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Heart disease continues to be a major factor in global deaths, highlighting the necessity for 

prediction models that maintain both accuracy and interpretability. This study introduces an 

innovative Deep Fuzzy Rule-Based Framework aimed at predicting heart disease, combining the 

analytical strengths of deep learning with the clarity provided by fuzzy logic. The framework 

utilizes deep learning for extracting features and acquiring representations, thus allowing for the 

detection of intricate patterns within extensive medical datasets. Fuzzy logic contributes to 

interpretability by producing rules that are understandable to humans, aiding in clinical 

decision-making. The methodology proposed encompasses preprocessing steps like handling 

missing values and normalization, fuzzy entropy-based feature selection for reducing 

dimensionality, and dynamic rule pruning to enhance computational efficiency. The framework 

performed quite well, achieving 92.1% accuracy, 93.3% sensitivity, 91.2% specificity, and an F1-

score of 91.8% when tested on a massive dataset of 10 lakh cases. The findings support its 

scalability and stability, which makes it a useful clinical decision support tool for early heart 

disease detection. 

Keywords: Heart disease prediction, mean imputation, fuzzy logic, deep learning, rule-based 

systems, big data analytics, fuzzy entropy. 

1. INTRODUCTION 

Heart disease ranks among the most prevalent causes of death globally, claiming millions of lives each year. 

Identifying the condition early and taking timely action is vital to reducing its toll. In recent years, advancements in 

artificial intelligence (AI) have paved the way for more sophisticated predictive models. However, challenges persist. 

Black-box AI models, like deep learning, often fall short in interpretability, a critical factor for clinical settings where 

understanding the reasoning behind predictions is paramount. On the other hand, rule-based approaches such as 

fuzzy logic provide transparency but struggle to handle the complexity and vastness of high-dimensional medical 

datasets. 

This paper proposes a novel Deep Fuzzy Rule-Based Framework that bridges this gap, offering both interpretability 

and scalability. By merging the pattern-recognition strengths of deep learning with the human-readable reasoning of 

fuzzy logic, this framework aims to enhance heart disease prediction. Deep learning enables the automated extraction 

of features from extensive datasets, while fuzzy logic generates interpretable rules that align with medical expertise. 

With the rise of big data, the healthcare industry now has access to enormous repositories of patient records, 

electronic health records (EHRs), and imaging data. Deep learning has demonstrated its effectiveness in analyzing 

these datasets, uncovering complex patterns that were previously undetectable [1]. However, clinical integration 

demands that these findings be interpretable, which is where fuzzy logic shines. Research by Ali et al. [2] and Bahani 

et al. [3] has shown the potential of hybrid models that combine fuzzy logic with machine learning for disease 

prediction. Similarly, Hameed et al. utilized fuzzy rules optimized via genetic algorithms to improve diagnostic 

accuracy, emphasizing the significance of hybrid approaches in managing medical data complexity. This study builds 

upon such advancements by evaluating the proposed framework on a large-scale dataset comprising one million 
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records. By incorporating big data analytics, it ensures scalability, while fuzzy logic addresses the need for 

interpretability. This framework strikes a balance between accuracy and decision-making transparency, making it a 

robust tool for real-world clinical applications. 

2. OBJECTIVES 

• Propose a novel Deep Fuzzy Rule-Based Framework for heart disease prediction that integrates deep learning 

for feature extraction and fuzzy logic for interpretability, addressing the dual need for accuracy and clinical decision 

support. 

• Evaluate the framework on a large-scale dataset comprising one million instances to ensure scalability and 

robustness while achieving high performance metrics such as accuracy, sensitivity, and specificity for reliable heart 

disease diagnosis. 

• Develop a practical clinical decision support system (CDSS) that balances predictive accuracy with human-

understandable rules, improving interpretability and supporting healthcare professionals in early heart disease 

diagnosis and decision-making. 

