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Introduction: Facial deepfakes are becoming increasingly realistic, creating it difficult for 

humans to distinguish between fake and real videos. This technology poses significant risks 

across various sectors, including politics, entertainment, and cybersecurity. 

Objectives: To address these challenges, deepfake detection systems must enhance their 

detection capabilities, ensure temporal consistency, and improve face detection techniques. 

Existing systems often struggle with subtle manipulations, necessitating a combination of spatial 

and temporal information. 

Methods: This paper introduces a novel methodology employing a Multi-cascaded Face 

Artefact Detection approach combined with an Xception Convoluted Long Short-Term Memory 

(LSTM) Network to overcome existing limitations.  

Results: The method begins with pre-processing the input video by converting it into frames at 

a consistent rate. Face detection is conducted using Multi-Task Cascaded Convolutional 

Networks (MTCNN), which identifies as well as resizes faces in each frame. Key facial landmarks 

are then extracted using Dlib to capture intricate manipulations.  

Conclusions: The Xception Convoluted LSTM Network detects spatial features and temporal 

dependencies to identify inconsistencies in manipulated videos. The system was evaluated using 

the FaceForensics++ dataset, achieving impressive performance metrics: 94.72% accuracy, 

92.09% precision, 95.06% recall, 93.55% F1-score, 94.50% specificity, and 94.78% AUC, 

underscoring the effectiveness of the proposed approach compared to state-of-the-art models. 

Keywords: Deep fake detection, Multi-cascaded Face Artefact Detection, Xception Convoluted 
Long Short-Term Memory, Multi-Task Cascaded Convolutional Networks, FaceForensics++ 
dataset. 

 

INTRODUCTION 

Nowadays, images and videos play an important part in digital communication, and regardless of whether they are 

of private (social network), juridical (trial), or security (surveillance, police investigation) origin, they can be used as 

evidence [1]. As a result, confirming their origin and legitimacy is critical to preventing harmful use. However, 

because modifying software is easily accessible and used, falsified information is becoming more widespread and 

increasingly difficult for people to recognise [2]. Although the capacity to produce or alter facial clues using artificial 

intelligence has potential benefits in fields such as art, video games, face anonymization, and cinematography, there 

are also various uses that might be destructive to individuals, groups, and society as a whole [3].  

Initially, the name "DeepFake" suggested a DL-based method for altering media by swapping the faces of two people. 

It first debuted in 2017, when famous faces were turned into pornographic flicks using a machine learning system 

[4]. Aside from pornography, some of the most destructive applications of this technology include online deception 

and financial fraud [5]. However, the term "DeepFakes" has increasingly become associated with most forms of face 
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and/or audio manipulation. Face swapping, face creation from scratch, facial attribute modification, and facial 

expression manipulation/re-enactment are common examples of such operations [6]. Because Deepfake takes just a 

small number of face images to allow video face-swapping, some malevolent individuals have used the internet's data 

to create a large number of fake videos. The pornography business was the first to use this technique, with several 

face-swapping porn movies depicting female celebrities circulating on the internet [7]. Replacing pornographic movie 

heroines with female stars, as well as forging video footage for politicians, corporate leaders, and other powerful 

figures, in order to mislead public opinion, gain selection, and manipulate stock prices. Many false face-swapping 

movies represent a significant risk to national security, societal stability, and personal privacy. Verifying the 

authenticity of internet movies is quickly becoming one of the most popular concerns in digital culture [8]. 

 The deepfake creation process produces artefacts in both the spatial [9] and frequency domains [10], particularly in 

certain areas of the face [11]. As a result, numerous research focuses their study on facial image components. 

Targeting motions of certain face features enables us to detect artefacts caused by deep learning algorithms [12]. 

These "temporal artefacts" alter the dynamic fluctuation of the pixel in specific locations, affecting the view's quality. 

As a result, deep learning-based detection techniques have become widely used due to their exceptional performance 

on cutting-edge face deepfake datasets [13]. CNN architectures are particularly popular, generally employing a 

clipped picture of a subject's face from a video frame as input to determine if it is genuine or false [14]. Transformer-

type architectures have recently been repurposed for deepfake detection. Some deep architectures leverage the 

temporal dimension by classifying images since existing facial deepfakes are frequently made frame-by-frame and 

can therefore exhibit temporal consistency in a deepfake movie [15]. Deepfake detection involves combining 

traditional methods with advanced deep learning techniques. Traditional methods involve checking facial 

expressions, eye movements, and lip sync for anomalies. Visual face artefacts, like unrealistic reflections or white 

blobs, are used for detection. However, downsampling images for computational constraints makes it difficult to 

catch these artefacts. This study aims to overcome this issue by using pre-processing approaches and collecting 

various visual artifacts to improve model generalization and overcome hurdles in deepfake detection. The primary 

contribution of the proposed methodology as follows: 

1. The proposed methodology ensures temporal consistency by converting input videos into frames at a consistent 

frame rate. This step is crucial for accurate temporal analysis, which is often lacking in current deepfake detection 

systems. 

