
Journal of Information Systems Engineering and Management
2025, 10(19s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dynamic Algorithm Selection for Replication using RSYNC

Dr. Kamal Shah1, Dr. Sunny Sall2, Abhijeet Panpatil3

1University of Mumbai
2 University of Mumbai
3 University of Mumbai

ARTICLE INFO ABSTRACT

Received: 25 Dec 2024

Revised: 28 Jan 2025

Accepted: 16 Feb 2025

Introduction: In the era of big data and distributed systems, efficient data replication is

essential for maintaining data availability, consistency, and performance. Rsync, a widely used

file synchronization tool, utilizes compression algorithms to optimize data transfer. However, its

performance is highly dependent on the choice of compression algorithm, file type, and network

conditions. This research introduces a novel approach to dynamic algorithm selection for Rsync,

leveraging machine learning to automatically determine the optimal compression algorithm

(gzip, zstd, or lz4) based on file characteristics and network parameters.

Objectives: This study aims to enhance Rsync’s efficiency by developing a machine learning

model for dynamic algorithm selection, evaluating the impact of compression choices on

synchronization time and bandwidth usage, and implementing an adaptive system that

optimizes Rsync’s performance based on file characteristics and network conditions.

Methods: The methodology follows a six-phase approach. First, an experimental environment

is set up. Second, a dataset consisting of text, binary, and backup files is prepared. Third, a shell

script is developed to automate compression and synchronization. Fourth, performance metrics

such as compression time, Rsync time, and bandwidth usage are collected. Fifth, machine

learning models (Random Forest, Decision Tree, and Linear Regression) are trained to predict

the optimal compression algorithm. Finally, the model is validated through extensive testing.

Results: The AI models demonstrated high accuracy in predicting the best algorithm. Random

Forest achieved superior performance with Train R² = 98.45%, Test R² = 97.82%, MSE Train =

0.45, and MSE Test = 0.72. Decision Tree showed strong training accuracy with Train R² =

99.50% but slightly lower generalization with Test R² = 94.10%. Linear Regression provided a

solid baseline with Train R² = 94.85% and Test R² = 93.72%. Dynamic algorithm selection

significantly reduced synchronization time and bandwidth consumption across different

scenarios.

Conclusions: This research presents an intelligent, adaptive system that enhances Rsync’s

efficiency for data replication. By integrating machine learning, Rsync can dynamically select the

optimal compression algorithm, improving performance in real-world applications. This

approach contributes to the field of data replication by offering a scalable and automated solution

for optimizing file synchronization.

Keywords: Rsync Optimization, Data Replication, Compression Algorithms, Machine

Learning, File Synchronization, Performance Optimization, Bandwidth Efficiency, Distributed

Systems.

INTRODUCTION

In modern computing environments, efficient data replication and synchronization are essential for maintaining data

integrity and reducing transfer costs. Rsync is a widely used tool for file synchronization, utilizing incremental

updates and compression algorithms to optimize data transfer. However, its performance varies depending on file

type, compression method, and network conditions. Choosing the right compression algorithm is crucial to

improving synchronization speed and bandwidth efficiency.

111

J INFORM SYSTEMS ENG, 10(19s)

This research explores a machine learning-based approach to dynamically select the optimal compression algorithm

for Rsync. The study focuses on Gzip, Zstandard (zstd), and LZ4, comparing their performance across different file

types such as text, binary, and backup files. By analysing key performance metrics, including compression time,

Rsync time, and bandwidth usage, an AI model predicts the most efficient compression method for a given scenario.

The results show that dynamic algorithm selection significantly enhances Rsync’s efficiency, reducing

synchronization time and improving overall performance. This research provides a practical solution for optimizing

file synchronization in distributed systems and large-scale data transfers.

PROBLEM DEFINITION

The process of data replication, particularly in distributed systems and remote synchronization, is critical for

maintaining consistency and availability across multiple nodes. One of the widely used tools for this purpose is rsync,

which employs delta encoding and compression techniques to synchronize files between local and remote systems.

However, rsync’s existing algorithm selection process for compression and delta encoding is static and does

not dynamically adapt to varying data characteristics such as file type, size, and available bandwidth.

This static approach often results in suboptimal performance due to the lack of a mechanism that can intelligently

choose the most efficient algorithm based on the characteristics of the data being synchronized. As a result,

synchronization times are unnecessarily prolonged, network bandwidth is wasted, and storage

requirements are not optimized. For example, a compression method suitable for text files might not be ideal

for large binary files or backup data, leading to inefficiencies in both compression and rsync processes.

Moreover, the increasing diversity and size of data in modern systems, coupled with varying network conditions,

create challenges in ensuring efficient replication. Files of different sizes (e.g., 50 MB, 500 MB, 1 GB) and types (e.g.,

text, binary, backup) require different compression strategies to minimize transfer times and optimize system

performance. Traditional rsync methods fail to adapt to these requirements and continue to use default, non-

optimized approaches.

To address these issues, this research proposes a solution involving dynamic algorithm selection for rsync-

based data replication. The aim is to create an intelligent system that leverages machine learning models to

predict and select the best compression and delta encoding algorithms based on input parameters such as file size,

file type, and network conditions. This approach will enhance synchronization efficiency, reduce the use of

computational resources, and optimize bandwidth usage during data replication. The key challenge addressed in this

research is the lack of dynamic, data-aware algorithm selection for rsync, which leads to inefficient replication

processes in large-scale systems.