3. RELATED WORK 

This literature review examines the use of fuzzy logic (FL) and hybrid intelligent systems in diagnosing and predicting 

heart disease, emphasizing recent developments. The analyzed studies reveal an increasing trend of combining FL 

with machine learning, neural networks, genetic algorithms, and other methodologies to enhance diagnostic 

precision, manage the intrinsic uncertainty in medical data, and offer more interpretable outcomes for healthcare 

professionals. Ali et al. [5] introduced an advanced system that integrates IoT-based predictive analytics with a multi-

tiered fuzzy rule generation technique and an optimized recurrent neural network. By aggregating data from various 

sources into a data lake and utilizing features labeled by experts, their system showed enhanced accuracy and 

efficiency in predicting coronary heart disease compared to traditional methods.  

Sreedran et al. [6] concentrated on a prediction model based on a fuzzy system that classifies risk factors into low, 

medium, or high risk levels through fuzzy rules. When assessed using standard machine learning metrics, the system 

attained an accuracy of 88.2%, sensitivity of 78.8%, specificity of 21.2%, and an F1 score of 80.9%, highlighting its 

potential as a cost-effective and dependable option for heart disease prediction. Guimaraes et al. [7] created an 

evolving fuzzy neural network model that employs null-unineurons for diagnosing coronary artery disease. This 

structure enabled the derivation of fuzzy rules, yielding valuable linguistic insights. By applying the model to an 

extensive dataset and benchmarking it against leading evolving fuzzy systems, the authors obtained results that were 

competitive while also providing substantial interpretations of the problem's evolution.  

Jha et al. [8] developed a Neural Fuzzy Inference System (NFIS) aimed at predicting the likelihood of heart attacks 

using the Cleveland dataset. Their system combined error calculation, learning of membership functions, and a vast 

array of fuzzification rules (exceeding 13,000) for improved decision-making, achieving an accuracy rate of 94%. 

They also recommended that the approach be expanded to incorporate hardware integration for automated alert 

systems. Kaur and Khehra [9] conducted an extensive review of fuzzy logic (FL) and hybrid methods for predicting 

the risk of heart disease since 2010, examining their advantages, accuracy, and system requirements. They discussed 

the risks of heart failure linked to coronary artery blockages and emphasized the need for future models that could 

enhance patient care, particularly through improved connectivity among healthcare facilities.  

Rahman et al. [10] presented an innovative method that employs a fuzzy parameterized fuzzy hypersoft set (∆-set) in 

conjunction with Riesz Summability to address ambiguous attributes and sub-attributes within medical data. They 

proposed and tested two novel decision-support algorithms using the Cleveland dataset, which showcased reliable 

outcomes with fewer evaluation characteristics, thereby ensuring adaptability and dependability in medical decision-

making. 

Tanmay [11] used the UCI dataset to create a Mamdani fuzzy inference system (FRBF) for the diagnosis of heart 

disease. With the use of 554 fuzzy rules, 10 input attributes, and one output attribute, the framework achieved 87.04% 

sensitivity and 95.2% accuracy. This framework's effectiveness as an early-stage diagnostic tool was demonstrated by 

comparative analysis, which showed that it performed better than current techniques. An interpretable fuzzy rule-

based system for the diagnosis of cardiac illness was designed in 2021 by Bahani et al. [12] using a unique approach 

that combined fuzzy clustering and linguistic modifiers. They evaluated their system's performance against 
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conventional machine learning models (ANN, SVM, KNN, Naïve Bayes, Random Forest) using datasets from 

Cleveland, Hungary, and Long Beach, Virginia. They found that their system performed better in terms of precision 

and interpretability, which can boost clinician confidence in diagnosis.  

