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Sweet corn crops have a significant detrimental impact on agricultural productivity and food 

security because of their high vulnerability to several diseases. A timely and accurate illness 

diagnosis is essential for both disease treatment and yield enhancement. This paper suggests an 

automated method for classifying and identifying sweet corn diseases from leaf pictures that is 

based on convolutional neural networks (CNNs). The collection, which is separated into three 

categories—common rust, northern corn leaf blight, and maize dwarf mosaic virus—includes 

images of both healthy and damaged sweet corn leaves. Preprocessing techniques including 

scaling, normalization, and augmentation are applied to the images in order to increase the 

model's durability. The CNN design uses many convolutional layers, batch normalization, and 

dropout to maximize feature extraction and reduce overfitting. The categorical cross-entropy loss 

function and the Adam optimizer are used to train the model in order to achieve high 

classification accuracy. Performance is evaluated using precision, recall, F1-score, and confusion 

matrix analysis. Experimental results show that the proposed CNN model outperforms both pre-

trained architectures and traditional machine learning methods in the classification of sweet 

corn illnesses. By facilitating proactive crop management and real-time disease identification, 

this work represents a major step toward incorporating AI-driven solutions in smart agriculture. 

Future studies will concentrate on developing a mobile application for field deployment in the 

actual world, adding attention methods, and growing the dataset. 

Keywords: Sweet corn, convolutional neural networks (CNNs), Common rust, Northern Corn 

leaf blight, Maize dwarf mosaic. 

 

I. INTRODUCTION 

Zea mays var. saccharata, often known as sweet corn, is a widely grown cereal crop valued for both its economic 

importance and its exceptional nutritional content. However, a number of plant illnesses brought on by bacterial, 

viral, and fungal pathogens commonly threaten its output. Farmers suffer large financial losses as a result of these 

diseases' severe effects on crop quality, yield, and market value. For prompt intervention and efficient management, 

early and precise diagnosis of plant diseases is essential. Agricultural specialists conducting manual inspections, 

which are usually time-consuming, labor-intensive, and prone to human error, have historically been the mainstay 

of disease detection. Furthermore, physical examination is not feasible due to the enormous number of plants that 

require monitoring in large-scale farming. To overcome these challenges, a scalable, automated, and accurate way of 

recognizing sweet corn illnesses is offered via deep learning and computer vision techniques. [5] 

Applications for image-based classification, such the identification of plant diseases, have been transformed by recent 

developments in deep learning, especially Convolutional Neural Networks (CNNs). The requirement for manual 

feature extraction is eliminated by CNNs' ability to automatically extract pertinent characteristics from images. This 

enables them to accurately identify good and damaged crops and spot intricate patterns in images of plant leaves. 

CNNs directly extract multi-level features from raw images, including color changes, texture differences, and disease-

specific patterns, in contrast to conventional machine learning methods that rely on artificial features.  CNNs have 

surpassed traditional classifiers in the identification of plant diseases due to their capacity to learn hierarchical 

representations.[10] 
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Figure 1: Workflow of Sweet corn disease Detection using CNN 

Northern Maize Leaf Blight (Exserohilum turcicum), Common Rust (Puccinia sorghi), and Maize Dwarf Mosaic Virus 

(MDMV) are the most prevalent diseases that impact sweet maize. Common rust damages plants and decreases 

photosynthesis; it is characterized by orange-brown pustules on leaves. Northern Corn Leaf Blight is characterized 

by long, cigar-shaped, gray lesions that hinder plant growth and make the crop susceptible to other diseases. MDMV 

causes leaf bending, mosaic-like discoloration, and delayed development, all of which significantly reduce crop 

quality and output. Early identification is essential to effectively treat these illnesses and prevent their spread. Even 

though early detection is necessary, conventional sickness testing procedures have a number of drawbacks. First of 

all, visual inspection is inefficient and time-consuming, especially for large farms where it may be difficult to spot 

early signs of sickness. Second, diagnosing problems by hand is expensive and necessitates specialized knowledge 

that is frequently unavailable in isolated farming areas. Lastly, because various specialists may have differing 

opinions on symptoms, subjectivity in assessment could lead to contradicting results. An automated, AI-driven 

method that offers reliable and accurate disease identification is desperately needed in light of these difficulties. [14] 

