images frames of size 640X480 can be clustered in a second using FPGA. Further 

Farivar[15] explored the use of Nvedia graphics card to perform clustering operation. He has experimentally shown 

that the clustering operation can process 6 image frames per second.  

Even though many accelerators are available in literature, the number of image frames that can be processed by 

them still remains a challenge as image resolution is also increasing with advent of technology. The computational 

complexity involved in clustering an image is increasing and new technique has to be adopted to group the image 

pixel at real time.  

The contributions of the article are as follows: 

• Efficient architecture is proposed to compute the distance between the image pixel and cluster centers.  

• The literature earlier proposed takes image input as multi-dimensional and compares the input each time 

with the centers. The proposed accelerator considers only the intensity value of an image as input. Each 

pixel input is not compared with the cluster center. But instead, each pixel input is compared with the 

possible intensity values which may vary from 0 to 255 in any image and count of the corresponding 

intensity is incremented. Later only the intensity values are compared with the cluster centers in further 

iterations reducing the computations to only 256 irrespective of the image size and hence computations can 

be done quickly compared to the previous hardware architectures available in the literature. Hence the 

proposed accelerator operates very with less area and power. The proposed method can process 406 image 

frames in a second and can process an image of size 16 M pixel using the same accelerator. 

• The computation of the new cluster center needs division operation which takes multi-clock cycle making 

the hardware pipeline difficult. A new methodology for division is proposed which operates in one cycle so 

that the clustering operation can be operated as pipeline to increase the throughput of the clustering 

operation. 

Further the manuscript is organized as follows: The introduction and a brief survey are provided in section 1. 

Section 2 provides the methodology used to formulate the architecture with each subsection explaining the 

hardware architecture of each of the block used. Section 3 discusses the result and Section 4 summarizes the 

research result. 
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2. FORMULATED ALGORITHM AND ARCHITECTURE 

The data or an image pixel that needs to be clustered into K groups is represented by 8 bit as illustrated in equation 

(1) 

𝑥𝑖 = { 𝑥𝑖7, 𝑥𝑖6, 𝑥𝑖5, … . 𝑥𝑖1, 𝑥𝑖0}    (1) 

Let there be ‘n’ such image pixels that needs to be clustered into ‘K’ groups. Let the cluster centers of each group are 

represented as C1, C2…CK. The architecture are capable of dividing the images to maximum of 25 groups and hence 

K can vary from 1 to 25. Initially, the ‘K’ cluster centers are chosen randomly from an input image which speeds up 

the operation. The algorithmic steps used to implement the architecture are given below: 

Step 1: Read one input data pixel xi in a clock cycle. 

Step 2: Compare the input pixel value xi with the intensity values mj which has values fixed values ‘0’ to ‘255’ and 

increment the corresponding register Nj which hold the number of pixels having the same intensity value. Hence 

there are 256 registers to hold the corresponding intensity values. Equation (2) gives mathematical notation of the 

same. 

𝑁𝑗 =  {
𝑁𝑗 + 1  𝑖𝑓 (𝑥𝑖 == 𝑚𝑗)

𝑁𝑗                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (2) 

The value of j and i vary from 0 to 255 and from 0 to (N-1) respectively. 

Step 3: Repeat Step1 and Step2 to read and compare all the inputs in N clock cycles. 

Step 4: Calculate the distance between each intensity value with all the cluster centers using absolute distance 

calculation as shown in equation (3).  

𝑑𝑗 = | 𝑚𝑗 − 𝑐𝑘|     (3) 

To compare the distance, squared distance computations can also be used as indicated in equation (4) 

𝑑𝑗 = ( 𝑚𝑗 − 𝑐𝑘)
2
     (4) 

Step 5: Assign the intensity value mj to the nearest cluster centers as described in equation (5) 

𝑁 (
𝑥

𝑚𝑗
) =  𝐶𝑘 𝑖𝑓 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑑(𝑚𝑗 , 𝐶𝑘)   (5) 

Step 6: For cluster center Ck, new center is computed for all intensity valas in equation (6), (7) and (8). The mj in 

the equation represents the intensity pixel nearest to the cluster and Nj represents the number of pixels in an image 

having the intensity value mj.  

𝑁𝑐𝑘 = {
𝑁𝑐𝑘 + ( 𝑚𝑗 ∗ 𝑁𝑗)  𝑖𝑓  𝑁 (

𝑥

𝑚𝑗
) = 𝐶𝑘 

𝑁𝑐𝑘                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
     (6) 

𝑑𝑐𝑘 = {
𝑑𝑐𝑘 + (𝑁𝑗)  𝑖𝑓  𝑁 (

𝑥

𝑚𝑗
) = 𝐶𝑘 

𝑑𝑐𝑘                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
    (7) 

𝐶𝑘,𝑛𝑒𝑤 =
𝑁𝑐𝑘

𝑑𝑐𝑘
      (8) 

Step 7: Repeat steps 4 to 6 till the cluster center do not change its value. 