For feature selection, Hameed et al. [13] suggested a weighted fuzzy rule framework in conjunction with a genetic 

algorithm. By using dataset highlights to construct the fuzzy framework, they outperformed previous systems in 

terms of sensitivity, specificity, and accuracy, indicating increased risk forecasting abilities. Muhammad and 

Algehyne [14] used the enhanced C4.5 data mining approach to build the knowledge foundation for their fuzzy expert 

system for CAD diagnosis in Nigeria. High performance measures, such as 94.55% accuracy, 95.35% sensitivity, and 

95.00% specificity, were attained by the system, indicating its dependability in CAD case diagnosis within a certain 

population.  

An AGAFL model was presented by Reddy et al. [15], which combined fuzzy rule-based classification optimised by 

genetic algorithms with rough set theory for feature selection. This strategy sought to support the early diagnosis of 

heart illness, and testing findings on UCI heart disease datasets demonstrated that the model performed better than 

current techniques. To help doctors diagnose cardiac problems, Van Pham et al. [16] created an expert system that 

combines fuzzy rules and deep learning neural networks. By employing fuzzy rules in the knowledge base to assess 

uncertainty and permitting updates according to physician preferences, the system outperformed traditional neural 

networks in terms of diagnostic accuracy and confidence.  

A self-learning fuzzy rule-based system (SL-FRBS) was created by Priyatharshini and Chitrakala [17] to use 

structured clinical data (EHRs) to determine the severity of coronary disease. The system successfully managed 

clinical data uncertainties by using a fuzzy inference system (FIS) for risk-level assessment and a decision tree-based 

approach for automatic rule construction. This allowed for precise risk prediction and diagnosis.  

A hybrid fuzzy diagnostic system was created by Paul et al. [18] by combining Modified Dynamic Multi-Swarm 

Particle Swarm Optimisation (MDMS-PSO) with a Genetic Algorithm (GA). They showed enhanced diagnostic 

accuracy on real-life datasets by preprocessing datasets, choosing useful features through statistical techniques, 

creating weighted fuzzy rules with GA, and optimising membership functions with MDMS-PSO. This effectively 

addressed vagueness and uncertainty. The RBFL prediction technique, which uses fuzzy system design, fuzzy rule 

generation using FFBAT, and feature reduction with LPP, was first presented by Reddy and Khare [19] for the 

categorisation of heart disease. The approach outperformed then-current techniques with an accuracy of 76.51% 

when validated using UCI datasets. 

4. METHODOLOGY 

 

 

  

 

 

 

 

 

 

 

 

Fig 1: Proposed Framework 
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4.1 Dataset 

The dataset comprises a total of 1 million records and includes 14 attributes, each detailing various health-related 

factors and characteristics of individuals from openml.org. Among the patients, 44.41% have been diagnosed with 

heart disease, while 55.59% do not. This fairly balanced class distribution minimizes significant bias toward either 

category. Such equilibrium is beneficial for training machine learning models, as it lowers the chances of the model 

overfitting to the majority class and improves the reliability of predictions for both positive and negative results. This 

balanced structure facilitates the creation of strong and adaptable models for predicting heart disease risk and aiding 

clinical decision-making. 

Table 1: Dataset Description 

 

4.2 Preprocessing Techniques 

A. Missing Data: 

Mean imputation is an easy and efficient technique for dealing with missing data. In this method, absent values within 

a dataset are substituted with the mean of the available values for that specific feature. This technique is appropriate 

for data that is missing at random. 

Mean Imputation: 

𝑥𝑖 = 
∑ 𝑥𝑗𝑛

𝑗=1

𝑛
 for 𝑥𝑗 ≠ missing, where 𝑛 represents the count of non-missing values. 

B. Normalize Features 

Min-max scaling is a popular technique for feature scaling that usually converts the numerical values of features into 

a designated range of [0, 1]. This transformation is done by subtracting the feature's minimum value and then 

dividing by the range, which is the difference between the maximum and minimum values. As a result, all features 

are scaled proportionately while maintaining their relative relationships. The formula used for Min-Max Scaling is: 

 Xscaled =  
X − Xmin

Xmax − Xmin
 

Where 𝑋min is the feature's minimal value, 𝑋max is its highest value, and 𝑋 is the feature's original value. 
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Neural networks benefit greatly from min-max scaling since it guarantees that inputs fall inside a consistent range, 

such [0, 1]. This homogeneity keeps features with wider ranges from controlling the learning process and enhances 

the convergence of gradient-based optimization techniques. 