 

Figure 2: Example for Healthy, Infected and Spot Detected in the sweet corn leaves 

With a focus on several important goals, this paper suggests a deep learning-based system for categorizing sweet corn 

diseases using CNNs in order to address these issues. To enhance model generalization and provide a varied depiction 

of different disease states, a comprehensive library of photos of sweet corn leaves is first created. To boost variability 

and avoid overfitting, high-quality photos are gathered and preprocessed using augmentation techniques. A CNN-

based classification model is then put into practice with the aim of correctly distinguishing between various sweet 

corn illnesses and automatically extracting pertinent information from images. Deep feature learning is used to train 

and optimize the model for accurate categorization. Key performance measures include ROC curve analysis, F1-score, 

accuracy, precision, recall, and confusion matrix offer a comprehensive assessment of the system's resilience and 

performance. The proposed CNN-based method is also compared with other traditional machine learning techniques 

such as Support Vector Machines (SVM) and Random Forest classifiers to show its superior classification efficiency 

and accuracy. The project aims to achieve these objectives in order to create a highly accurate and scalable disease 

detection system that will significantly improve precision and smart farming applications.[18] 

Our goal in this work is to use deep learning to create an automated illness classification system for sweet corn that 

will enable real-time, high-accuracy detection and do away with the need for manual diagnosis. Imagine a situation 

where a farmer discovers abnormal lesions and discoloration on the leaves of sweet corn. In the past, the farmer 

would have to manually examine the plants, seek advice from an agricultural specialist, and sometimes wait for the 

results of laboratory tests—a process that is expensive and time-consuming. Furthermore, misdiagnosis or a delay in 

action can cause the disease to progress and result in significant yield losses. We provide a CNN-based classification 

algorithm that can precisely identify illnesses in sweet corn leaf photos in order to overcome these difficulties. 

Creating a high-quality dataset including images of both healthy and sick leaves is the first stage. After that, the photos 

undergo preprocessing to enhance contrast, remove noise, and utilize augmentation methods like rotation and 

flipping to fortify the model. [24] 
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The CNN model is trained to automatically extract information like color variations, lesion patterns, and texture 

differences in order to reliably identify a variety of ailments, including Common Rust, Northern Corn Leaf Blight, 

and Maize Dwarf Mosaic Virus. The model can classify new photos once it has been trained to identify the type of leaf 

and determine whether it is healthy or diseased. The application also provides visual heatmaps that show impacted 

places and confidence scores to guarantee classification transparency.  We assess the model's performance using 

important measures including accuracy, precision, recall, F1-score, confusion matrix, and ROC curves to make sure 

it is reliable and strong. Additionally, we illustrate the benefit of deep learning in plant disease classification by 

contrasting our CNN-based method with more conventional machine learning approaches like Support Vector 

Machines (SVM) and Decision Trees. In the end, our research establishes the groundwork for an AI-powered real-

time diagnostic tool that may be included in intelligent agricultural systems. Using the model as a web-based or 

mobile application, farmers can simply snap a photo of a sweet corn leaf, upload it, and receive an instant diagnosis 

of the disease and treatment recommendations. For farmers worldwide, this strategy increases the efficacy, 

affordability, and accessibility of disease management by promoting precision agriculture, reducing crop losses, and 

facilitating early detection.[21] 