LITERATURE SURVEY

Ioannis Protogeros et al. (2024) addressed the challenge of updating container images in low-bandwidth edge

environments by leveraging rsync-based delta compression. Containers are widely used for software deployment due

to their portability and low overhead but updating them in resource-constrained environments remains problematic.

CargoSync, a Container-based tool, reduces data transfer size and update times by utilizing delta compression. It

outperforms traditional pull-based updates and competes favourably with Balena-engine’s rsync delta updates. The

tool also demonstrates scalability by efficiently distributing updates to multiple machines concurrently. However,

limitations include bottlenecks in creating and applying update bundles, particularly in environments with

constrained resources. The results highlight CargoSync’s potential for optimizing container updates in bandwidth-

limited scenarios, though further improvements are needed for broader applicability [1].

Xiang Chen et al. (2024) proposed a software-based solution for in-SSD compression to improve storage

utilization and performance without requiring new hardware. Traditional hardware-based compression engines in

SSDs face long development cycles, so HA-CSD leverages the host CPU for decompression and employs an offline,

data-aware compression strategy to avoid write I/O bottlenecks. Implemented on a commercial SSD, HA-CSD

achieves read and write bandwidths of 2.1 GB/s and 5.2 GB/s, respectively, and significantly improves throughput in

benchmarks like RocksDB. The solution outperforms FPGA-powered alternatives in host CPU efficiency. Future work

aims to reduce memory copy bottlenecks and extend the architecture to coordinate host-side and in-SSD compression

for broader computational functions [2].

112

J INFORM SYSTEMS ENG, 10(19s)

Richa Arora et al. (2024) discussed enhancing cloud data deduplication using dynamic chunking and public

blockchain. Cloud service providers (CSPs) manage customer data storage and deletion based on specific principles,

ensuring high levels of consistency, speed, availability, and durability. Their systems are designed to maintain these

performance characteristics while balancing the need for precise and rapid data deletion. This study proposes using

a rapid content-defined chunking algorithm for deduplication in a public blockchain. Many individuals and

organizations outsource sensitive data to cloud servers to avoid the complexity of maintaining infrastructure and

software. However, since user data is transmitted to remote cloud storage, ownership and control rights remain

separate, making it challenging to verify the integrity of private information. Experimental results indicate that the

proposed dynamic chunking method processes data as quickly as fixed-length chunking while significantly improving

deduplication efficiency [3].

Tong Sun et al. (2024) conducted a systematic evaluation of four differencing algorithms (xdelta3, bsdiff, archive-

patcher, and HDiffPatch) for mobile application updates. The study measures compression ratio,

differencing/reconstruction time, and memory overhead across 200 applications. Key techniques like

decompressing-before-differencing and sliding windows are analyzed for their impact on performance. The authors

propose sdiff, a new algorithm that achieves the smallest compression ratio compared to existing methods. The

findings provide valuable insights for developers to optimize differencing algorithms and improve update efficiency

in mobile applications [4].

Reem S Alhamidi et al. (2024) developed ChronoBak, a cost-effective incremental backup solution using bash

scripts and Crontab for scheduling automated backups on Unix/Linux systems. It addresses the financial and security

challenges of data backup, particularly in healthcare systems. ChronoBak leverages existing Linux tools and directory

structures to implement secure and efficient backups. The software is versatile and scalable, making it suitable for

both small and large-scale businesses. It minimizes reliance on third-party backup services and ensures robust data

security, especially for sensitive medical records. ChronoBak’s use of standard Linux tools makes it an accessible and

practical solution for automated backups [5].

Ryo Nakamura et al. (2023) introduced mscp, a multi-threaded file transfer tool that enhances the performance

of traditional scp by leveraging multiple SSH connections. Designed for ease of use, mscp requires only a standard

sshd on remote machines, making it accessible for various computing environments. Experiments show that mscp

achieves a transfer throughput of 44 Gbps in local environments and reduces transfer times by 95% over long-

distance networks compared to scp. The tool’s simplicity and performance improvements make it a viable alternative

for high-speed file transfers in research and distributed computing scenarios [6].

S Naganandhini et al. (2023) provided a comprehensive analysis of data replication techniques in distributed

cloud computing environments. It discusses static, dynamic, and hybrid replication strategies, highlighting their

advantages, disadvantages, and performance in different scenarios. The study identifies challenges such as

consistency, scalability, fault tolerance, and security, and reviews existing solutions. The paper emphasizes the need

for a combination of techniques to achieve optimal availability, performance, and resilience. It also highlights

research gaps and future directions, offering a valuable resource for understanding and optimizing data replication

in cloud environments [7].

Weisheng Zhang et al. (2023) proposed SPsync, a lightweight solution for synchronizing big spatiotemporal data

across multiple distributed data centres. It optimizes file processing by transitioning from serial to parallel algorithms

and integrates with Spark for distributed task optimization. Experiments demonstrate that SPsync achieves a 30%

faster synchronization speed, and 20% lower CPU usage compared to existing incremental synchronization

algorithms. The solution is particularly effective in multi-node scenarios, making it a promising tool for handling

large-scale spatiotemporal data in mobile and 5G environments [8].

Tao Lu et al. (2023) explored adaptive compressor selection for IoT data compression on resource-constrained

edge devices. It highlights the variability in compressor performance and the impact of runtime resource bottlenecks

like CPU and bandwidth limitations. The study focuses on building compression ratio prediction models, measuring

performance degradation caused by compression, and investigating security challenges in IoT environments. The

findings emphasize the importance of resource-aware adaptive compression for improving edge-to-cloud data

transfer efficiency and compression ratios [9].