4.3 Fuzzy Entropy-Based Feature Selection 

Fuzzy entropy quantifies the level of uncertainty within a feature by assessing the degrees of membership of its values 

in specific fuzzy sets. Features that have lower entropy values are deemed more informative since they display 

reduced uncertainty and stronger relationships with the target variable. This method is in line with the principles of 

fuzzy logic, utilizing fuzzy membership functions to reflect the inherent ambiguity and uncertainty present in medical 

data.   

The process for feature selection based on fuzzy entropy consists of the following steps:   

1. Fuzzification: Transform the continuous feature values into fuzzy sets using membership functions such as 

triangular or trapezoidal.   

2. Entropy Calculation: Determine the fuzzy entropy for each feature according to its membership degrees across the 

fuzzy sets.   

3. Feature Ranking: Arrange features in order of their entropy values, where lower entropy signifies greater relevance.   

4. Feature Selection: Keep the features that have the lowest entropy values for inclusion in the predictive model.   

The fuzzy entropy 𝐸𝑓 for a feature 𝑓 is calculated as: 

𝑬𝒇 =  ∑ 𝝁𝒇(𝒙𝒊). 𝒍𝒐𝒈(𝝁𝒇 
𝑵
𝒊=𝟏 (𝒙𝒊)) 

Where 𝐸𝑓  represents the fuzzy entropy associated with a particular feature 𝑓, 𝜇𝑓(𝑥𝑖) denotes the membership degree 

of the ith data point for feature f within its relevant fuzzy set, 𝑥𝑖 i indicates the value of the ith data point for that feature, 

N is the total number of data points. 

Among the 13 features present in the dataset, 9 have been identified as key predictors for heart disease using the 

Fuzzy Entropy-Based Feature Selection approach. These features show low fuzzy entropy, suggesting they offer 

crucial and dependable information for the predictive model, thereby reducing uncertainty and redundancy. The 

chosen features comprise Age, Chest, Resting_blood_pressure, Serum_cholestoral, 

Maximum_heart_rate_achieved, Oldpeak, Slope, Number_of_major_vessels, and Thal. 

Table 2: Selected features based on their fuzzy entropy values 

Feature Fuzzy Entropy 

Value 

Rank 

Age 0.12 1 

Chest Pain Type 0.15 2 

Resting Blood Pressure 0.18 3 

Serum Cholesterol 0.20 4 

Maximum Heart Rate 

Achieved 

0.22 5 

Oldpeak (ST Depression) 0.25 6 

Slope of ST Segment 0.28 7 

Number of Major Vessels 0.30 8 

Thalassemia 0.33 9 

4.4 Fuzzification 

Fuzzification converts precise feature values into fuzzy values by using membership functions. Each feature is 

categorized using linguistic terms such as low, medium, and high, and the degrees of membership are computed. For 

the chosen features, membership functions are established based on medical reference standards and the expertise 

of professionals. 
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Table 3: The key features and their fuzzy sets 

Feature Fuzzy Sets Range / Medical Reference Values 

Age Young, Middle-aged, Old Young (<40), Middle-aged (40–60), Old 

(>60) 

Chest (Chest Pain Type) Typical, Atypical, 

Asymptomatic 

Typical (1), Atypical (2), Asymptomatic (3) 

Resting Blood Pressure Low, Normal, High Low (<90 mmHg), Normal (90–120 mmHg), 

High (>120 mmHg) 

Serum Cholesterol Low, Normal, High Low (<200 mg/dL), Normal (200–240 

mg/dL), High (>240 mg/dL) 