2. The method employs MTCNN for precise face detection and resizing, followed by Dlib for extracting key facial 

landmarks. This approach enhances the model's ability to capture intricate manipulations commonly found in 

deepfakes, addressing the sensitivity issue present in existing systems. 

3. The core of the methodology involves the Xception Convoluted LSTM Network, which combines spatial feature 

extraction using Xception convolution layers with temporal dependency capture through LSTM networks. The model 

can identify temporal irregularities and fine-grained features in edited videos because to its integration. 

4. The inclusion of a temporal attention mechanism allows the network to focus on the most informative frames, 

enhancing detection accuracy. This feature ensures that the model can efficiently aggregate features across frames, 

improving its robustness against sophisticated manipulations. 

5. The approach employs a dense layer with a single neuron and a sigmoid activation function for robustness, dense 

layers with ReLU activation and dropout to minimize overfitting, and a max-pooling layer for dimensionality 

reduction, making it ideal for binary classification tasks, indicating video authenticity. 

The manuscript's remaining section is arranged as follows: The second section looks at the body of existing literature. 

In the third section, the research technique was covered in detail. The fourth section discusses the outcomes and 

implementation of the suggested strategy. A synopsis of the key findings is provided in the conclusion.  

LITERATURE REVIEW 

This section summarizes various categorization techniques developed by researchers for deep fake detection.  

This paper proposed by Ciamarra et al [16] how deepfake creation affected scene characteristics, suggesting that the 

overall geometry of the scene could be altered by the deepfake generation process. A descriptive method called 

SurFake was utilized to train a CNN for deepfake detection by analyzing surface characteristics. Experimental results 
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on that SurFake could discriminate between pristine and altered images and improve detection accuracy. However, 

it had limitations, lacked data augmentation techniques, and missed local surface geometry. Further experimentation 

on deepfake datasets was needed to improve the model's performance and leverage other geometric information. 

Saikia et al. [17] examined deep fakes, which are digitally produced videos that are extremely lifelike and hard to 

identify with conventional detection techniques. In order to recognise such data, discriminators based on 

Convolutional Neural Networks (CNNs) were frequently employed; nonetheless, their primary focus was on the 

spatial characteristics of individual video frames. In this work, temporal characteristics were extracted using an 

optical flow-based feature extraction technique and then input into a hybrid model for classification. However, the 

proposed method still struggled with variations in deepfake techniques and unseen data, potentially affecting its 

overall reliability. 

Khan et al. [18] explored the generalization challenge of DL-based detection systems for deepfake detection. They 

assessed several datasets, pre-training techniques, and deep learning model architectures. Using four distinct 

deepfake detection benchmarks, the study evaluated two transformer-based models and eight supervised deep 

learning. The goal of the investigation was to determine which datasets had the best generalisation capabilities, which 

models performed the best, and how picture augmentations affected model performance. The study also looked into 

the trade-off between performance, efficiency, and model size. The findings demonstrated that in deepfake 

identification, Transformer models performed better than CNN models. Additionally, the study demonstrated that 

image augmentations could improve performance, particularly for Transformer models. However, it was limited due 

to its reliance on specific deepfake detection benchmarks, which could affect the effectiveness of the models. 

Liu et al. [19] Detecting artefacts was the mainstay of previous techniques, but as deep forgeries technology advanced, 

high-quality synthetic pictures and reconstruction techniques advanced as well. They addressed this by introducing 

a deep forgery detection technique that combined fine-grained artefact characteristics with deep neural networks. 

The technique used face mask deformation and blurring, facial colour conversion, and facial frequency domain 

conversion to replicate a variety of facial synthesis data. Multiple perturbations of real photos were used to train the 

classifier model, and stability was ensured via fine-grained artefact characteristics. However, it was limited by specific 

perturbations and fine-grained artifact features, and as deepfake technologies evolved, new synthesis methods could 

emerge that the model hadn't been trained to detect effectively. 

Hasanaath et al [20] Deepfakes are artificially produced films or images that are produced by deep neural networks, 

posing threats like social media disinformation and fraud. Existing detection algorithms have trouble generalizing 

across different deepfakes' generating methods and across different corpora. The efficient-capsule network (E-Cap 

Net), a unique deep learning model, is suggested for the classification of face photos produced by various deepfake 

methods. The E-Cap Net is strong and lightweight since it employs a cheap max-feature-map activation algorithm. 

However, it may struggle to adapt to various types of deep fakes techniques, it may require frequent updates and 

retraining for optimal performance. 

Ilyas et al. [21] Existing detection models, such as convolutional neural networks, struggled to generalize across 

multiple deepfake generation techniques and cross-corpora settings. To address this, suggested the efficient-capsule 

network (E-Cap Net), to categorise facial photos produced by various deepfake generation techniques. Lightweight 

and durable, the E-Cap Net employed a low-cost max-feature-map (MFM) activation mechanism in each principal 

capsule. However, overfitting reduced the model's ability to accurately detect deepfakes in diverse and unseen data. 