113

J INFORM SYSTEMS ENG, 10(19s)

Romina Druta et al. (2022) evaluated remote data compression methods, focusing on Rsync, Xdelta3, and Bsdiff

for delta encoding and synchronization. The study demonstrates that Rsync is the fastest but consumes more

bandwidth, while Xdelta3 offers better compression rates at the cost of higher processing time. Bsdiff provides

comparable results to Xdelta3 but with higher resource consumption. The findings highlight the trade-offs between

compression efficiency, processing time, and bandwidth usage, providing insights for optimizing remote data

synchronization [10].

Wen Xia et al. (2022) introduced NetSync, a network-adaptive delta synchronization approach inspired by data

deduplication techniques. It simplifies chunk matching using a fast weak hash (FastFP) and adapts chunking and

compression strategies based on network conditions. Evaluations show that NetSync performs 2×–10× faster and

supports 30%–80% more clients than state-of-the-art rsync-based approaches. The solution is designed to cater to

high-bandwidth cloud storage services, offering significant improvements in synchronization efficiency and

scalability [11].

Qing Wang (2021) proposed a cloud data backup and recovery method using a delta compression algorithm. The

method improves key file management and standardizes data transmission to ensure stable storage proportions of

cloud data parameters, even under information attacks. Experimental results demonstrate the method’s effectiveness

in maintaining data integrity and storage efficiency, making it suitable for practical applications requiring robust data

backup and recovery [12].

Chen Jianyu et al. (2021) presented an FPGA-based hardware acceleration of the Zstd compression algorithm for

real-time big data streams. The optimized implementation achieves a compression throughput of 8.6 GB/s and a

compression ratio of 23.6%. The solution is particularly effective for high-frequency trading data, demonstrating the

potential of FPGA acceleration for improving compression performance in data-intensive applications [13].

Uthayakumar Jayasankar et al. (2021) provided a comprehensive survey on data compression techniques,

categorizing them based on data quality, coding schemes, data types, and applications. It reviews traditional and

recent approaches, highlighting their objectives, methodologies, and performance metrics. The study identifies open

issues and research directions, offering a guideline for selecting appropriate compression techniques and designing

new algorithms for specific applications [14].

Y Dong et al. (2020) designed CDC, a classification-driven compression framework for bandwidth-efficient edge-

cloud collaborative deep learning. It uses a lightweight autoencoder with classification guidance to compress data

while preserving classification accuracy. The framework includes an adjustable quantization scheme to balance

bandwidth consumption and accuracy under varying network conditions. Experiments show that CDC reduces

bandwidth consumption by 14.9× with minimal accuracy loss, making it a promising solution for edge-cloud

collaborative DL [15].

Xiufeng Huang et al. (2020) proposed a dynamic compression ratio selection scheme for edge inference systems

with hard deadlines. The approach balances communication cost and inference accuracy by selecting optimal

compression ratios based on remaining deadline budgets. It also incorporates information augmentation to enhance

accuracy by retransmitting less compressed data for uncertain inferences. Simulation results demonstrate the

scheme’s effectiveness in meeting deadlines and improving inference accuracy under limited communication

resources [16].

Yuchenge Zhang et al. (2020) addressed the performance degradation caused by chunk fragmentation in backup

systems using deduplication and delta compression. It proposes SDC, a scheme that performs post-deduplication

delta compression to avoid additional disk reads for base chunks. SDC improves restore performance by 2.9–16.9×

while retaining over 95% of compression gains, making it an effective solution for optimizing backup and restore

operations [17].

Hariharan Devarajan et al. (2020) developed HReplica, a dynamic data replication engine that integrates

adaptive compression with hierarchical storage to enhance replication effectiveness. It uses a novel selection

algorithm to match replication schemes, compression libraries, and storage tiers optimally. Evaluations show that

HReplica improves application performance by 5.2× compared to state-of-the-art replication schemes,

demonstrating its potential for managing diverse big data applications [18].

114

J INFORM SYSTEMS ENG, 10(19s)

Y He et al. (2020) introduced Dsync, a lightweight delta synchronization approach inspired by content-defined

chunking (CDC). It simplifies chunk matching using a fast weak hash (FastFP) and reduces computation and protocol

overheads compared to traditional rsync-based approaches. Evaluations show that Dsync performs 2×–8× faster and

supports 30%–50% more clients than state-of-the-art solutions, making it a promising tool for high-bandwidth cloud

storage services [19].

COMPARATIVE STUDY

Comparative table summarizing the literature survey:

No. Paper Title (Year) Authors Technology

Used

Key Findings Research

Gap

1 CargoSync: Efficient

Containerd Image

Updates in Low-

Bandwidth Edge

Environments with

Rsync-based Delta

Compression (2024)

Ioannis Protogeros,

Michail Rizakis,

Antonios Porichis,

Michalis

Karamousadakis

1] Rsync,

2] Delta

Compression,

3] Containerized

Environments

Efficient

container image

sync using rsync

with delta

compression in

low-bandwidth

environments.

Needs dynamic

compression

selection based

on file type,

size, and

network

conditions.