The algorithm automatically stops if the cluster center does not change or if the maximum iteration has reached. 

Maximum of 10 iterations are fixed. After the algorithm converges, the image pixels are read again and the output 

for each image pixel read is the value of the nearest cluster center.  

The architecture built using the above algorithmic steps to group the image pixels using K-Means algorithm is 

shown in Figure 1. The image given to the accelerator is pre-processed to remove any outliers as the K-means is 

sensitive to noise and would impact on the results of clustering. Hence an image free of noise or outliers is fed to 

the acclereator. 
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The input “Pixel-in” is an 8 bit image pixel to receive the input pixel serially in raster scan order. The size of a 

digital image is specified by a 24 bit “Imsz” input and hence the accelerator can support the comparison of the input 

pixel with the cluster center up to 16 mega pixel. The “K” input is a 5 bit input which specifies the number of groups 

and hence the image can be divided into maximum of 32 groups. Due to area constraints in the hardware, the 

accelerator can divide an image from 2 to 25 groups. The clock and enable signals used in the architecture are “En” 

and “Clk”. The dotted line indicates the control signal and solid line indicates the data signals. The “K” initial 

cluster centers are chosen randomly from an image. The subsequent sections explain the functionality and 

architecture formulated for each of the individual blocks used. 

 

Figure 1: Architecture of the proposed algorithm 

2.1. Intensity comparing unit:  

The image pixel from “Pixel-in” is fed serially for each clock cycle and is compared against 256 possible intensity 

values, ranging from 0 to 255, corresponding to an 8-bit grayscale image. Registers R0 to R255 represent register 

which holds the frequency of these 256 intensity levels. The relevant register is incremented when the input pixel 

matches its corresponding intensity. 

As observed, the comparator's output functions as an enable signal for the adder. When enabled, the adder 

increments the current value in the register by 1. The comparator compares the input with a specified value, 

reducing its complexity to an 8-bit AND gate, as illustrated in Figure 2. For instance, when comparing the input 

with the pixel value '0', the Data_in input is inverted and sent to the 8-input AND gate. Conversely, when 

comparing with the pixel value '255', the Data_in input is directly passed to the 8-input AND gate. 

Initial cluster centers are selected randomly from the image. After reading the complete image, the count of each 

pixel intensities are available in the specified 256 registers. Hence, irrespective of the image size the architecture 

uses only 256 registers and 256 comparators reduced as AND gate. 
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Figure 2: Intensity comparing unit 

2.2. Nearest center computing unit:  

The intensity values of the pixel are compared with the cluster centers. The intensity value can span from 0 to 255. 

The accelerator supports maximum of 25 cluster centers that can be compared. Hence to compute the distance we 

require 6400 distance computing unit which calculates the distance in parallel between the intensity levels and the 

cluster center. 

Two types of distance computing engines are examined in the architecture namely Absolute distance computer and 

squared distance computer as illustrated in Figure 3 represented by equation (3) and (4).  

 

Figure 3: (a) Absolute distance computer (b) Squared distance computer 

The nearest computing unit for computing the distance between an intensity pixel with 8 cluster centers is 

illustrated in Figure 4 as an example.  
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Figure 4: Nearest center computing unit shown with eight cluster centers 

The input intensity pixel ‘Di’ is compared with all the eight cluster centers simultaneously to compute the distance. 

Later the computed distance is compared to select the least distance. Depending on the ‘K’ value, the nearest center 

is computed. The output of the nearest centre computing unit is the nearest cluster center value. For example, if 

‘K’=2, then the multiplexer selects ‘X1’. The ‘X1’ contains the value of either C1 or C2. If distance between input 

intensity ‘Di’ is nearer to ‘C1’ then X1 contains ‘C1’ else it contains ‘C2’. If ‘K’ is 3 then multiplexer selects the nearest 

cluster center as ‘X2’ which contains the nearest pixel center which may have the value ‘C1’, ‘C2’ or ‘C3’ depending 

on the distance between ‘Di’ and cluster center. The same concept is extended for comparing the input ‘Di’ with all 
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the eight clusters. Since, the ‘K’ input has 5 bits to support 25 groups, the ‘Nearest center computing unit’ has 24 

comparators and 25 multiplexers to compare intensity with possible 25 cluster centers. 

2.3. Add unit:  

The output of the ‘Nearest computing unit’ is the corresponding nearest cluster center value for an intensity ‘Di’. 

For each intensity value, the corresponding nearest center value is stored in the internal register. There are 256 

registers each corresponding to an intensity level which hold the value of corresponding nearest cluster center.  The 

‘Add unit’ sums up all the pixel intensities which is nearer to the cluster center. Depending on the cluster centers, 

the pixel intensities nearer to all the cluster centers are summed up and stored in a register called Si. Also, the total 

number of pixels having same intensity ii is also stored in register ‘Ci’. 