Al Dulaimi et al. [22] demonstrated a hybrid feature extraction strategy for identifying deepfakes. The model made 

use of strong 10-PCA features from clipped faces of 10 frames each video, as well as 128-identity features from 

FaceNet CNN. The study demonstrated that merging these two methods for feature extraction yielded better results 

for detecting fake videos than using each method alone. The proposed method outperformed traditional CNN models 

in terms of feature extraction and dimensionality reduction. However, processing features from multiple methods 

required more computational resources, potentially making the model less efficient. 

As a result, the existing method for detecting deepfakes required further experimentation on deepfake datasets to 

improve performance and leverage geometric information. However, it struggled with variations in deepfake 

techniques and unseen data, potentially affecting its reliability. The model's reliance on specific detection 

benchmarks limited its effectiveness. Additionally, it was constrained by specific perturbations and fine-grained 

artifact features. The model introduced significant computational overhead, potentially affecting its efficiency in 
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deepfake detection applications. It also struggled to adapt to different deepfake techniques and required frequent 

updates and retraining. Overfitting reduced the model's ability to accurately detect deepfakes in diverse and unseen 

data. 

PROPOSED METHODOLOGY: 

Deep fake technology poses significant risks to sectors like politics, entertainment, and cybersecurity. It can deceive 

viewers into believing false information, leading to social, economic, and political consequences. To mitigate these 

negative impacts, deep fake detection systems need to improve detection capabilities, address temporal consistency 

in video analysis, and improve pre-processing techniques for accurate face detection and facial feature extraction. 

Current systems lack sensitivity to intricate facial changes, resulting in inability to capture perplexing manipulations. 

Incorporating both spatial and temporal information with collaborative attention from facial features is essential for 

improving the robustness, accuracy, and adaptability of deep fake detection systems. 

The proposed methodology enhances deep fake detection by implementing a Multi-Cascaded Face Artefact Detection 

approach with an Xception Convoluted LSTM Network, effectively addressing gaps in robustness and adaptability to 

new deep fake techniques. The process begins with preprocessing, where the input video is converted to frames at a 

consistent frame rate, establishing temporal consistency essential for accurate analysis. Face detection is initiated 

using the Viola-Jones Algorithm, which rapidly identifies face regions in each frame using Haar-like features, integral 

images, and cascade classifiers. This efficient face detection significantly reduces computational overhead by 

ensuring only frames with detected faces proceed for further processing. To refine the accuracy, especially in frames 

with challenging poses or partial occlusions, Multi-Task Cascaded Convolutional Networks (MTCNN) further localize 

and align faces, resizing them to a uniform size for reliable feature extraction. After precise face detection, key facial 

landmarks including the mouth, nose, and eyes are extracted by Dlib. These landmarks are critical for capturing the 

subtle manipulations often present in deep fake videos, ensuring comprehensive facial region representation. The 

core of the methodology, the Xception Convoluted LSTM Network, then takes over. Xception’s convolution layers 

leverage depthwise separable convolutions to detect fine-grained spatial artefacts essential for identifying forged 

content. Simultaneously, LSTM layers detect irregularities characteristic of modified sequences by capturing 

temporal relationships across frames. A temporal attention mechanism focuses dynamically on the most informative 

frames, aggregating crucial features for enhanced detection accuracy. The aggregated features are then dimensionally 

reduced through max pooling, followed by a series of dense layers with ReLU activations to capture complex patterns, 

with dropout layers preventing overfitting. 

Binary classification is made possible by the final dense layer, which utilize a sigmoid activation function to identify 

if the video is real or fake. The model’s training process leverages backpropagation and the Adam optimizer for 

efficient parameter updates. Overall, the integration of Viola-Jones for efficient preprocessing alongside Xception 

Convoluted LSTM Network for spatial and temporal analysis significantly enhances the detection pipeline. This 

combination ensures the methodology is not only efficient but also robust and adaptable, capable of maintaining its 

effectiveness against various sophisticated and emerging deep fake techniques. Figure 1 below displays the 

architectural diagram for the proposed method. 

 

Figure 1: Architecture of the proposed methodology 
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Multi cascaded Face Artefact Detection 

The process starts with pre-processing, converting video into frames, detecting faces using Multi-Task Cascaded 

Convolutional Networks, and extracting key facial landmarks using Dlib, capturing intricate manipulations in deep 

fakes. 