2. LITERATURE REVIEW 

Computer vision technology has developed at a never-before-seen pace over the last 10 years and is currently 

employed in a wide range of other industries, including agriculture. Artificial intelligence and computer vision have 

greatly enhanced agricultural operations, especially in the areas of early disease detection and crop health 

monitoring. Reducing losses, improving agricultural produce efficiency, and guaranteeing sustainable farming 

methods all depend on early disease identification. Convolutional neural networks (CNNs), which perform better 

than conventional machine learning methods, have transformed image-based analysis in recent years.  One of CNNs' 

primary advantages is their ability to automatically extract significant features, which is essential for image 

recognition and categorization. Unlike conventional techniques that depend on manually produced features like 

color, texture, and morphology, CNNs automatically recognize the most relevant patterns in an image, improving 

classification accuracy. 

Numerous CNN patterns have been created and are frequently used for the classification of plant diseases due to 

their efficacy. Among the popular architectures are DenseNet (Huang et al., 2017), ResNet (He et al., 2016), 

GoogLeNet (Szegedy et al., 2015), AlexNet (Krizhevsky et al., 2012), and VGG16 and VGG19 (Simonyan and 

Zisserman, 2014). These structures have been widely used in plant disease diagnosis because of their exceptional 

performance in image-based tasks and high classification accuracy levels for both healthy and diseased leaves. Strong 

deep learning models that can handle actual agricultural problems have been made possible by the growing quantity 

of labeled plant disease datasets and ongoing developments in CNNs.[28] 

The diagnosis and classification of corn leaf diseases using machine learning and image processing techniques has 

been the subject of numerous studies. Alehegn (2020) classified maize leaf diseases using a technique based on digital 

image analysis. In order to classify the data using machine learning approaches, the study focused on identifying 

morphological, color, and texture properties in photos of maize leaves. Eight hundred images were collected and 

categorized into four groups: common rust, leaf blight, leaf spot, and healthy leaves. Twenty-two features were taken 

from each of the 200 images in each category in order to classify them.  K-Nearest Neighbors (KNN) and Artificial 

Neural Networks (ANN) were the two machine learning models applied to this dataset. The results demonstrated 

that ANN outperformed KNN with an impressive classification accuracy of 94.4%, highlighting the benefits of deep 

learning over more traditional machine learning approaches. 

Mohanty et al. (2016) conducted another noteworthy investigation with a publicly accessible dataset of 54,306 photos 

of both healthy and sick plant leaves. To categorize 26 plant diseases and 14 crop types, the researchers used a deep 

CNN network. They used both training from scratch and transfer learning strategies in their research using the CNN 

architectures AlexNet and GoogLeNet. CNNs may generalize across a variety of plant species and disease types, as 

demonstrated by the final model's remarkable accuracy of 99.35% on a held-out test set. This study was revolutionary 

because it showed how deep learning may outperform conventional techniques in the classification of plant diseases 

based on a sizable dataset. Arora et al. (2020) used an ensemble-based decision tree model called Deep Forest to 

classify maize leaf disease in a novel method. More traditional machine learning classifiers such as Support Vector 

Machines (SVM), Random Forest, Logistic Regression, and KNN were contrasted with Deep Forest in the study. 

There were 100 photos in each of the four categories that made up the dataset used in the study. With an accuracy of 
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96.26%, the final Deep Forest model, which included 1,000 trees, four forests, and three grains, outperformed the 

baseline machine learning models after hyperparameter adjustments. 

Researchers have looked into object detection algorithms for disease identification in addition to more conventional 

classification methods. The study by Liu and Wang (2020), which created an enhanced YOLOv3 algorithm for 

identifying tomato illnesses and insect pests, is one noteworthy example. By adding multi-scale feature detection, 

bounding box clustering, and multi-scale training, the researchers improved YOLOv3. The dataset included 146,912 

bounding boxes identifying afflicted areas and 15,000 pictures depicting 12 distinct tomato diseases. With a mean 

Average Precision (mAP) of 92.39%, the suggested YOLOv3 model performed better than earlier object detection 

models like Single Shot Detector (SSD) and Faster R-CNN. This development showed how well improved object 

identification methods can identify plant diseases, especially in intricate agricultural settings. 