The Pseudo code for the algorithm to compute addition is shown below 

 

The registers ‘Si’ corresponds to register having the sum of all intensities having same cluster center and ‘Ci’ 

correspond to total count of intensity value. For example, in a single cluster if there are ni pixels having intensity xi 

and mi pixels having intensity yi then the new cluster center is computed as shown in equation (3) 

New cluster center = ((ni*xi) + (mi*yi)) / (ni + mi)   (9) 

The division in equation (3) is computed using 24 bit divider whose Pseudo code is shown in Algorithm 2. Due to 

parallel hardware, the division operation is performed in single cycle.  
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2.4.  Output module:  

The output module compares the previous cluster center with the present cluster center. If they are same, then the 

clustering operation stops else again the new cluster center is computed in the same procedure. The accelerator 

runs with maximum iteration of ‘10’. The entire operation is controlled by the ‘FSM controller’.  

3. RESULTS AND DISCUSSIONS 

The architecture for K-means was designed using Verilog HDL which is simulated in Xilinx I-Sim simulator and 

synthesized using Virtex 6 FPGA to examine the hardware characteristics in terms of area, timing and power. The 

cluster size was varied and the hardware utilization was examined.  

The first step in the verification of the architecture is testing the clustering operation for various standard images. 

MATLAB tool was used to convert the images in jpeg format to binary format. These binary values of the image 

pixels were stored in an external memory and the image pixel was fed serially into the designed hardware 

accelerator. The clustering hardware accelerator designed clusters the image data into specified number of groups 

and for each of the pixel intensity it sends the nearest cluster center and stores it in an external memory for further 

analysis. 

The clustered binary output data stored in binary format is again visualized using MATLAB for different values of K 

and the visual results obtained are depicted in Figure 5.  
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Figure 5: Clustered output for varied value of K 

The clustered output image visualized in MATLAB is analyzed for peak signal to noise ratio (PSNR) as illustrated 

Figure 6. 
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Figure 6: Obtained PSNR for various output images 

The second part is to analyze the hardware characteristics of the proposed accelerator. For comparison, the original 

K-means algorithm that compares each of the pixel intensity with the cluster center was also implemented. Both the 

accelerators were synthesized using Virtex-6 FPGA and the area occupied is tabulated in Table 1 

Table 1: Area comparison of original and proposed K-means accelerator 

Logic utilization in Virtex 6 

FPGA(XC6VLX75) 
Original accelerator Proposed Accelerator 

Slice Registers 6767 6813 

Slice LUTs 140098 41143 

LUT-FF pairs 4615 2405 

DSP block 236 2 

 

As seen, the original accelerator occupies 3.4 times more slice LUTs compared to the proposed accelerator. Also to 

analyze the hardware cost, the number of grouping factor ‘K’ is varied and the plot is shown in Figure 7 where it is 

seen that the slice LUTs vary linearly with ‘K’. This is because, ‘Nearest center computing unit’ requires more 

comparators and multiplexers as K is increased.  

 

Figure 7: Variation of Slice LUTs with ‘K’ 

The accelerator as mentioned earlier was tested for 2 types of distance computations. Parallel architectures using 

Absolute distance computer and squared distance computer was implemented. These distance computers compute 

the distance between the image pixel and the cluster centers in parallel using 256 computing engines where one of 

the computing engines is shown in Figure 8.  
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Figure 8: (a) Absolute distance computer (b) Squared distance computer 

The hardware utilized by both the distance computing engines is depicted in Figure 9. The squared distance 

computer (Euclidean) as seen uses multiplier and hence occupies 3 times more area than absolute distance 

computer (Manhattan) . Both the distance computer selects the nearest cluster center and hence the PSNR 

obtained for both the architecture remains same for the given image.   

 

Figure 9: Hardware utilization of accelerators using two types of distance computers. 

Next step is to analyze the number of clock cycles required to process the image of the given size. The accelerator 

proposed has five internal blocks namely ‘Intensity computing unit’, ‘Nearest center computing unit’, ‘New center 

computing unit’, ‘add unit’ and ‘Output unit’. Except output unit, rest all of the blocks completes its operation in 

single clock cycle due to parallel hardware and hence 256 intensity levels of an image are processed simultaneously.  

The intensity computing unit require the clock cycle depending on the image size. If the size of an image is 256 X 

256, then it takes ‘65536’ clock cycles to read all the pixel intensities of an image and compare it with the 256 

intensity levels in parallel. After initial comparison, ‘Nearest center computing unit’, ‘New center computing unit’ 

and ‘add unit’ requires one clock cycle each for parallel computations. These units work iteratively till the cluster 

center is converged. The maximum iteration provided by the accelerator is 10 and hence maximum of 40 clock 

cycles are required if the clustered data is stored in internal memory for further processing. The accelerator 

operates at a clock frequency of 26.569MHz for all value of ‘K’ and hence the given 256 X256 image can be 

processed in 2.46 ms. Hence such 405 images can  be processed in one second which clearly indicate that the 

proposed accelerator can be used in real time applications.  