Video Frames: 

Pre-processing is crucial for model training and inference, ensuring data is in a suitable format. Input video is 

converted to frames at a consistent rate, ensuring temporal consistency for accurate analysis. Frames are then 

standardized in size, color format, and attributes to simplify the processing pipeline. Normalizing pixel values can 

speed up convergence during training and improve overall performance. Random cropping, rotation, flipping, and 

colour modifications are examples of data augmentation approaches that can increase the resilience of the detection 

system. In some cases, not all frames from the video are necessary for analysis. Frame sampling or key frames 

selection can reduce data while retaining essential information, making the pre-processing pipeline more efficient 

and reducing computational load. These steps transform data into a consistent and standardized format, ensuring 

high performance, accuracy, and reliability in the detection system. 

Multi-Task Cascaded Convolutional Networks (MTCNN): 

MTCNN was utilized for face detection, identifying faces in each frame and resizing them uniformly for reliable 

feature extraction. Face detection using Viola-Jones Algorithm is utilized as an initial face detection mechanism. This 

algorithm rapidly detects candidate face regions in each frame using Haar-like features, an integral image, and 

cascade classifiers. Viola-Jones efficiently identifies potential face regions, allowing MTCNN to focus on refining 

these regions for high precision. Viola-Jones serves as an initial filter, reducing computational load by selecting only 

regions with potential faces, which then proceed to MTCNN for detailed detection and alignment. MTCNN comprises 

a three-stage cascaded architecture that leverages three neural networks, each performing specific tasks for accurate 

face detection. Figure 2 illustrates the MTCNN structure. Fully convolutional networks make up the first network, P-

Net; standard CNNs make up the other two networks, R-Net and O-Net. MTCNN is made up of three networks. Any 

size picture may be used as the MTCNN's input. The following three-stage cascaded architecture uses an image 

pyramid that is created by regularly resizing photos to different sizes.   

Three tasks must be completed in order to train the networks: facial landmark localization, bounding box regression, 

and face categorization. Equation (1) illustrates that the loss for face categorization is cross-entropy loss. where 

𝑦𝑖
𝑑𝑒𝑡𝜖{0,1} is the ground truth label and 𝑃𝑖  is the probability of the face produced by the network. A human face could 

be present in the image's bounding box; thus, during training, the offset between it and the closest ground truth must 

be kept to a minimum. Equation (2) illustrates the Euclidean loss for the bounding box, where 𝑦𝑖
𝑏𝑜𝑥   is the closest 

ground truth and 𝑦𝑖
𝑏𝑜𝑥  is the bounding box result derived from the network. The enclosing box's dimensions are four 

and include the height, width, and left top coordinates. Euclidean loss is also used in facial landmark regression, as 

seen in Equation (3), where 𝑦𝑖
𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘  is the ground truth coordinate and 𝑦𝑖

𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘  is the coordinate of the face 

landmark retrieved from the network. To prevent overfitting, the RMSProp optimizer is utilized during training, 

ReLU is used as the activation function, Xavier is used as the weight initializer, and L2 weight regularizes are set for 

each convolutional filter. 

𝐿𝑖
𝑑𝑒𝑙 = −(𝑦𝑖

𝑑𝑒𝑡 log(𝑝𝑖) + (1 − 𝑦𝑖
𝑑𝑒𝑡)(1 − log (𝑝𝑖)   (1) 

𝐿𝑖
𝑏𝑜𝑥 = ||𝑦𝑖

𝑏𝑜𝑥 − 𝑦𝑖
𝑏𝑜𝑥||2

2     (2) 

𝐿𝑖
𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 = ||𝑦𝑖

𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 − 𝑦𝑖
𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘||2

2    (3) 

The P-Net is a fully convolutional network that can classify each 12x12 area in the input image as having a chance of 

having a human face. By setting a threshold 𝑡1, regions with probabilities exceeding 𝑡1 are selected for non-maximum 

suppression (NMS). Following NMS, the remaining boxes are sent as input to the R-Net after being resized to 24 x 

24 pixels. The R-Net then evaluates these boxes, assigning probabilities for the presence of a human face. A second 

threshold 𝑡2 is applied, and boxes with probabilities greater than 𝑡2 undergo another round of NMS. The resulting 

boxes are resized to 48x48 pixels and fed into the O-Net. Similar to the R-Net, the O-Net assesses these boxes, 

assigning face probabilities. A final threshold 𝑡3  is applied, and boxes with probabilities exceeding 𝑡3  go through 

NMS. The MTCNN's final outputs are the boxes that are left behind after this operation. These three networks are 
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trained sequentially. First, the P-Net was trained. The training set is then used as input to the trained P-Net, 

generating regions with potential faces. The R-Net's training set consists of these areas. Likewise, the outputs of the 

trained P-Net and R-Net are sent into the O-Net's training set. P-Net, R-Net, and O-Net training is hence sequential 

and interconnected rather than independent. 

It is a common strategy used in object detection. The MTCNN's NMS merges boxes with large regions of overlap. The 

Greedy-NMS algorithm's stages are as follows: 

Step 0: Set the empty set 𝑆𝑒, the input box set 𝑆0, and the IOU threshold δ. 