In a similar vein, Fuentes et al. (2017) suggested a deep learning-based detector for real-time tomato disease and pest 

detection. Three distinct object detection architectures were assessed in their study: Single Shot Multibox Detector 

(SSD), Region-based Fully Convolutional Network (R-FCN), and Faster R-CNN. Deep feature extractors such as 

VGGNet and Residual Networks (ResNet) were used in conjunction with each of these detectors. The dataset 

employed in this work contained a number of difficult conditions, including backdrop complexity, small item sizes, 

and fluctuations in illumination. According to the results, a plain CNN architecture outperformed R-FCN with 

ResNet-50, attaining a mAP of 85.98%, even though deeper networks did better overall. This study made clear how 

crucial it is to strike a balance between network complexity and depth when developing plant disease detection 

models for real-time applications. 

Notwithstanding the impressive advancements in the classification of plant diseases, a number of obstacles still stand 

in the way of the useful use of these models in actual situations. Because plant illnesses frequently manifest differently 

depending on environmental factors, plant growth phases, and genetic changes, one of the main issues is the variety 

in disease symptoms. Model performance can also be greatly impacted by occlusions and differences in image quality 

brought on by dim illumination, shadows, and similar backdrop textures. The localization of diseases in the image is 

another significant problem because some diseases only show up in small, localized areas, which makes it challenging 

to detect them with conventional CNN designs. Moreover, acquiring large-scale labeled datasets for every potential 

plant disease is still difficult, and many plant species and diseases necessitate comprehensive domain-specific 

datasets. 

We propose a deep learning-based method for classifying sweet corn diseases that uses CNNs to provide scalable, 

real-time, and extremely accurate disease diagnosis in order to get around these limitations. By incorporating 

attention processes, improving CNN topologies, and utilizing advanced data augmentation approaches, we aim to 

address the present difficulties in plant disease categorization. Additionally, to highlight affected areas and enhance 

end-user interpretability, our proposed model will make use of explainability strategies, such as Grad-CAM 

heatmaps. By building on earlier research and addressing existing limitations, this project aims to develop a practical, 

AI-driven system for automated sweet corn disease identification, assisting farmers and promoting precision 

agriculture. 

3. CLASSIFICATION OF DISEASES 

Sweet corn, like many other crops, is highly susceptible to a variety of diseases that can significantly impact yield and 

quality. These diseases, which affect plants at different stages of growth, are mostly caused by bacterial, viral, and 

fungal infections. Conventional disease detection techniques depend on expert evaluation and visual inspection, 

which are labor-intensive, time-consuming, and prone to human error. As deep learning and artificial intelligence 

have advanced, Convolutional Neural Networks (CNNs) have emerged as a reliable and efficient technique for 

automated disease classification. Because CNNs can extract fine-grained data like texture, color changes, and lesion 

patterns—all of which are essential for successful classification—they have shown great efficacy in image-based plant 

disease identification. This study uses a CNN-based method to categorize three important sweet corn diseases: Gray 

Leaf Spot, Northern Leaf Blight, and Common Rust.[8] 

3.1 Common Rust: Puccinia sorghi produces common rust, a damaging fungal disease that damages sweet corn. 

The appearance of tiny, reddish-brown pustules on the upper and undersides of the leaf helps identify it. As the spores 

proliferate, these pustules gradually turn black, and if treatment is not received, severe necrosis will result. In warm, 

humid weather, usually between 15 and 25 degrees Celsius, the disease spreads quickly. Common rust hinders the 
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plant's ability to perform photosynthesis, which results in early leaf senescence and reduced grain filling. It is difficult 

to correctly diagnose using conventional techniques since its symptoms visually resemble those of other fungal 

infections. Consequently, by identifying complex patterns from hundreds of annotated photos, deep learning models 

are essential for differentiating Common Rust from other foliar diseases. CNNs are trained on high-resolution 

pictures, which enables the model to accurately classify and detect pustules in their early stages by capturing the 

fluctuations in pustule size, color, and distribution.[5] 

