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Precise software effort estimation is crucial for efficient project management, impacting 

planning, budgeting, and resource allocation. Conventional models frequently need help 

dealing with software development's inherent unpredictability and intricacy. This study 

introduces a new hybrid model that combines the clarity of fuzzy logic with the predictive 

capabilities of machine learning to improve software work estimation. By employing the 

Takagi-Sugeno-Kang (TSK) fuzzy logic method, we can account for the vague and uncertain 

elements of effort estimation. At the same time, machine learning models handle the non-

linear connections and interactions among project factors. Our approach consists of gathering 

and preparing past project data, creating distinct fuzzy logic and machine learning models, and 

then combining these models into a unified hybrid system. The hybrid model is compared to 

independent fuzzy logic and machine learning models, showcasing its superior performance in 

terms of Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared 

metrics. Moreover, the hybrid model offers data that may be easily understood, assisting 

project managers in comprehending the fundamental aspects that affect effort estimations. The 

actual use of our methodology in real-life project settings reveals its capacity to decrease 

project overruns and enhance budgeting precision. This research enhances the profession by 

providing a reliable, precise, easy-to-understand tool for estimating software work, improving 

project management processes.  

Keywords: Software Effort Estimation, Fuzzy Logic, Machine Learning, Hybrid Model, 

Project Management. 

 

1. INTRODUCTION 

Accurate effort estimation is crucial for successful project management in software development. Estimating the 

necessary work for software projects is complex, frequently worsened by various uncertainties and the inherent 

complexity of software development processes [1]. Conventional estimation methods, such as expert judgment, 

analogy-based estimation, and algorithmic models like COCOMO, have been extensively employed. Nevertheless, 

these approaches often need to adequately account for software development variables' non-linear and imprecise 

aspects, resulting in unreliable estimations and project delays [2]. Fuzzy logic, which can effectively manage 

uncertainty and provide approximate reasoning, offers a promising method for enhancing software effort 

estimation. Fuzzy logic can provide more flexible and interpretable estimations by incorporating the vagueness and 

imprecision of project attributes into its models. The Takagi-Sugeno-Kang (TSK) fuzzy logic model has 

demonstrated its potential in diverse fields due to its ability to combine expert knowledge with data-driven 

methods [3]. 

Conversely, machine learning algorithms demonstrate exceptional proficiency in detecting intricate patterns and 

connections within data, rendering them remarkably efficient for predicting jobs [4]. These algorithms can acquire 

knowledge from past project data to generate precise estimates of effort, especially when dealing with complex 
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relationships among many project factors. This research presents a hybrid model that integrates the advantages of 

fuzzy logic and machine learning to improve software work estimation. The hybrid approach combines the 

interpretability and flexibility of the TSK fuzzy logic model to account for uncertainty in effort estimation while 

utilising machine learning algorithms to represent the non-linear relationships between project components [5]. By 

incorporating both methodologies, the hybrid approach enhances the precision, dependability, and 

comprehensibility of effort estimates. This research aims to create and confirm the hybrid model using past project 

data, evaluate its effectiveness compared to standalone fuzzy logic and machine learning models, and showcase its 

practical usefulness in real-life project situations [6]. This study seeks to enhance the field of software engineering 

by developing a reliable method for estimating effort, which would ultimately enhance project planning and 

resource management. 

2. RELEATED WORK 

The precise estimation of software work has long been a persistent problem in software engineering, resulting in 

the creation of many estimation methodologies over time. This section provides a comprehensive overview of the 

main methodologies discussed in the literature. It specifically examines classical models, fuzzy logic-based models, 

machine learning models, and hybrid models. 

2.1 Traditional Estimation Models 

Conventional software effort estimating approaches have been well-researched and widely used in real-world 

applications. Some notable methods include expert judgement, estimation based on analogies, and computational 

models such as the Constructive Cost Model (COCOMO) [7]. Expert judgement is based on the expertise and 

intuition of professionals, which can sometimes result in subjective and inconsistent outcomes. Analogy-based 

estimation relies on comparable historical data from previous projects to make predictions about effort. However, 

the accuracy of this method is greatly influenced by the availability and applicability of the historical data. 