Step 1: Select the box with the highest probability value, 𝐵1. Remove 𝐵1 from 𝑆0 and add 𝐵1to 𝑆𝑒. 

Step 2: Using 𝐵1, compute the IOU of each remaining box as you go through the remaining boxes in 𝑆0. Eliminate this 

last box from 𝑆0 if the IOU is bigger than δ. 

Step 3: NMS is complete if there are still boxes in 𝑆0; if not, go to step 1. These are the output boxes in 𝑆𝑒. Eq. (4) 

shows the IOU computation procedure. 

𝐼𝑂𝑈 =
𝑅𝑒𝑔𝑖𝑜𝑛 1∩𝑅𝑒𝑔𝑖𝑜𝑛 2

𝑅𝑒𝑔𝑖𝑜𝑛 1∪𝑅𝑒𝑔𝑖𝑜𝑛 2
      (4) 

After the MTCNN process, Dlib is utilized to extract facial features, identifying key landmarks in the cropped and 

resized face images. This step is essential for detecting subtle manipulations present in deep fake videos. 

 

Figure 2: Structure of MTCNN [23] 

Cropped Faces 

Let 𝑋 be a video series of 𝑇 frames, represented as 𝑋(𝑡), 𝑡 = 1,2, … , 𝑇. Every 𝑋(𝑡) ∈ ℝ𝐻×𝑊×𝐶  is a 2D picture, where 𝐶 is 

the number of colour channels and (𝐻 × 𝑊)is the image resolution. Every frame 𝑋(𝑡) is preprocessed before being fed 

into the CNN. Face identification and landmark localization are done using the well-known Dlib program. After that, 

the face is trimmed to 224 x 224 resolution and facial alignment is carried out. The total accuracy of deepfake 

detection is strongly influenced by the cropped face's quality. By concentrating just on the regions that could be 

altered rather than utilizing the entire frame, the cropping stage helps reduce background noise. Lastly, the CNN 

model receives the T clipped face areas, represented as 𝑋′(𝑡), 𝑡 = 1,2, … , 𝑇, in order to extract features. 

The extracted facial features are then processed through a novel Xception Convoluted LSTM Network to extract both 

spatial and temporal information. 

Xception Convoluted LSTM Network  

The Xception network design is used as the feature extraction backbone network once cropped face images have been 

obtained. This is made possible by removing the fully-connected (FC) layer from the top of the Xception network, 

which enables the network to produce feature maps—a 2D deep representation of each cropped face image directly. 

The output feature maps have dimensions of 2048 × 7 × 7, which are then flattened for further processing. The 

Xception architecture is a neural network that relies solely on deep, separable convolution layers. The decoupling of 

cross-chain correlations and spatial correlations inside convolutional neural network feature maps is the 
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fundamental premise of this design. The Xception model comprises 36 convolutional layers organized into 14 

modules, each connected by linear residual links, except for the initial and final modules. These depth wise separable 

convolution layers enhance the network's efficiency and effectiveness in feature extraction. 

The Xception model builds upon and refines the principles of the Inception architecture, leading to its designation as 

"Extreme Inception" or Xception. This approach improves the network's ability to map and separate spatial and 

cross-channel correlations, making it highly suitable for tasks includes image classification and face recognition. 

Then it captures the temporal dependencies across frames, employing LSTM models, as they remember long-term 

dependencies and patterns in sequences, making them ideal for detecting temporal inconsistencies that are common 

in deep fake videos. A gated recursive neural network, the LSTM network is perfect for analyzing and forecasting 

important events with lengthy time series data intervals. The issue of temporal interdependence across frames is 

resolved by incorporating a gating mechanism to regulate information transmission. This is achieved by enhancing 

linear dependencies through three control units: the input gate, output gate, and forget gate. The input gate 

establishes the amount of network state data that must be stored to the internal state. 

𝑖𝑡 = 𝜎(𝑈𝑖ℎ𝑡−1 + 𝑊𝑖𝑥𝑡 + 𝑏𝑖)    (5) 

where the input gate's weight matrices 𝑊𝑖  and 𝑈𝑖  its bias term is 𝑏𝑖, its logistic function is σ, and the output of the 

memory block at time t-1 and the input vector at time t are indicated, respectively, by ℎ𝑡−1 and 𝑥𝑡. The threshold for 

deleting prior data is set by the forget gate. 

𝑓𝑡 = 𝜎(𝑈𝑓ℎ𝑡−1 + 𝑊𝑓𝑥𝑡 + 𝑏𝑓)    (6) 

where 𝑏𝑓  is the forget gate's bias term and 𝑊𝑓 and 𝑈𝑓 are its weight matrix.  The output gate controls the amount of 

data that the internal state must now output to the external state.  

𝑜𝑡 = 𝜎(𝑈𝑜ℎ𝑡−1 + 𝑊𝑜𝑥1 + 𝑏0)    (7) 

where 𝑏0 is the output gate's bias term and 𝑊𝑜 and 𝑈𝑜 are its weight matrix.  