 

Figure 3: Common Rust Infected Leaves 

3.2 Northern Leaf Blight (NLB): Another serious fungal disease that impacts sweet corn production globally is 

Northern Leaf Blight (NLB), which is brought on by Exserohilum turcicum. Long, oval, gray-green lesions that look 

wet at first but turn brown as the infection progresses are the disease's defining feature. These lesions could cover a 

significant area of the leaf surface and spread quickly. Typically, they follow the leaf veins. The disease is spread by 

airborne conidia and grows best in cold, humid regions, especially those with temperatures between 18 and 27°C. 

The ability of the leaf to photosynthesize is compromised as the lesions grow, which eventually lowers plant vigor and 

kernel development.  One of the biggest challenges in detecting Northern Leaf Blight is the variance in lesion size and 

shape caused by different hybrid sweet corn cultivars and environmental conditions. Conventional machine learning 

algorithms struggle to deal with such shifts, even though CNNs may generalize across multiple datasets by identifying 

significant features unique to NLB. By employing convolutional layers to differentiate between lesion patterns 

resulting from NLB and other similar illnesses, the model guarantees high classification accuracy.[9] 

 

Figure 4: Northern Leaf Blight Example 

3.3 Gray Leaf Spot (GLS):  Another serious foliar disease that is a serious threat to the production of sweet corn 

is Gray Leaf Spot (GLS), which is brought on by Cercospora zeae-maydis. Small, whitish lesions that progressively 

enlarge into long, rectangular patches with distinct borders are its defining feature. Under extreme infections, these 

lesions frequently combine to create sizable necrotic patches that result in widespread leaf blight. The disease is 

especially aggressive when leaves stay moist for long periods of time and spreads quickly in warm, humid conditions. 

In contrast to other illnesses, Gray Leaf Spot is distinguished by the shape of its lesions and, in its early stages, by the 

yellow halo that surrounds the afflicted areas. However, it could be challenging to correctly diagnose using 

conventional image-processing techniques because lesion color and texture can vary depending on the lighting. By 

identifying intricate spatial hierarchies in the images, CNNs get around this restriction and successfully differentiate 

GLS lesions from other fungal diseases. CNN-based algorithms are a dependable method for real-time disease 
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surveillance because they can precisely split and categorize contaminated areas by analyzing high-dimensional 

data.[9] 

 

Figure 5: Gray Leaf Spotting in Corn 

Like many other crops, sweet corn is extremely vulnerable to a variety of bacterial, viral, and fungal diseases that 

have a major effect on both its output and quality. Common Rust, Southern Corn Leaf Blight (SCLB), Northern Corn 

Leaf Blight (NCLB), and Gray Leaf Spot (GLS) are some of the most common and economically detrimental diseases. 

In addition to affecting leaf health and lowering photosynthetic efficiency, each of these diseases has distinct visual 

signs that, if ignored, can result in significant yield losses. For efficient disease control and crop protection, these 

diseases must be accurately and promptly identified. However, because different illnesses have overlapping visual 

characteristics, traditional diagnostic approaches can be time-consuming, error-prone, and frequently require expert 

expertise.[16] 

In order to overcome these obstacles, Convolutional Neural Networks (CNNs) and deep learning-based classification 

offer a potent and effective method for automated disease identification. CNN models are able to precisely distinguish 

between various disease types by extracting complex information including lesion shape, texture, and color patterns. 

The suggested approach seeks to improve the precision and dependability of disease diagnosis by training on a varied 

dataset that includes high-quality photos of both healthy and diseased sweet corn leaves. In addition to helping 

farmers and agronomists make well-informed decisions, this also supports early intervention tactics, which lessen 

the severity and spread of illnesses. An important step toward sustainable farming is the use of AI-driven methods 

for agricultural disease classification, which will increase productivity and lessen reliance on chemical treatments. 