2 HA-CSD: Host & SSD

Coordinated

Compression for

Capacity &

Performance (2024)

Xiang Chen,

Tao Lu,

Jiapin Wang,

Yu Zhong,

Guangchun Xie,

Xueming Cao,

Yuanpeng Ma,

1] SSD,

2] Compression,

3] Data

Deduplication

Coordinated

compression for

better storage

capacity and

performance.

Lacks dynamic

compression

selection for

rsync based on

file types.

3 Enhancing Cloud Data

Deduplication with

Dynamic Chunking

and Public Blockchain

(2024)

Richa Arora,

Vetrithangam D

1] Cloud Storage,

2] Data

Deduplication,

3] Blockchain

Dynamic

chunking and

blockchain-based

deduplication for

cloud storage.

No focus on

rsync with

dynamic

compression in

hybrid

environments.

4 Understanding

Differencing

Algorithms for Mobile

Application Updates

(2024)

Tong Sun,Bowen

Jiang ,Lewei Jin

,Wenzhao Zhang ,

Yi Gao ,

Zhendong Li,

Wei Dong

1] xdelta3, bsdiff,

archive-patcher,

and HDiffPatch

2] Analysis using

compression

ratio,

differencing/reco

nstruction time

and memory

overhead

Review of

differencing

algorithms for

efficient app

updates.

Not related to

rsync or large

data

replication.

5 ChronoBak:

Automated Cost-

effective Incremental

Backup Software for

Large Scale Data

(2024)

Reem S Alhamidi,

Rifat Hamoud

1] Crontab

2] Incremental

Backup

3] Linux File

System

Automated

incremental

backups for large-

scale data.

Lacks rsync

integration

and dynamic

compression

for various file

types.

6 Multi-threaded scp:

Easy and Fast File

Transfer over SSH

(2023)

Ryo Nakamura,

Yohei Kuga

1] SSH

2] SFTP

3] MSCP

4] SCP

Speeds up SCP

transfers using

multi-threading,

no compression

integration.

Does not

consider

compression

or delta

encoding for

replication.

115

J INFORM SYSTEMS ENG, 10(19s)

7 Optimizing Replication

of Data for Distributed

Cloud Computing

Environments:

Techniques,

Challenges, and

Research Gap (2023)

S. Naganandhini; D.

Shanthi

1] Cloud

Computing,

2] Data

Replication

3] Static

Replication

4] Dynamic Sync

Optimizes data

replication for

cloud

environments.

Lacks adaptive

algorithm

selection for

rsync based on

file type and

network

conditions.

8 SPsync: Lightweight

Multi-terminal Big

Spatiotemporal Data

Synchronization

Solution (2023)

Weisheng Zhang,

Zhibang Yang,

Shenghong Yang,

Mingxing Duan,

Kenli Li

1] SPSync

2] Dsync

3] Hashing

4] SPARK

Integration

Lightweight

synchronization

for

spatiotemporal

data.

No

compression

or delta-based

methods for

rsync in large-

scale data.

9 Adaptively

Compressing IoT Data

on the Resource-

constrained Edge

(2023)

Tao Lu,

Wen Xia, Xiangyu

Zou,

Qianbin Xia

1] IoT,

2] Data

Compression,

3] Edge

Computing

Adaptive

compression for

IoT data in edge

computing.

Does not

consider

adaptive rsync

compression

10 Evaluation of Remote

Data Compression

Methods (2022)

Romina DRUTA,

Cristian-Filip

DRUTA,

Ioan SILEA1

1] Rsync, Xdelta3

2] Bsdiff/Bspatch,

3] Delta encoding,

4] Parallel

processing.

Evaluates various

remote data

compression

methods.

Lacks focus on

integrating

compression

with rsync for

replication.

11 NetSync: A Network

Adaptive &

Deduplication-

inspired Delta

Synchronization

Approach for Cloud

Storage Services

(2022)

Wen Xia,

Can Wei,

Zhenhua Li,

Xuan Wang,

Xiangyu Zou

1] Rsync,

2] Content-

Defined Chunking

3] NetSync,

4] Compression

methods.

Network-adaptive

delta

synchronization

for cloud services.

Needs

integration

with rsync for

dynamic

compression

selection.

12 Cloud Data Backup and

Recovery Method

Based on the DELTA

Compression

Algorithm (2021)

Qing Wang 1] Data Backup,

2] Delta

Compression

Delta

compression for

cloud data backup

and recovery.

No focus on

rsync or

dynamic

algorithm

selection.

13 FPGA Acceleration of

Zstd Compression

Algorithm (2021)

Chen, Jianyu,

Daverveldt,

Maurice,

Al-Ars, Zaid

1] Zstd

2] FPGA

3] HFT

4] Compression

ratio

FPGA-accelerated

Zstd compression

for better

performance.

No dynamic

compression

selection for

rsync or

replication.

14 A Survey on Data

Compression

Techniques: From the

Perspective of Data

Quality, Coding

Schemes, Data Type,

and Applications

(2021)

Uthayakumar

Jayasankar,

Vengattaraman

Thirumal,

Dhavachelvan

Ponnurangam

1] Data

Compression

Techniques,

2] Coding

Schemes,

3] Applications

Overview of

various

compression

techniques and

their applications

across data types.

Does not

address rsync-

specific

dynamic

algorithm

selection.

116

J INFORM SYSTEMS ENG, 10(19s)

15 CDC: Classification

Driven Compression

for Bandwidth Efficient

Edge-Cloud (2020)

Y Dong, P Zhao, H

Yu, C Zhao, S Yang

1] Deep Learning,

2] Edge-Cloud

Collaboration,

3] Classification-

based

Compression

Classification-

driven

compression for

edge-cloud

systems.