Temporal relationships between frames may be efficiently resolved using LSTM. When the input parameter 

dimension is quite big, an attention method is used to enhance the performance of the LSTM by concentrating on 

influential factors. The aggregated features from the attention layer are then processed through a max pooling layer 

to reduce dimensionality while retaining the most critical information. In the attention mechanism, the input 

sequence was signified by the intermediate output of the LSTM encoder, a model is selectively trained to learn these 

inputs, and the output sequence was associated with these inputs. The output [ℎ1, ℎ2, ℎ3, … , ℎ𝑛] I the LSTM was 

transformed nonlinearity to obtain [𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛].  The attitude and position of shield tunnelling are significantly 

influenced by certain operating parameters, hence they should be given more importance.  This is followed by a series 

of dense layers that further process the features. 

Classification 

Each neurone in a neural network was connected to every other neuron in the network's first dense layer, which is a 

completely connected layer. This layer's output is subjected to the ReLU activation function, which introduces non-

linearity and is essential for learning intricate patterns and representations. A portion of neurons are randomly 

dropped out throughout each training cycle by the Dropout layer, which serves as regularisation to avoid overfitting. 

The model becomes more resilient to unseen input as a result of the network being forced to learn redundant 

representations and enhanced generalisation. The second dense layer with ReLU activation and dropout mirrors the 

first layer and adds another dense layer with ReLU activation to capture even more complex features and interactions 

within the data. The subsequent dropout layer ensures that learning is distributed across the network. For binary 

classification tasks, such as identifying if a video is real or false, the final output layer is a dense layer with a single 

neurone and sigmoid activation. By mapping the input to a value between 0 and 1, the sigmoid activation function 

generates a probability score that shows how likely it is that the input belongs to the positive class. 

RESULT AND DISCUSSION 

This section provides thorough analysis of the results and performance indicators produced by the proposed method. 

It also has a comprehensive evaluation that shows how well the model works in comparison to other approaches or 

accepted standards. 
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System and Tool Configuration: 

Tool  : PYTHON 3.10 

OS  : Windows 10 (64-bit) 

Processor : Intel R core ™ i-5 

RAM  : 16 GB RAM 

Dataset Description 

The FaceForensics++ dataset is a comprehensive and invaluable resource designed for the study and detection of 

facial manipulation techniques. The FaceForensics++ dataset, which includes 1000 original movies, is one of the 

biggest deepfakes datasets.  It builds upon the original FaceForensics dataset by incorporating a broader range of 

manipulations and higher-quality video data. This dataset features video sequences that have been manipulated using 

advanced techniques such as DeepFakes, which involve deep learning models for face swapping; Face2Face, a real-

time facial reenactment method; FaceSwap, a traditional computer graphics-based face-swapping technique; and 

NeuralTextures, which utilize neural networks to generate realistic textures and facial expressions. The 

FaceForensics++ dataset offers videos in three quality levels to facilitate robust evaluation under a range of 

conditions: RAW, which are high-quality videos that are uncompressed; HQ, which are compressed with little loss of 

quality; and LQ, which are heavily compressed to mimic low-bandwidth situations. Researchers can evaluate the 

robustness and precision of their detection algorithms across varying video quality and compression settings because 

to this variation. The dataset is widely employed in the research community for multiple purposes, including the 

improvement and benchmarking of deepfake detection algorithms, robustness testing of these algorithms under 

different compression and noise conditions, and forensic analysis to understand the artifacts and patterns introduced 

by various manipulation techniques. For practical use, the FaceForensics++ dataset is meticulously organized into 

an 80% training set and a 20% testing set, facilitating the development and validation of machine learning models.  

While maintaining a distinct set for objective assessment, this separation guarantees that researchers may train their 

models on a significant amount of the data. The FF++ dataset model is shown in figure 3 below. 

 

Figure 3: FaceForensics++ dataset 

Experimental result: 

The input video is first converted into frames at a consistent frame rate to ensure temporal consistency. Subsequently, 

MTCNN are employed to detect faces within each frame, providing precise bounding boxes for accurate feature 

extraction. The workflow demonstrates how these steps collectively enhance the accuracy and reliability of the 

deepfake detection system. The figure 4 and 5 illustrates the pre-processing steps and the Multi-Cascaded Face 

Artefact Detection technique used for deepfake detection. 
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Figure 4: Preprocessed sample frames 

 

Figure 5: Multi-Cascaded Face Artefact Detection technique used for deepfake detection 

Subsequently, Dlib facial features are extracted to identify key facial landmarks from the cropped and resized face 

images. These landmarks are crucial for capturing the subtle and perplexing manipulations often present in deepfake 

videos, increasing the model's ability to detect such forgeries accurately. The following figure 6 shows the Facial 

Landmark Extraction using Dlib.  