 

Figure 6: Overview of Diseases 

4. TRADITIONAL METHODS  

Historically, manual inspection and early computer methods have been used to identify and categorize sweet corn 

illnesses. One of the most popular techniques is manual expert diagnosis, in which agricultural experts visually 

inspect crop leaves for signs like lesions, discolouration, wilting, and irregular growth patterns. This method works 

well for limited illness diagnosis because it mostly depends on human expertise and field experience. But this 

approach is very labor-intensive and subjective, taking a lot of time and effort, particularly in large-scale agricultural 

areas. Furthermore, because various experts may perceive symptoms differently, visual diagnosis accuracy is prone 

to discrepancies. Environmental elements that can further complicate the diagnosis and result in delayed or 

inaccurate disease detection include lighting conditions, leaf placement, and stages of disease progression.[31] 

To overcome the limitations of human inspection, researchers developed early computer algorithms that focused on 

threshold-based segmentation and manually constructed feature extraction techniques. These methods use a range 

of visual characteristics, such as color, texture, and form, to differentiate between sweet corn leaves that are healthy 

and those that are not. Using predefined pixel intensity levels, threshold-based segmentation separates ill areas from 
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the background. However, because it is so sensitive to changes in illumination, this method is useless when disease 

signs vary in color or appearance. Similarly, pre-made statistical and geometric descriptors like edge detection filters, 

histograms, and wavelet transforms are used in homemade feature extraction approaches to extract relevant features 

from photos. While these techniques offer a degree of automation compared to manual diagnosis, they struggle with 

real-world variations in background noise, disease severity, and plant growth conditions. The rigid nature of 

handcrafted features makes them less adaptable to complex and evolving disease patterns.[29] 

To increase efficiency and accuracy, machine learning techniques were employed for the classification of plant 

diseases. Traditional models such as Support Vector Machines (SVM), Random Forest, K-Nearest Neighbors (KNN), 

and Artificial Neural Networks (ANN) were popular because of their capacity to learn from data patterns. These 

algorithms require a feature extraction step before classification, where specific image qualities (such texture, form, 

and color distributions) are manually selected. Support Vector Machines (SVM) map retrieved data into a high-

dimensional space to determine the optimal border between different sickness groups. SVMs do well for simple 

classifications, but they struggle with high-dimensional feature fields and intricate disease patterns.[11]  

The Random Forest (RF) ensemble learning method combines several decision trees to get accurate classifications. 

Since RF's accuracy is heavily reliant on the quality of handcrafted features, it is less effective for diseases with a range 

of visual patterns even while it improves generalization.  

K-Nearest Neighbors (KNN) classifies diseases based on similarities between picture features. However, when 

working with large datasets, KNN has significant processing costs because it must compare every new sample with 

every previous example.  The capacity of Artificial Neural Networks (ANN) to extract hierarchical disease 

characteristics from photos is limited by their shallow structures, which aim to mimic real neurons in order to identify 

patterns in data.[23] 

Although machine learning techniques have shown some degree of success, they are limited by their strong reliance 

on feature engineering, which necessitates a great deal of preprocessing and domain knowledge. These methods' 

capacity to generalize across various datasets is limited because they frequently miss the intricate spatial correlations 

between illness symptoms. Furthermore, typical machine learning models can be adversely affected by changes in 

lighting, camera quality, and disease symptoms, which might reduce their dependability in practical agricultural 

applications. 

 

CNN deep learning models have become the best option for classifying plant diseases in light of these difficulties. 

CNNs eliminate the need for human feature extraction by automatically learning hierarchical features from raw 

images, increasing the accuracy and robustness of sickness detection. The benefits of CNN models and their use in 

the classification of sweet corn diseases are covered in more detail in the section that follows. 