Maximum Heart Rate 

Achieved 

Low, Normal, High Low (<100 bpm), Normal (100–160 bpm), 

High (>160 bpm) 

Oldpeak (ST Depression) Normal, Slight, Severe Normal (0), Slight (0.1–2), Severe (>2) 

Slope (ST Segment Slope) Upsloping, Flat, 

Downsloping 

Upsloping (1), Flat (2), Downsloping (3) 

Number of Major Vessels None, Few, Many None (0), Few (1–2), Many (≥3) 

Thal (Thalassemia) Normal, Fixed Defect, 

Reversible Defect 

Normal (3), Fixed (6), Reversible (7) 

 

For a given feature 𝑓 and value  

𝑥𝑖, the membership degree in a fuzzy set 𝑆𝑘 is determined using: 

 

Where 𝑎 and 𝑏 define the range of the fuzzy set.  

4.5 Rule Generation 

In a fuzzy rule-based system, rules are formulated by merging fuzzy sets from the chosen features to correlate input 

conditions with an output. These rules adopt an "if-then" format and are essential to the heart disease prediction 

Framework. Each rule illustrates a logical connection between the features and the potential risk of heart disease. 

The overall count of rules is determined as: 

 

Where F represents the count of features, while Nf denotes the quantity of fuzzy sets associated with each feature. 

With 9 features and an average of 3 fuzzy sets per feature, the theoretical maximum number of rules is 39 = 19,683. 

4.6 Rule Pruning 

In a fuzzy rule-based system, generating rules typically leads to a large and complicated rule set, many of which may 

be unnecessary or irrelevant. To improve the efficiency and clinical usefulness of the system, rule pruning becomes a 

vital step. This procedure aims to keep only the most valuable rules while discarding those that offer minimal benefit 

or conflict with medical knowledge. Rule pruning can be tackled from several viewpoints to ensure a robust system.   

o Initially, eliminate rules with low membership degrees to reduce noise and computational burden.   

o Next, verify the remaining rules against medical knowledge to confirm their clinical relevance.   

o Eventually, evaluate the predictive effectiveness of each rule using validation data to select only the most 

impactful rules.   
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Following the pruning process, only significant and clinically pertinent rules are preserved, guaranteeing the system's 

efficiency and interpretability. From the original expansive rule set, 300 rules are finalized, representing crucial and 

impactful combinations of the chosen features. These rules serve as the basis of the fuzzy inference system, delivering 

accurate and dependable predictions for heart disease while ensuring computational simplicity.   

 

4.7 Fuzzified Data for Deep Learning Neural Network 

After the rule pruning procedure, a strong collection of 300 relevant and clinically significant rules is established. 

These rules are derived from 9 critical features chosen using the Fuzzy Entropy-Based Feature Selection technique. 

The subsequent step involves utilizing the pruned rules and fuzzified data within a Deep Neural Network (DNN), 

merging the structured clarity of fuzzy logic with the predictive strength of deep learning. 

A. Fuzzified Data Representation 

The crisp feature values from the dataset are converted into fuzzified values utilizing established membership 

functions. For each of the 9 chosen features, linguistic categories such as low, medium, and high are assigned, and 

the degrees of membership are determined. These degrees of membership create a vector for every data point, 

capturing its representation within the fuzzy domain. Consequently, the fuzzified dataset FD is made up of 

membership vectors that correspond to every data point, integrating the structured insights obtained from the fuzzy 

rule-based system. This enhanced representation serves as the input for the DNN. 

B. Deep Neural Network Architecture with Fuzzified Data 

The DNN processes the fuzzified information through three primary components: the input layer, hidden layers, and 

output layer. Each layer plays a role in extracting and refining patterns from the data to ensure precise predictions.   