No mention of

dynamic

algorithm

selection for

rsync.

16 Dynamic Compression

Ratio Selection for

Edge Inference

Systems with Hard

Deadlines (2020)

Xiufeng Huang,

Sheng Zhou

1] MDP (Markov

Decision Process)

for dynamic

compression ratio

selection

2] Information

augmentation &

retransmission

schemes

Dynamic

compression ratio

selection for edge

inference systems.

No focus on

rsync or

replication.

17 Improving Restore

Performance for In-

Line Backup Systems

Combining

Deduplication and

Delta Compression

(2020)

Yucheng Zhang; Ye

Yuan; Dan Feng;

Chunzhi Wang;

Xinyun Wu; Lingyu

Yan

1] Deduplication,

2] Delta

Compression,

3] In-line Backup

Improves restore

performance

using

deduplication and

delta

compression.

Lacks

integration

with rsync for

file replication.

18 HReplica: A Dynamic

Data Replication

Engine with Adaptive

Compression for Multi-

Tiered Storage (2020)

Hariharan

Devarajan, Anthony

Kougkas, Xian-He

Sun

1] Data

Replication,

2] Adaptive

Compression,

3] Multi-Tier

Storage

Proposes adaptive

compression for

data replication in

multi-tiered

storage systems.

Lacks dynamic

algorithm

selection for

rsync based on

file type.

19 Dsync: A Lightweight

Delta Synchronization

Approach for Cloud

Storage Services

(2020)

Y He, L Xiang, W

Xia, H Jiang, Z Li, X

Wang, X Zou

1] Delta Synch

2] Cloud Storage,

3] File Sync

Lightweight delta

synchronization

for cloud storage.

Needs dynamic

algorithm

selection for

rsync in large-

scale

replication.

KEY INSIGHTS IN COMPARATIVE STUDY

1] Dynamic Algorithm Selection: Selecting the right compression algorithm based on file type, size, and network

conditions can significantly improve rsync's performance, reducing synchronization time and resource consumption.

2] Compression Method Efficiency: Algorithms like zstd offer the best trade-off between compression ratio and speed,

particularly for large files, making it ideal for optimized data replication.

3] Bandwidth Optimization: Using dynamic compression techniques with rsync helps optimize bandwidth usage,

minimizing data transmission in low-bandwidth scenarios.

4] File-Specific Algorithm Choice: Different file types (e.g., text, binary, backup) benefit from tailored compression

methods, highlighting the importance of considering file characteristics for better performance.

5] Machine Learning for Prediction: Integrating machine learning models to predict the best compression algorithm

based on file properties enhances automation, reducing manual intervention and improving efficiency.

117

J INFORM SYSTEMS ENG, 10(19s)

METHODOLOGY AND TECHNOLOGY TO BE EXECUTED

The methodology for this research on "Dynamic Algorithm Selection for Replication Using Rsync" is structured into

six distinct phases, each focusing on specific aspects of the project to ensure the development and implementation of

an efficient, automated system for optimizing rsync performance through dynamic algorithm selection.

Phase 1: Requirement Gathering and Infrastructure Setup

• The first phase involves setting up the Linux operating system and configuring the necessary file systems for

the experiment. This includes creating directories to store data files that will be used throughout the research.

• The required software packages and libraries for remote synchronization, compression, and rsync integration

will be installed. This will also involve setting up the rsync tool along with compression libraries like gzip,

zstd, and lz4 to handle the dynamic algorithm selection process.

Phase 2: Dataset Preparation and Parameter Definition

• A diverse dataset will be created, consisting of three distinct file types: text files, binary files, and backup files.

For each file type, three different sizes—50 MB, 500 MB, and 1 GB—will be created to represent a range of

typical file sizes.

• A set of parameters will be defined to perform a comprehensive evaluation of the data. These parameters

include:

• file_name, file_size, file_type, compression_method, compression_time, size_after_compression,

rsync_time, bandwidth_used, block_size and rsync_compression_pair This structured approach

enables the precise measurement of performance under various configurations.

Phase 3: Script Development for Integration of Compression with Rsync

• A shell script will be developed to automate the entire process of file creation, compression, and

synchronization using rsync.

• The script will apply three different compression methods (gzip, zstd, lz4) to each file type and size

combination.

• The script will then synchronize the files with rsync, using each algorithm to evaluate the performance of

different compression methods in combination with rsync, allowing for comparative analysis across all

configurations.

Phase 4: Data Collection and Performance Analysis

• After executing the script, all relevant data (e.g., compression time, rsync time, bandwidth usage) will be

collected and stored in a CSV file for further analysis.

• This data will be carefully analysed to understand the performance of each compression algorithm under

varying conditions, identifying the most efficient method for each file type, size, and network bandwidth

scenario.

Phase 5: AI Model Development and Integration

• After analysing the collected data, an AI model will be developed to automate the process of selecting the

optimal compression algorithm for a given input.

• The model will be trained using the data collected in Phase 4, using machine learning techniques to predict

the best rsync algorithm based on file size, file type, and other relevant parameters.

• The AI model will be integrated into the script to automatically suggest the most efficient compression

algorithm, streamlining the decision-making process and improving the overall performance of rsync-based

data replication.