 



329  
 

J INFORM SYSTEMS ENG, 10(19s) 

5. DEEP LEARNING - BASED CNN MODEL 

Due to the transformation of image-based classification tasks by deep learning, Convolutional Neural Networks 

(CNNs) are now the most efficient technique for identifying agricultural illnesses. Unlike standard machine learning 

models that need manual feature extraction, CNNs automatically extract relevant features from images, eliminating 

the need for domain expertise in feature selection. CNNs can now extract spatial and hierarchical information, which 

is crucial for accurately identifying and distinguishing between various sweet corn diseases. CNNs perform better in 

terms of accuracy, generalization, and performance than more traditional techniques like Support Vector Machines 

(SVM), Random Forest (RF), and K-Nearest Neighbors (KNN) in complex illness classification problems. 

5.1 CNN Architecture and Layers: A CNN model's layers are designed to process image data in a hierarchical 

fashion. The fundamental layers of a CNN are as follows: 

 5.1.1 Convolutional Layers: The core part of a CNN, the convolutional layer extracts different properties from input 

images using learnable filters, or kernels. Early layers detect low-level patterns like edges and textures, whereas 

deeper layers document complex features like disease-specific lesions and leaf veins. CNNs' hierarchical learning 

makes them highly effective at recognizing different patterns of sweet corn disease.[15] 

 5.1.2 Activation Function (ReLU): The Rectified Linear Unit (ReLU) is applied after convolution procedures to give 

the model non-linearity. In addition to helping CNNs learn complex mappings between image pixels and disease 

classifications, this activation function boosts computing efficiency.  

5.1.3 Pooling Layers: Max Pooling is one type of pooling layer that helps reduce spatial dimensions without 

sacrificing important features. Pooling layers lower computational complexity and increase the network's resilience 

to slight changes in input image quality, including lighting and angle changes, by downsampling the feature maps. 

[20] 

 

5.1.4 Fully Connected (FC) Layers: All neurons in a CNN's final layers are connected to earlier feature maps, making 

them fully connected layers. These layers identify input images according to patterns they have learned, functioning 

as high-level decision-makers. To provide precise categorization, the last softmax layer gives probabilities to every 

disease group. 

 

Figure 8: CNN Model Layer Architecture 

Because CNNs use hierarchical abstraction to learn more significant and profound attributes, they perform better 

than standard models. CNNs can recognize intricate, non-linear patterns found in actual illness images, in contrast 

to the created features employed in traditional machine learning.  

Transfer learning can be used on pre-trained deep CNN architectures like ResNet, VGG16, and InceptionNet to 

improve performance even more. These models can be improved for the classification of sweet corn diseases while 

maintaining their feature extraction capabilities after being trained on huge image datasets. Transfer learning 

improves accuracy and speed of convergence while drastically reducing the requirement for huge labeled datasets. 

This project intends to create a highly accurate, reliable, and scalable system for classifying sweet corn diseases by 

combining CNNs with automated feature extraction, hierarchical learning, and transfer learning approaches. This 

would guarantee early and accurate identification for better agricultural management.[15] 

6. METHODLOGY 

In the Methodology section, we systematically describe how the deep learning-based model for sweet corn disease 

classification was developed. As the first of multiple steps, images of both healthy and damaged sweet corn leaves are 

gathered from agricultural fields and public databases. These images are then put through data preparation and 
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augmentation, which includes scaling, normalizing, and improving them using techniques like flipping, rotation, and 

brightness adjustments, in order to strengthen the model's resilience. This ensures that the model can adjust to 

variations in the real environment's background, illumination, and leaf orientation.[1] 

After preprocessing, we develop and use a Convolutional Neural Network (CNN) model designed especially for 

sickness classification. Feature extraction is done by convolutional layers, dimensionality reduction is done by 

pooling layers, overfitting is prevented by dropout layers, and final predictions are made by fully connected layers. 