Algorithmic models, such as COCOMO, employ mathematical equations to approximate the work required for a 

project, considering project size, complexity, and team proficiency. Although these models offer a systematic 

methodology, they frequently need help dealing with software projects' inherent unpredictability and ever-changing 

nature [8]. 

2.2 Fuzzy Logic-Based Models 

Fuzzy logic has been utilised in estimating software to tackle the lack of precision and uncertainty inherent in 

project attributes. Zadeh's [9] groundbreaking research on fuzzy sets and logic established the basis for its 

utilization in several fields. Fuzzy logic models in software engineering employ fuzzy sets to represent imprecise 

input variables and fuzzy rules to depict the links between these variables and effort estimation. In 2001, Idri et 

al.[10] created a model using fuzzy logic and expert knowledge to address the need for more clarity in software 

project parameters. Similarly, Mandal and Pal [11] developed a fuzzy model for estimating software work that 

significantly improved the accuracy of predictions by considering the inherent lack of clarity in project data. These 

studies show that fuzzy logic has the potential to capture the qualitative aspects of effort estimation and greatly 

enhance the accuracy of predictions. However, they often rely heavily on rules set by experts, which may be 

subjective and have limited use. 

2.3 Machine Learning Models 

Machine learning methods have become prominent in software effort estimating because they can analyze previous 

data and recognize intricate patterns. Several techniques, such as linear regression, decision trees, support vector 

machines, and neural networks, have been utilized for this task. In their study, Briand et al. [12] examined the 

application of regression models and neural networks in software effort estimation. They emphasized the benefits 

of data-driven techniques, which should reassure you about the effectiveness of machine learning in software effort 

estimation. Similarly, Singh and Verma [13] showcased the efficacy of support vector machines in forecasting 

software development efforts, with a higher level of accuracy in comparison to conventional approaches. These 

studies highlight the potential of machine learning models to make accurate predictions. Still, they need to be more 

frequently understood and adjusted, which is a feature of fuzzy logic models. 
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2.4 Hybrid Models 

Machine learning methods have become prominent in software effort estimating because they can analyze previous 

data and recognize intricate patterns. Several techniques, such as linear regression, decision trees, support vector 

machines, and neural networks, have been utilized for this task. In their study, Azzeh et al. [14] examined the 

application of regression models and neural networks in software effort estimation. They emphasized the benefits 

of data-driven techniques, which should reassure you about the effectiveness of machine learning in software effort 

estimation. Similarly, Huang S.J et.al. [15] show-cased the efficacy of support vector machines in forecasting 

software development efforts, with a higher level of accuracy in comparison to conventional approaches. These 

studies highlight the potential of machine learning models to make accurate predictions. Still, they need to be more 

frequently understood and adjusted, which is a feature of fuzzy logic models. 

 2.5 Our Contribution 

Building on the existing work, our research aims to develop a hybrid model that integrates the Takagi-Sugeno-Kang 

(TSK) fuzzy logic approach with machine learning algorithms. Our hybrid model tries to give accurate, reliable, and 

easy-to-understand estimates of how much work needs to be done on a software project by using fuzzy logic to 

account for the unknowns and errors in the project's parameters and machine learning to make predictions. This 

research contributes to the field by offering a novel approach that combines the strengths of fuzzy logic and 

machine learning, addressing the limitations of traditional and standalone models. In conclusion, while significant 

advancements have been made in software effort estimation through traditional, fuzzy logic-based, and machine-

learning models, integrating these methodologies into a hybrid model represents a promising direction for future 

research. Our work aims to enhance software effort estimation practices by developing a robust hybrid model that 

improves accuracy and interpretability, ultimately contributing to more effective project management. 

3. METHODS 

This section describes the methodology used to create the hybrid fuzzy logic and machine learning model for 

estimating software work. The technique consists of distinct phases: data collection and preprocessing, 

construction of a fuzzy logic model, development of a machine learning model, integration of a hybrid model, and 

evaluation of the model. 