The proposed accelerator uses parallel architecture. Hence to reduce the area, the architecture was modified to 

accommodate the accelerator in low end FPGAs. Instead of using 256 parallel computations in ‘Nearest center 

computing unit’, if only one comparison is done with one intensity unit with all the cluster centers, then the unit 

requires 256 clock cycles to complete the operation. Now the total clock cycle required to complete the clustering 

operation is 68126 clock cycles which is divided as 65536 clock cycles for initial comparisons and totally 259 clock 

cycles for rest of the computations in other units. As the total maximum iteration is 10, it requires 2590 clock cycles 

to converge. The accelerator operates at a clock frequency of 26.569MHz for all value of ‘K’ and hence the given 256 

X256 image can be processed in 2.56ms. Hence such 390 image frames can be processed in a second.  

The area utilization using Virtex 6 FPGA with single and parallel hardware in ‘Nearest center computing unit’ is 

shown in Table 2 which depicts that the LUT utilization reduces from 88% to 31%. Also the area utilization for 

various ‘K’ using single computing unit is shown in Figure 10. 
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Table 2: Comparison of Logic utilization using Virtex 6 using single distance computation in nearest center 

computing unit’ 

Logic utilization in Virtex 6 

FPGA(XC6VLX75) 
With parallel architecture Using single computing unit 

Slice Registers 6813 (7% utilization) 6845 (7% utilization) 

Slice LUTs 41143 (88% utilization) 14812 (31% utilization) 

LUT-FF pairs 2405 (5% utilization) 2492 (5% utilization) 

DSP block 2 (0.0001% utilization) 2 (0.0001% utilization) 

 

 

Figure 10: Area utilization for various K using single distance computation in ‘Nearest center computing unit’ 

As the utilization of area is less in Virtex-6, the accelerator was implemented in Spartan-3 FPGA. The accelerator 

when implemented on Spartan-3 FPGA operates at a clock frequency of 7.259MHz for all value of ‘K’ and hence the 

given 256 X256 image can be processed in 9.39ms. Hence such 106 images can be processed in a second.  

The power dissipated by the accelerator is analyzed using Xilinx X-Power which is shown in Figure 11. 

 

Figure 11: Power analysis of the designed accelerator for various K. 
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The comparison of the designed K-means hardware accelerator with the existing techniques is given in Table 3.  

Table 3: Comparison of proposed accelerator with the literaturue 

Implementation 
Algorithm 

implemented 

Fabric used for 

implementation 

Operating 

frequency 

Supported 

image size 

No. of 

frames 

processed 

in seconds 

Reference [3] K-Means 
Hardware software 

co design 
40MHz 614x512 Not specified 

Reference [6] K-Means FPGA- Virtex II 66 MHz Upto 768x512 20-30 fps 

Reference [10] 
K-Means with 

automatic K 

selection 

ASIC-90nm 233 MHz 320X240 
1 frame takes 

less than 2 sec 

Reference [11] 
Hierarchical K-

Means 
ASIC-90nm 333 MHz 320X240 

18fps when 

K=16 

Reference [12] Online clustering ASIC-90nm 400 MHz 256X256 8 fps 

Reference [16] Mean shift FPGA- Stratix III Not specified Upto 300K Not specified 

Reference [17] Mean shift FPGA 125MHz 128 samples Not specified 

Implementation 
Algorithm 

implemented 

Fabric used for 

implementation 

Operating 

frequency 

Supported 

image size 

No. of 

frames 

processed 

in seconds Reference [18] Fuzzy C-Means Simulation Not specified 185X185 <1 

Reference [19] Mean shift FPGA- Spartan 6 122MHz 300X420 351 

Reference [20] K-Means Xilinx Zedboard 150MHz 640X480 82 

Proposed 

Accelerator 
K-Means FPGA Virtex 6 26.6MHz Upto 16Mp 

405 fps for an 

image size of 

256X256 
 

 

The proposed hardware accelerator can process more images compared to the existing literature even though the 

operating frequency is less.  

4. CONCLUSION: 

The proposed hardware accelerator for clustering and image using K-Means clustering can process 256 X2 56 

images at 405 frames per second, outperforming other accelerators while requiring less area. The newly proposed 

method can handle images up to 16MP using less area and hence can be implemented using low end FPGA 

significantly reducing the cost of embedded systems used for image analysis. However more robust accelerator can 

be built which would automatically cluster itself into the optimum groups. 
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