Input Layer:   

The input layer receives the fuzzified dataset FD as its input. Each data point is represented as a vector of membership 

degrees corresponding to the chosen fuzzy sets. For a dataset containing 9 features and 3 fuzzy sets per feature, the 

input layer consists of 27 nodes (9 features × 3 fuzzy sets). The input vector is expressed as: 

ℎ0 = 𝐹𝐷 

Where ℎ0  represents the input to the network 

Hidden Layer: 

The hidden layers are essential for transforming features and extracting patterns. Each hidden layer takes the output 

from the preceding layer, applying a weighted sum of inputs along with a non-linear activation function. The 

calculation within the lth hidden layer can be expressed as: 
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ℎ𝑙   = 𝜎(𝑊𝑙 ℎ𝑙−1 + 𝑏𝑙) 

where: 

• 𝑊𝑙  denotes the weight matrix for layer l, 

• 𝑏𝑙 signifies the bias vector for layer l, 

• ℎ𝑙−1  represents the output from the previous layer , 

• 𝜎 stands for the activation function, commonly ReLU.  . 

These hidden layers iteratively refine the fuzzified input, uncovering intricate, non-linear patterns in the data while 

maintaining the structured insights provided by the fuzzy rule-based system.   

Output Layer:   

The output layer produces the final predictions, indicating the probability of heart disease. In the case of binary 

classification, a single neuron utilizing a sigmoid activation function is employed. The weighted sum of inputs 

directed to the output layer is calculated as: 

𝑧  = 𝜎(𝑊0ℎ𝐿−1 +  𝑏0) 

where: 

• 𝑊0 represents the weight vector for the output layer, 

• 𝑏0 denotes the bias for the output layer, 

• ℎ𝐿−1  indicates the output from the final hidden layer 

The sigmoid activation function converts 𝑧 into a probability value:   

𝑃 =  
1

1 + 𝑒−𝑧
 

where P indicates the predicted probability of having heart disease.: 

• P>0.5: indicated presence of heart disease. 

• P≤0.5: indicated absence of heart disease. 

 

Learning in Fuzzified Neural Networks 

The DNN is trained through the backpropagation method, which has been adapted for fuzzy inputs, weights, and 

biases. The cost function is formulated as follows: 
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𝑬𝒑 = ∑
𝟏

𝟐

𝒏
𝒌=𝟏  ( 𝑻𝒑𝒌 - 𝑶𝒑𝒌)2  

Where 𝑇𝑝𝑘 is the target value and 𝑂𝑝𝑘 is the network’s output 

Weights and biases are updated using: 

𝑊𝑗𝑖(t+1) = 𝑊𝑗𝑖(t) + ∆𝑊𝑗𝑖(𝑡) 

Where 

∆𝑊𝑗𝑖(𝑡) =  −η 
𝜕𝐸𝑝

𝜕𝑊𝑗𝑖

+  𝛼∆𝑊𝑗𝑖(𝑡 − 1) 

and η is the learning rate , 𝛼 is the momentum factor and ∆𝑊𝑗𝑖(𝑡 − 1) is the previous weight adjustment 

V. EXPERIMENTAL EVALUATION 

The effectiveness of the suggested Fuzzified Deep Neural Network (DNN) for predicting heart disease was assessed 

using critical metrics such as accuracy, sensitivity (recall), specificity, and F1-measure. These metrics were selected 

to thoroughly evaluate the system's capacity to accurately identify both positive and negative instances.  

Accuracy evaluates the proportion of correctly diagnosed instances (both positive and negative) relative to the overall 

number of cases. It is computed using the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 +  𝑇𝑃 +  𝐹𝑁 +  𝐹𝑃
 

 

In the proposed system, an accuracy of 92.1% was attained, demonstrating the model's effectiveness in correctly 

classifying cases of heart disease.  

Sensitivity, often referred to as recall, measures the proportion of actual positive cases that the system accurately 

identifies. It is determined using: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

 𝑇𝑃 +  𝐹𝑁 
 

The Fuzzified DNN reached a sensitivity rate of 93.3%, showcasing its effectiveness in identifying patients with heart 

disease. 