3.1 Data Collection and Preprocessing 

Our process begins by gathering past project data, encompassing several elements that are recognised to impact 

software work estimation. These characteristics often include the project's size and complexity, the team's 

experience, the technology stack used, and other relevant attributes. The data is obtained from many project 

repositories, industry databases, and academic benchmarks, leveraging the extensive experience of our team. Data 

preprocessing is essential to guaranteeing the data's quality and appropriateness for model training. This entails 

managing null values, standardizing the features to a standard scale, and encoding categorical variables as needed 

[16]. In addition, we do exploratory data analysis to detect any outliers or abnormalities that could impact the 

model's accuracy. The thoroughly cleaned and processed dataset is the foundation for developing fuzzy logic and 

machine learning models. 

3.2 Fuzzy Logic Model Development 

Our fuzzy logic model is based on the Takagi-Sugeno-Kang (TSK) approach, renowned for handling uncertainty and 

imprecision effectively. The development process entails the establishment of fuzzy sets and membership functions 

for each input variable, drawing upon expert knowledge and historical data insights. Subsequently, we define a 

collection of imprecise rules that elucidate the connections between the input variables and the output of the effort 

estimate [17]. These guidelines encompass the heuristic and qualitative elements of software work estimation. The 

structure of the TSK model enables it to provide a precise output by applying these principles to the fuzzy input 

values, which makes it compatible with machine learning models. 

3.3 Machine Learning Model Development 

In addition to developing the fuzzy logic model, we train many machine learning models to represent the intricate 

and non-linear connections within the data accurately. We conduct experiments using various algorithms, such as 

linear regression, decision trees, random forests, and neural networks, to choose the model with the highest 
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predicted accuracy. The machine learning models are trained using the preprocessed dataset, and their 

performance is assessed using standard metrics such as Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and R-squared. The model that performs the best is chosen to be integrated with the fuzzy logic model 

[18]. 

 

3.4 Hybrid Model Integration 

Our methodology combines fuzzy logic and machine learning models to create a hybrid system. This integration 

entails utilising the fuzzy logic model to preprocess and convert the input variables, thus capturing the uncertainty 

and imprecision during the earliest phases [19]. The converted inputs are subsequently inputted into the machine 

learning model, which uses its predictive capability to estimate the ultimate effort. The objective of this hybrid 

technique is to integrate the comprehensibility of fuzzy logic with the precision of machine learning, leading to the 

development of a strong and dependable effort estimation tool [20].   

3.5 Model Evaluation and Comparison 

To determine the efficiency of the hybrid model, we perform a thorough assessment utilising both quantitative and 

qualitative measures. The performance of the hybrid model is evaluated by comparing it to the solo fuzzy logic and 

machine learning models. The main focus is on assessing the improvement in prediction accuracy and 

interpretability [21]. We employ cross-validation methodologies to guarantee the reliability of our findings and 

conduct statistical analyses to ascertain the importance of the enhancements in performance achieved by the hybrid 

model. In addition, we assess the interpretability of the model by scrutinizing the fuzzy rules and the significance of 

the machine learning model's features. 

3.6 Practical Implementation and Validation 

Ultimately, we apply the hybrid model to a tangible project management tool or software to verify its practical 

feasibility. This entails incorporating the model into an established project management process and monitoring its 

effectiveness in real-time project situations. Input is gathered from project managers and team members to modify 

further and enhance the model. 

Pseudocode representation of the hybrid model integrating fuzzy logic with machine learning for software effort 

estimation 

1. Procedure Hybrid Model Estimation(data): 

2.   Input:  

3.     data - Historical project data with attributes (e.g., size, complexity, team experience) 

4.   Output:  

5.     predicted_effort - Estimated effort for each project 

6.   // Step 1: Data Preprocessing 

7.   Preprocess(data)  // Handle missing values, normalize features, encode categorical variables 

8.   // Step 2: Fuzzy Logic Model Development 

9.   Initialize FuzzyRules  // Define fuzzy sets and membership functions for input variables 

10.  GenerateFuzzyRules(data)  // Generate fuzzy rules based on expert knowledge or data-driven approach 

11.  // Step 3: Machine Learning Model Development 

12.  Initialize MLModel  // Select machine learning algorithm (e.g., random forest) 

13.  TrainMLModel(data)  // Train machine learning model using preprocessed data 

14.  // Step 4: Hybrid Model Integration 

15.  Procedure HybridPrediction(project_attributes): 
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16.    Input: 

17.      project_attributes - Attributes of a new project to estimate effort 

18.    Output: 

19.      hybrid_effort - Estimated effort using hybrid model 

20.    // Fuzzy Logic Transformation 

21.    transformed_input = ApplyFuzzyRules(project_attributes, FuzzyRules)  // Transform    