Phase 6: Final Testing, Documentation, and Presentation

118

J INFORM SYSTEMS ENG, 10(19s)

• In this final phase, the AI model will be tested with various input data to validate its prediction accuracy and

the effectiveness of the algorithm selection.

• The results will be documented, including a detailed analysis of the model's predictions compared to manual

selections and their impact on performance.

• A final presentation will be prepared to summarize the methodology, findings, and conclusions,

demonstrating how the dynamic selection of algorithms can enhance rsync-based data replication.

Through this structured methodology, the research aims to develop an efficient system for dynamic algorithm

selection, enhancing the performance and efficiency of rsync in real-world scenarios.

SYSTEM ARCHITECTURE

A high-level architecture of the Dynamic Algorithm Selection for Replication using Rsync is as follows:

REQUIREMENT DETAILS

Following table displays the configuration requirement details

Phase Description Technology/Tools Used

Experimental Setup Configuring the environment

for testing

Linux OS, Python IDLE, Terminal

Dataset Preparation Generating diverse file types

(text, binary, backup)

Custom File Generator, Python

Automation Script Implementing a shell script for

compression and

synchronization

Bash, Rsync, SSH, gzip, zstd, LZ4,

Delta-transfer

Performance Data Collection Redirecting performance

metrics to a CSV file and

analysing data

Bash (Redirection), Python (Pandas,

NumPy, Matplotlib)

Machine Learning Model

Training

Training AI models to predict

the best compression algorithm

Python, Scikit-learn, Pandas, NumPy

Model Validation & Testing Evaluating accuracy and

generalization of models

Random Forest, Decision Tree, Linear

Regression

119

J INFORM SYSTEMS ENG, 10(19s)

RESULT AND DISCUSSION

The research on Dynamic Algorithm Selection for Replication Using Rsync followed a structured methodology across

six phases, each contributing to the overall optimization of rsync performance. This section presents the findings and

analysis at each phase, demonstrating how integrating dynamic compression selection and AI-driven decision-

making enhances efficiency in file synchronization.

The research began with the setup of a Linux-based infrastructure, ensuring compatibility with rsync and

compression utilities such as gzip, zstd, and lz4. The environment was configured to support efficient

synchronization, and necessary software dependencies were installed. A dedicated directory structure was created to

store test files, simulating real-world replication scenarios. System configurations were fine-tuned to ensure optimal

execution of rsync and compression operations. This phase laid the groundwork for automation and systematic

evaluation in subsequent phases. The successful setup of this infrastructure ensured a controlled experimental

environment, allowing accurate measurement of performance metrics in later stages.

To ensure a comprehensive analysis, a diverse dataset was created, comprising three primary file types: text files,

binary files, and backup files, each represented in three sizes—50 MB, 500 MB, and 1 GB. This selection mirrored

typical data structures used in enterprise environments, allowing the study to explore real-world replication

scenarios. The dataset was designed to capture a broad spectrum of rsync performance behaviours across varying file

types and sizes. To systematically measure the impact of compression and synchronization, key parameters such as

compression time, compressed file size, rsync time, bandwidth usage, block size, and rsync-compression pair

configurations were tracked. By establishing these metrics, the study ensured a precise evaluation of different

configurations, enabling data-driven decision-making in subsequent phases.

A Bash script was developed to automate the processes of file creation, compression, and synchronization using rsync.

The script systematically applied gzip, zstd, and lz4 compression methods to each file type and size combination

before initiating rsync-based synchronization. The workflow captured performance data dynamically, allowing direct

comparison across different compression-rsync configurations. The goal was to observe how varying compression

strategies impacted synchronization efficiency and bandwidth consumption. During execution, it was observed that

text files compressed significantly better than binary and backup files, leading to reduced synchronization time and

bandwidth usage. Larger files (500 MB and 1 GB) exhibited noticeable performance differences between compression

algorithms, highlighting the need for intelligent algorithm selection rather than a one-size-fits-all approach.

Following script execution, performance metrics were systematically recorded in CSV format, allowing structured

data analysis. The analysis revealed that compression method selection had a significant impact on synchronization

performance, with certain algorithms performing better under specific conditions. For small files (50 MB), LZ4 was

the most efficient, as its rapid compression speed minimized overhead. For medium-sized files (500 MB), Zstd

outperformed others, striking a balance between compression speed and final size reduction, leading to improved

rsync performance. In the case of large files (1 GB and above), Zstd consistently provided the best synchronization

times, as it significantly reduced bandwidth consumption while maintaining reasonable compression efficiency. The

findings underscored the importance of adaptive compression selection rather than relying on a single compression

method for all file types and sizes.

The dataset collected in the previous phase was used to train an AI model capable of predicting the optimal

compression algorithm based on input parameters such as file type, file size, and network conditions. Several

machine learning models were evaluated, including Random Forest, Decision Tree, and Linear Regression, with their

performance assessed based on accuracy and mean squared error (MSE).

Table 6.1: Machine Learning Model Performance Evaluation

Model Train Accuracy (R²)
Test Accuracy

(R²)
MSE - Train MSE - Test

Random Forest 98.45% 97.82% 0.45 0.72

Decision Tree 99.50% 94.10% 0.38 1.05

Linear Regression 94.85% 93.72% 1.25 2.10

120

J INFORM SYSTEMS ENG, 10(19s)

The results indicated that Random Forest was the most effective model, achieving 97.82% accuracy on test data. The

Decision Tree model exhibited signs of overfitting, as its high training accuracy did not generalize as well to test data.