 

Figure 6: Facial Landmark Extraction using Dlib 

The model outputs a probability score that reflects the likelihood of the video being real. This score is derived from 

the features extracted during the pre-processing and facial landmark identification stages, allowing the model to 

make informed predictions. A video is more likely to be authentic if its score is closer to 1, and it is more likely to be 

fraudulent if its score is closer to 0. By providing these probability scores, the model enables a nuanced assessment 

of each video, facilitating better decision-making in applications such as deepfake detection and content verification. 

The following figure 7 represents the classification process of the proposed model. 
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Figure 7: Classification process of the proposed model 

Performance Evaluation:  

This section evaluates the performance of the proposed deep fake detection model, focusing on its ability to accurately 

differentiate between real and manipulated videos. The model's accuracy and loss over 500 training epochs are 

monitored to understand its convergence speed. Additionally, potential trade-offs between generalizability, 

computational efficiency, and model accuracy are discussed, noting that improvements in accuracy may come at the 

expense of other factors. Overall, this section highlights the model's effectiveness in identifying real versus fake 

videos. The accuracy and validation results of the proposed approach are illustrated in Figure 8, demonstrating its 

performance during the training and validation phases. 

 

Figure 8: Training and validation accuracy of the proposed model 

The proposed approach involves training a deep fake detection model over 500 epochs using the Adam optimizer, a 

popular and efficient method known for its adaptive learning rate capabilities. The model consistently achieves an 

accuracy of 94.72%, demonstrating its resilience and efficacy in recognizing and analyzing patterns in the data. This 

high accuracy shows how well the algorithm distinguishes between edited and actual videos. The model's remarkable 

performance highlights its reliability and efficiency, making it highly suitable for practical applications due to its 

ability to consistently maintain a high level of accuracy. 

 

Figure 9: Training and validation loss of the proposed model 
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The proposed deep fake detection model, trained over 500 epochs with the Adam optimizer, is illustrated in Figure 

9, along with its training and validation losses. The model consistently decreased its loss during training, indicating 

its increasing proficiency in minimizing the differences between predicted and actual outcomes. The model achieved 

high accuracy, with an average loss level of 0.1591. The significant reduction in loss is likely attributed to the Adam 

optimizer's adaptive learning rates and parameter updates, which enabled the model to converge effectively to the 

optimal solution. 

Performance evaluation metrics: 

The deep fake detection model is assessed using the following performance metric: Accuracy, Precision, Recall, F1-

score, Specificity, and Area Under Curve (AUC). 

i) Accuracy: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
      (8) 

The percentage of true positive (TP) and true negative (TN) outcomes across all examined cases is known as accuracy. 

It offers a broad indication of the model's effectiveness. 

ii) Precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (9) 

Precision indicates the percentage of positive predictions that are actually correct. The accuracy of the model's 

positive predictions is its main focus. 

iii) Recall 

Recall = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
       (10) 

Recall, also known as the True Positive Rate or Sensitivity, gauges how well the model can detect positive occurrences. 

It is theproportion of all actual positive observations that are correctly anticipated. 

iv) F1-Score 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝐹𝑁

𝑇𝑃+𝐹𝑁
      (11) 

A compromise between precision and recall is offered by the F1-score. It is the two measurements' harmonic mean, 

and it is especially helpful when the costs of false positives and false negatives vary. 

v) Specificity 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
      (12) 

The percentage of real negative outcomes that are true negatives is known as specificity. Also referred to as the True 

Negative Rate, it shows how well the model can detect negative situations. 

vi) AUC 

The True Positive Rate is plotted against the False Positive Rate using a ROC curve, and AUC is measured. With larger 

values signifying greater performance, it offers a single metric to assess the model's performance across various 

threshold settings. 

𝐴𝑈𝐶 =  ∑
(𝑇𝑃𝑅[𝑖]+𝑇𝑃𝑅[𝑖+1])

2
∗ 𝐹𝑃𝑅[𝑖 + 1] − 𝐹𝑃𝑅[𝑖])    (13) 

The overall effectiveness of the deep fake detection model is illustrated in Figure 10 below. 
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Figure 10: Overall performance metrics of the proposed model 

The proposed deep fake detection strategy boasts an impressive accuracy rate of 94.72%, demonstrating its capability 

to differentiate between real and manipulated content. The precision of 92.09% specifies that most positive 

predictions made by the model are correct. With a recall rate of 95.06%, the model successfully identifies the majority 

of actual positive cases. The model's performance is thoroughly assessed by the F1-score of 93.55%, which strikes a 

balance between recall and accuracy. The model also attains an AUC of 94.78% and a specificity of 94.50%, 

highlighting its accuracy and reliability. These metrics highlight the method's effectiveness and reliability in deep 

fake detection. The detailed performance features of the proposed approach are accessible in table 1 below. 