         inputs using fuzzy rules 

22.    // Machine Learning Prediction 

23.    hybrid_effort = MLModel.predict(transformed_input)  // Predict effort using machine  

         learning model 

24.    Return hybrid_effort 

25.  For each project in data: 

26.    predicted_effort[project] = HybridPrediction(project.attributes) 

27.  Return predicted_effort 

In this pseudocode: 

• Data preprocessing (lines 7-7): The historical project data is prepared by addressing missing values, 

standardizing features, and converting categorical variables into a suitable format for model training. 

• Development of a model based on fuzzy logic (lines 9-10): The process begins by initialising fuzzy 

sets and membership functions. Subsequently, fuzzy rules are developed based on expert knowledge or data-driven 

insights. 

• Machine Learning Model Development (lines 11-13): The preprocessed data are used to create and 

train a machine learning model, such as a random forest. 

• The integration of the hybrid model (lines 15-24): Involves predicting effort. This is done by 

initially converting the input attributes using the Apply Fuzzy Rules function's fuzzy rules. Subsequently, the 

machine learning model is utilised to predict effort based on these changed inputs. 

 The pseudocode provides a systematic framework for implementing a hybrid model that combines fuzzy logic and 

machine learning to estimate software effort. It guides the process of integrating fuzzy rules with predictive 

modelling approaches. 

 

Figure 1: Flow chart of the proposed methodology 
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4. RESULTS 

This section showcases the outcomes of our hybrid model's performance when compared to solo fuzzy logic and 

machine learning models. The models are assessed using a dataset consisting of past software projects and several 

performance indicators, such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared. 

In addition, we analyze the comprehensibility and real-world use of our hybrid model. 

 4.1 Model Performance Comparison 

To evaluate the efficacy of our hybrid model, we performed thorough tests utilising a dataset of 100 past software 

projects. The information comprises several project attributes: size, complexity, team experience, and technology 

stack. The dataset was partitioned into training (70%) and testing (30%) sets, and cross-validation was conducted 

to guarantee the reliability of the results. Table 1 summarizes the performance metrics for the standalone fuzzy 

logic model, the best-performing machine learning model (random forest), and the hybrid model. 

Table 1: Model Performance Metrics 

Model                   MAE     RMSE    R-squared 

Fuzzy Logic Model       5.32    7.45    0.72       

Random Forest Model     4.85    6.98    0.78       

Hybrid Model 4.12 6.35 0.82 

 

 

Figure 2: Model Performance Metrics using bar graph 

The results demonstrate that the hybrid model surpasses the solo fuzzy logic and random forest models in all 

performance measures. The hybrid model has a Mean Absolute Error (MAE) of 4.12, which is notably lower than 

the MAE of the fuzzy logic model (5.32) and the random forest model (4.85). The hybrid model has a Root Mean 

Squared Error (RMSE) of 6.35, the fuzzy logic model has an RMSE of 7.45, and the random forest model has an 

RMSE of 6.98. The hybrid model has an R-squared value of 0.82, indicating a superior fit to the data compared to 

the standalone models. 

4.2 Statistical Significance 

In order to ascertain the statistical significance of the performance enhancements attained by the hybrid model, we 

carried out paired t-tests to compare the errors of the hybrid model with those of the standalone models 

[23][24][25]. Table 2 displays the outcomes of the t-tests. 

Table 2: Paired t-Test Results 

Comparison                t-Value p-Value 

Hybrid vs. Fuzzy Logic    2.95      0.004    

Hybrid vs. Random 

Forest 

 2.17     0.031    
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Figure 3: Paired t-Test Results comparison using bar graph 

The t-test findings demonstrate that the performance enhancements of the hybrid model compared to the fuzzy 

logic model (p = 0.004) and the random forest model (p = 0.031) are statistically significant at the 0.05 significance 

level. 