Linear Regression performed the weakest, as it struggled to capture complex non-linear relationships between file

types, compression algorithms, and rsync performance. Given these findings, the Random Forest model was selected

for integration into the rsync workflow.

The trained AI model was incorporated into the Bash script, allowing real-time predictions of the best compression

algorithm for each synchronization task. Instead of manually selecting a compression method, the AI-driven

approach dynamically suggested the most efficient algorithm based on the file’s characteristics. This integration

reduced synchronization time by up to 30% and bandwidth usage by 20%, ensuring optimized performance across

diverse scenarios.

To validate the effectiveness of the AI-enhanced rsync workflow, the system was tested with new datasets and real-

world scenarios. The final evaluation compared traditional rsync, AI-driven rsync, SCP, and MSCP, measuring

synchronization time and bandwidth usage. The AI-based rsync solution consistently demonstrated superior

efficiency, achieving a 30% reduction in synchronization time and a 20% decrease in bandwidth consumption

compared to standard rsync. These improvements were particularly evident for larger files, where optimal

compression selection significantly impacted performance.

The final documentation captured all experimental results, algorithm comparisons, and insights gained from AI-

driven optimization. A detailed analysis of AI predictions versus manual compression selections confirmed that the

model consistently recommended the most efficient compression method, aligning with empirical performance data.

The research findings were compiled into a structured presentation, summarizing the methodology, key observations,

and the overall impact of dynamic algorithm selection on rsync-based data replication.

OUTCOMES

The research on Dynamic Algorithm Selection for Replication using Rsync achieved several significant outcomes that

highlight the effectiveness of the proposed approach. By dynamically selecting the optimal compression algorithm—

gzip, zstd, or lz4—based on file characteristics and network conditions, the system demonstrated substantial

improvements in synchronization efficiency. For instance, synchronization time was reduced by 25-30% compared

to traditional Rsync. A 500 MB binary file synchronized with zstd took only 2.0 seconds, whereas the same file took

2.5 seconds with gzip. Bandwidth usage was also optimized, with the dynamic selection approach reducing

consumption by 15-20%, particularly in low-bandwidth scenarios. For example, a 1 GB backup file synchronized with

zstd used only 900 MB of bandwidth, compared to 950 MB with gzip. Additionally, zstd consistently provided the

best compression ratios, significantly reducing file sizes, especially for text and backup files. A 50 MB text file

compressed with zstd resulted in a compressed size of 12 MB, compared to 15 MB with gzip. The machine learning

models, particularly Random Forest, achieved high accuracy, with a training R² score of 98.45% and a testing R²

score of 97.82%, demonstrating their reliability in predicting the optimal compression algorithm. The system also

minimized computational overhead by avoiding suboptimal compression methods, leading to better resource

utilization and improved overall performance. When compared to traditional Rsync and other synchronization tools

like scp and mscp, the proposed solution consistently outperformed in terms of synchronization time and bandwidth

efficiency. For example, traditional Rsync took 3.5 seconds to synchronize a 1 GB file, while the proposed solution

took only 2.0 seconds.

CONCLUSION AND FUTURE SCOPE

The research successfully demonstrated that dynamic algorithm selection using machine learning can significantly

enhance the performance of Rsync-based data replication. By automating the selection of the optimal compression

algorithm based on file characteristics such as size and type, as well as network conditions, the system achieved

reduced synchronization time, optimized bandwidth usage, and improved resource utilization. The integration of AI

models, particularly Random Forest, provided high accuracy and generalization, making the solution practical for

real-world applications. The results underscore the importance of considering file-specific characteristics and

network conditions when selecting compression algorithms, as this approach leads to significant performance

improvements in data replication. This research contributes to the field of data replication by introducing an

intelligent, adaptive system that addresses the limitations of traditional Rsync. The proposed solution is particularly

beneficial for distributed systems and large-scale data transfers, where efficient synchronization and bandwidth

121

J INFORM SYSTEMS ENG, 10(19s)

optimization are critical. The findings highlight the potential of combining machine learning with traditional tools

like Rsync to create more efficient and adaptive systems for modern computing environments.

ACKNOWLEDGEMENT

We would like to express our sincere gratitude to all those who have supported and guided us throughout the

completion of our project titled " Dynamic Algorithm Selection for Replication using RSYNC."

Firstly, we would like to thank our guide, Dr. Sunny Sall, for his invaluable guidance, encouragement, and unwavering

support. His insights and expertise were instrumental in helping us conceptualize and execute this project

successfully.

Our sincere appreciation goes to the PG Head Dr. Manish Rana and Principal Dr. Kamal Shah of St. John College of

Engineering & Management (SJCEM), Palghar, Mumbai, India, for their continuous encouragement, vision, and

leadership. Their guidance provided us with the necessary resources and motivation to complete this project with

great enthusiasm.

We would also like to acknowledge all the faculty members and staff at SJCEM for their support, and our peers for

their valuable suggestions during the course of this research.

Lastly, we would like to thank our families for their unconditional love and support, which helped us stay focused

and motivated throughout the project.

This research paper on project would not have been possible without the collective efforts of everyone mentioned

above.

REFERENCES

[1] M. K. M. R. A. P. Ioannis Protogeros, "CargoSync: Efficient Containerd Image Updates in Low-Bandwidth Edge

Environments with Rsync-based Delta Compression," in International Conference on Edge Computing [Services

Society], 2024.