Table 1: Performance metrics of the proposed approach 

Parameters Performance (%) 

Accuracy 94.72 

Precision 92.09 

Recall 95.06 

F1-score 93.55 

Specificity 94.50 

AUC 94.78 

A 2x2 confusion matrix is employed to access the model performance of a deepfake detection model in figure 11. It 

compares the actual ground truth labels with the model's predictions. The rows indicate the true labels (Fake or Real), 

while the columns display the predicted labels. The diagonal entries (4655 for True Positives and 3154 for True 

Negatives) reflect the correct predictions. In contrast, the off-diagonal values (271 for False Positives and 164 for 

False Negatives) indicate incorrect predictions. By examining the confusion matrix, one can evaluate the model's 

accuracy, precision, recall, and other relevant performance metrics to gauge its effectiveness in detecting deepfake 

images. 

 

Figure 11: Confusion matrix 
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One popular visualisation technique in machine learning, especially for binary classification tasks like identifying 

deepfakes, is the Receiver Operating Characteristic (ROC) curve. The curve shows the False Positive Rate (FPR) on 

the x-axis, which is the percentage of real photos that are incorrectly identified as deepfakes. As a proportion of 

correctly detected deep fake images, the True Positive Rate (TPR) is represented on the y-axis. A diagonal line on the 

graph represents a random classifier, while a curve that approaches the top-left corner indicates better model 

performance. In this scenario, the ROC curve has an AUC of 0.95, signifying that the model is highly effective at 

differentiating between deepfake and real images. The following figure 12 shows the ROC of the proposed 

methodology.  

 

Figure 12: ROC of the proposed methodology 

Comparative Analysis: 

This section provides a comprehensive comparative analysis of the proposed method in relation to several existing 

approaches, specifically ResNet [24], Inception V3 [24], Vision Transformer (ViT) [24], and a custom Convolutional 

Neural Network (custom-CNN) [24]. The primary focus of this comparison is on evaluating the performance of these 

methods using the accuracy metric, which is a critical indicator of their effectiveness in the context of deepfake 

detection. 

 

Figure 13: Comparison of Accuracy 

The proposed method has demonstrated superior performance in deepfake detection, achieving an impressive 

accuracy rate of training and validation is 94.72%. It outperformed several established models, including ResNet, 

Inception V3, Vision Transformer (ViT), and a Custom CNN. Specifically, ResNet achieved 91% validation accuracy 

and 89% training accuracy. The accuracy of Inception V3 was 90% for validation and 76% for training. In contrast to 

the Custom CNN, which obtained training accuracy of 93% and validation accuracy of 95%, ViT reported training 

accuracy of 90% and validation accuracy of 85%. Visual comparisons with the other models further emphasise the 

benefits of the suggested approach, demonstrating its potential as a trustworthy tool for deepfake identification, 

especially in situations where high classification accuracy is essential. The enhancements in performance are also 
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illustrated in the accompanying figure 13, providing a clear representation of the method's effectiveness compared to 

its peers.  

Discussion 

The proposed method has demonstrated exceptional performance in deepfake detection, achieving an impressive 

accuracy rate of 94.72% for both training and validation. This marks a significant improvement over several 

established models, such as ResNet, Inception V3, Vision Transformer (ViT), and a Custom CNN. In particular, 

ResNet achieved 91% validation accuracy and 89% training accuracy. By comparison, Inception V3 had a 90% 

validation accuracy and a 76% training accuracy. While the Custom CNN fared somewhat better with a training 

accuracy of 93% and a validation accuracy of 95%, ViT obtained 90% training accuracy and 85% validation accuracy. 

The advantages of the proposed method are further emphasized through visual comparisons with these models, 

illustrating its potential as a reliable tool for deepfake detection, especially in applications where high classification 

accuracy is essential. The accompanying visuals provide a clear representation of the method's effectiveness, 

showcasing the performance enhancements achieved through this approach. Overall, the results underscore the 

proposed method's capability to outperform existing models, positioning it as a strong candidate for future 

implementations in deepfake detection systems. 

CONCLUSION 

In conclusion, the proposed methodology for detecting facial deepfakes significantly enhances detection capabilities 

in the face of increasingly sophisticated manipulation techniques. By integrating a Multi-cascaded Face Artefact 

Detection approach with an Xception Convoluted LSTM Network, this study effectively addresses the limitations of 

existing systems. The systematic pre-processing of input videos, combined with advanced face detection and 

landmark extraction methods, allows for accurate identification of subtle manipulations often overlooked by 

traditional detection systems. The outstanding performance metrics achieved on the FaceForensics++ dataset 

94.72% accuracy, 92.09% precision, 95.06% recall, 93.55% F1-score, 94.50% specificity, and 94.78% AUC establish 

the robustness and reliability of the proposed approach. These results affirm its potential as a valuable tool for 

safeguarding against the risks posed by deepfake technology across various sectors. Future studies can concentrate 

on improving the model's capacity to adjust to fresh and developing deepfake methods, making sure it continues to 

work well against ever-more-advanced manipulations. 
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