4.3 Interpretability and Practical Applicability 

An essential benefit of our hybrid approach is its interpretability, vital for the practical usability in software project 

management. The fuzzy logic component incorporates interpretable rules representing the uncertainty and 

qualitative aspects of effort estimation [26]. As an illustration, a fuzzy rule could be formulated: "If the size of the 

project is substantial and the team's experience is limited, then the amount of effort required is significant." This 

statement is readily understandable to project managers. The hybrid model offers precise forecasts and valuable 

insights into the underlying processes that influence these predictions, making it very applicable in real-world 

situations. Project managers can utilize the model to comprehend the influence of different project parameters on 

effort and, therefore, make well-informed decisions [27]. 

4.4 Real-World Validation 

To verify the practical applicability of our hybrid model, we integrated it into a software development firm's project 

management tool. The model was incorporated into the firm's current workflow, and its performance was 

monitored for six months. According to feedback from project managers, the hybrid model's predictions were 

consistently accurate and provided valuable insights for planning and resource allocation [28]. Furthermore, we 

acquired quantitative data regarding the model's influence on project results. Table 3 compares project metrics 

before and after the hybrid model's implementation. 

Table 3: Real-World Project Metrics Comparison 

Metric                      Before Implementation After Implementation 

Average Project Overrun 

(%)| 

15% 8% 

Budget Deviation (%)        12%  6% 

Resource Utilization (%)    70%                    85% 

 

The hybrid model's practical efficacy is demonstrated by the substantial decrease in project overruns and budget 

deviations, as well as the enhancement of resource utilization. 

5. CONCLUSION AND FUTURE WORK 

This study has introduced an innovative hybrid approach that combines fuzzy logic with machine learning 

techniques to estimate software labour. Our hybrid model, which combines the interpretability of fuzzy logic with 

the predictive capability of machine learning, has shown more excellent performance when compared to solo fuzzy 

logic and machine learning models. The experimental results demonstrated that the hybrid model attained reduced 

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and elevated R-squared values, signifying 
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superior accuracy and fit to the data. The hybrid model's interpretability was emphasized by integrating fuzzy rules 

with feature significance values acquired from machine learning algorithms. This level of openness allows project 

managers to understand the elements that impact effort estimation. This, in turn, helps them make well-informed 

decisions regarding project planning and resource allocation. Furthermore, the hybrid model's practical use was 

confirmed by implementing it in an actual project management tool. Implementing the model led to substantial 

decreases in project overruns, budget deviations, and enhancements in resource utilization, highlighting its efficacy 

in improving project management techniques. 

5.1. Future Work 

Although this study has yielded valuable insights and breakthroughs in software effort estimation, there are still 

some areas that require further research and development [29][30][31]: 

 1. Improved Model Integration: The hybrid model will be further developed by investigating advanced integration 

strategies that maximize the collaboration between fuzzy logic and machine learning components. 

 2. Explore techniques for dynamically adjusting the hybrid model to changing project conditions and new data 

inputs, guaranteeing ongoing precision and applicability. 

 3. Multimodal Data Fusion: Integrate many data sources, including written project descriptions, photographs, and 

user comments, to improve the strength and comprehensiveness of effort estimating models. 

 4. Develop incremental learning algorithms that can dynamically update the hybrid model in real time with fresh 

project data, ensuring its correctness and dependability are maintained over time. 

 5. Industrial-specific Applications: Investigate the use of the hybrid model in specific industrial sectors, such as 

healthcare, banking, or telecommunications, to tackle difficulties specific to those domains in software project 

management. 

 6. Ethical and Social Implications: Examine the ethical consequences of automated software effort estimation 

methods, such as fairness, accountability, and transparency, to guarantee responsible implementation and 

utilization in real-world scenarios. 

 7. Perform benchmarking tests and comparative evaluations with other cutting-edge effort estimating models to 

verify the hybrid technique's strength and applicability across various datasets and scenarios. 

 By focusing on these study directions, future efforts can enhance the field of software effort estimation, resulting in 

more precise, dependable, and adaptable models that facilitate sustainable and efficient software development 

processes. 
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