[2] T. L. J. W. Y. Z. G. X. X. C. Xiang Chen, "HA-CSD: Host and SSD Coordinated Compression for Capacity and

Performance," in International Parallel and Distributed Processing Symposium (IPDPS), 2024.

[3] V. D. Richa Arora, "Enhancing Cloud Data Deduplication with Dynamic Chunking and Public Blockchain,"

Journal of Machine and Computing, 2024.

[4] B. J. L. J. W. Z. Y. G. Z. L. Tong Sun, " Understanding Differencing Algorithms for Mobile Application Updates,"

IEEE Transactions on Mobile Computing, 2024.

[5] R. H. Reem Alhamidi, "ChronoBak: Automated cost-effective incremental backup software for large-scale data,"

Advances in Biomedical and Health Sciences, 2024.

[6] Y. K. Ryo Nakamura, "Multi-threaded scp: Easy and Fast File Transfer over SSH," in Association for Computing

Machinery, New York, NY, United States, 2023.

[7] D. S. S. Naganandhini, "Optimizing Replication of Data for Distributed Cloud Computing Environments:

Techniques, Challenges, and Research Gap," in 2nd International Conference on Edge Computing and

Applications (ICECAA), 2023.

[8] Z. Y. S. Y. M. D. K. L. Weisheng Zhang, "SPsync: Lightweight multi-terminal big spatiotemporal data

synchronization solution," Future Generation Computer Systems, 2023.

[9] W. X. X. Z. Q. X. Tao Lu, "Adaptively Compressing IoT Data on the Resource-constrained Edge," Marvell

Technology Group, 2023.

[10] C.-F. D. I. S. Romina DRUTA, "Evaluation of Remote Data Compression Methods," Studies in Informatics and

Control, 2022.

[11] C. W. Z. L. X. W. X. Z. Wen Xia, "NetSync: A Network Adaptive and Deduplication-Inspired Delta

Synchronization Approach for Cloud Storage Services," IEEE Transactions on Parallel and Distributed Systems,

2022.

[12] Q. Wang, "Cloud Data Backup and Recovery Method Based on the DELTA Compression Algorithm,"

International Conference on Industrial Application of Artificial Intelligence (IAAI), 2021.

122

J INFORM SYSTEMS ENG, 10(19s)

[13] M. D. Z. A.-A. Jianyu Chen, "FPGA Acceleration of Zstd Compression Algorithm," in International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2021.

[14] V. T. D. P. Uthayakumar Jayasankar, "A survey on data compression techniques: From the perspective of data

quality, coding schemes, data type and applications," Journal of King Saud University - Computer and

Information Sciences, 2021.

[15] P. Z. H. Y. C. Z. S. Y. Yuanrui Dong, " CDC: Classification Driven Compression for Bandwidth Efficient Edge-

Cloud Collaborative Deep Learning," Cornell University, Ithaca, NY (Cornell University location), 2020.

[16] S. Z. Xiufeng Huang, "Dynamic Compression Ratio Selection for Edge Inference Systems with Hard Deadlines,"

Internet of Things Journal, 2020.

[17] Y. Y. D. F. C. W. X. W. L. Y. Yucheng Zhang, "Improving Restore Performance for In-Line Backup System

Combining Deduplication and Delta Compression," Transactions on Parallel and Distributed Systems, 2020.

[18] K. X.-H. S. Hariharan Devarajan, "HReplica: A Dynamic Data Replication Engine with Adaptive Compression

for Multi-Tiered Storage," in International Conference on Big Data (Big Data), 2020.

[19] L. X. W. X. H. J. Z. L. X. W. X. Z. Y He, "Dsync: A lightweight delta synchronization approach for cloud storage

services," in ResearchGate Conference Paper, 2020.

NOTES ON CONTRIBUTORS

 Dr. Kamal Shah

Ph.D (Computer Engineering , Faculty of Technology Department , Mukesh Patel School of Technology

Management and Engineering.

M.E. (Electronics and Telecom, Thadomal Sahani Engg. College

B.E (Electrical REC- Sardar Vallabhbhai Patel Regional Engg College (Now NIT- Surat)

Work Experience (Teaching / Industry):30 years of teaching experience

Area of specialization: Artificial Intelligence, Machine Learning, etc.

Dr. Sunny Sall

Ph.D. (Technology) Thakur College of Engineering & technology Mumbai 2023

M.E. (Computer Engg.) First Class 2014 Mumbai

B.E. (Computer Engg.) First Class 2006 Mumbai

Work Experience (Teaching / Industry):19 years of teaching experience

Area of specialization: Internet of Things, Wireless Communication and Ad-hoc Networks., Artificial Intelligence &

Machine Learning., Computer Programming

Mr. Abhijeet Panpatil

MTech Scholar in Computer Engineering Department, St. John College of Engineering and Management

Qualification Detail: B.E (Information Technology, Palghar, Mumbai University, Maharashtra

Work Experience (Teaching / Industry): 6.3 years of industry experience

Area of specialization: Computer Science, Operating Systems, Data Centers

ORCID

1] Dr. Kamal Shah https://orcid.org/0000-0002-6369-6960

2] Dr. Sunny Sall http://orcid.org/0000-0002-8955-4952

3] Mr. Abhijeet Panpatil https://orcid.org/0009-0004-7657-6492

https://orcid.org/0000-0002-6369-6960
http://orcid.org/0000-0002-8955-4952
https://orcid.org/0009-0004-7657-6492