Specificity represents the proportion of true negative cases that the system accurately identifies. It is calculated using: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

 𝑇𝑁 + 𝐹𝑃 
 

The system demonstrated impressive efficacy in accurately recognizing healthy people without heart disease, 

achieving a specificity of 91.2%. 

The F1-Measure serves as the harmonic mean of sensitivity and specificity, offering a comprehensive assessment of 

the model's precision and recall. It can be computed using: 

𝐹1 =  2 .
Sensitivity ⋅ Specificity

Sensitivity +  Specificity 
 

The Fuzzified DNN achieved an F1-score of 91.8%, highlighting its balance between detecting true positives and 

avoiding false positives. 

Table 4 presents a comparison between the Fuzzified DNN model and several widely utilized baseline models, 

including Logistic Regression (LR), Decision Tree (DT), and a Standard DNN that lacks fuzzification, offering a direct 

evaluation of essential performance metrics such as accuracy, precision, recall, specificity, and F1-score. 
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Table 4: Model-Wise Performance Metrics Comparison 

Algorithm Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

F1-Score 

(%) 

Logistic 

Regression (LR) 

81.5 79.0 83.2 78.5 81.0 

Decision Tree 

(DT) 

78.4 76.5 80.1 75.0 78.2 

Standard DNN 85.3 83.0 86.7 82.0 84.8 

Fuzzified DNN 92.1 90.5 93.3 91.2 91.8 

 

 

Fig 2: Comparison of Model-Wise Performance Metrics  

The results indicate that the Fuzzified DNN, which integrates fuzzy logic with deep learning, is both dependable and 

efficient for predicting heart disease. Its elevated sensitivity and specificity guarantee that the system can be applied 

in clinical environments, significantly reducing the chances of false negatives and false positives. This well-balanced 

performance positions it as a crucial resource for early diagnosis and informed decision-making in healthcare. 

Table 5: Metric-Wise Breakdown for Fuzzified DNN 

Metric Training Set 

(%) 

Test Set (%) 

 

Accuracy 95.2 92.1 

Precision 94.5 90.5 

Recall 96.3 93.3 

F1-Score 95.4 91.8 

 

Table 5 illustrates the performance of the Fuzzified Deep Neural Network (DNN) during both the training and testing 

stages. During training, the model reached an accuracy of 95.2%, with a precision of 94.5%, a recall (sensitivity) of 

96.3%, and a specificity of 94.1%, culminating in a balanced F1-score of 95.4%. In the testing phase, it showcased 

strong generalizability with an accuracy of 92.1%, a precision of 90.5%, a recall of 93.3%, a specificity of 91.2%, and 

an F1-score of 91.8%. These findings highlight the model's strength, precision, and capacity to effectively manage 

unfamiliar data, establishing it as a dependable tool for predicting heart disease. 
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VI. CONCLUSION 

This paper presents a new framework combining deep fuzzy rule-based systems for predicting heart disease, tackling 

the intertwined issues of accuracy and interpretability in clinical decision-making. By merging deep learning's feature 

extraction capabilities with the explanatory strengths of fuzzy logic, the proposed approach strikes a balance between 

scalability and user-centered decision support. Data preprocessing methods like mean imputation and normalization 

ensure that the dataset is reliable, while fuzzy entropy-based feature selection and rule pruning improve 

computational efficiency and interpretability. In evaluations using a substantial dataset of one million instances, the 

framework showcased exceptional performance, achieving an accuracy of 92.1%, sensitivity of 93.3%, specificity of 

91.2%, and an F1-score of 91.8%. These findings affirm the framework's robustness and its utility in clinical settings, 

positioning it as an important resource for the early diagnosis of heart disease. Future research will aim to integrate 

real-time information from wearable technology and IoT-enabled healthcare systems to enhance the immediacy and 

responsiveness of predictions. The exploration of personalized prediction models by integrating patient-specific 

information, such as genetic data, lifestyle choices, and existing health conditions, will also be undertaken. 
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