In addition to a unique CNN model, we use transfer learning in conjunction with pre-trained architectures like 

ResNet50 and VGG16 to improve accuracy. The appropriate optimizer, learning rate, and loss function are then used 

to train and optimize the model. Lastly, we employ metrics such as accuracy, precision, recall, F1-score, confusion 

matrix, and ROC curves to assess the model's performance in classifying different sweet corn diseases. 

6.1 Data Collection and Dataset Preparation 

The first and most essential step in sweet corn disease classification is gathering a high-quality and diverse dataset. 

The accuracy and robustness of a deep learning model largely depend on the quality and quantity of data used for 

training. In this study, we compile a dataset containing images of both healthy and diseased sweet corn leaves affected 

by Common Rust, Northern Leaf Blight, and Southern Leaf Blight. The images are collected from multiple sources, 

including direct field photography and publicly available agricultural datasets, ensuring a comprehensive 

representation of disease symptoms under varying environmental conditions. To account for natural variations, 

images are captured under different lighting conditions, at multiple angles, and with diverse backgrounds, making 

the dataset more adaptable to real-world scenarios. A balanced distribution of images across all categories is kept in 

place to prevent bias in the model's learning process. The dataset is then divided into training, validation, and test 

sets to guarantee effective learning, parameter modification, and objective performance assessment.[22] 

Preprocessing methods like picture scaling, normalization, and noise reduction are used to standardize input data 

and get rid of inconsistencies brought on by different image quality in order to improve the model's capacity for 

generalization. Data augmentation techniques are used to artificially extend the dataset because deep learning models 

work best with huge datasets. To help the model identify illness patterns from various angles, these include flipping, 

rotating, zooming, contrast adjustments, and brightness alterations. By stopping the computer from learning specific 

picture patterns, augmentation enhances dataset variety and decreases overfitting. We create a strong basis for 

training a successful CNN-based model that can correctly classify sweet corn diseases by carefully building, 

preprocessing, and improving the dataset. 

 

Figure 9: Image Input for data collected 

6.1.1 Data Acquisition: The dataset for sweet corn disease classification is painstakingly put together using images 

from a range of sources, including direct field observations, research institutes, and public agricultural statistics. 

Sweet corn leaves are photographed in high-resolution RGB to ensure a clear and thorough representation of disease 

symptoms. To simulate real-world agricultural conditions, photos are taken in a range of lighting conditions, at 

various angles, and against a variety of backgrounds. A combination of aerial and close-up views are made possible 

by field photography, which is taken with drones, smartphones, and professional digital cameras. By including photos 

from several geographical areas, the dataset is guaranteed to take into consideration environmental changes that 

could affect the visual traits of sweet corn illnesses. Furthermore, expanding the dataset size through the integration 

of publically accessible datasets from agricultural research groups improves model learning and lowers potential 

biases. 

To create a balanced collection, images are systematically categorized into three primary disease classifications based 

on their distinct symptoms. The first category, Common Rust, is caused by Puccinia sorghi and manifests as reddish-

brown pustules scattered across the leaf surface. The gradual merging of these pustules causes extensive leaf damage. 
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Exserohilum turcicum causes the second kind, known as Northern Leaf Blight, which is characterized by long, cigar-

shaped lesions that start out gray-green and progressively develop darker. This disease eventually affects crop 

productivity because it significantly reduces photosynthetic efficiency. [9] 

Images are methodically divided into three main disease groups according to their unique symptoms in order to 

provide a collection that is balanced. Puccinia sorghi is the cause of the first group, Common Rust, which appears as 

reddish-brown pustules dispersed over the leaf surface. Large-scale leaf damage results from these pustules gradually 

combining. The second type, called Northern Leaf Blight, is caused by Exserohilum turcicum and is typified by long, 

cigar-shaped lesions that begin gray-green and gradually turn darker. Because it drastically lowers photosynthetic 

efficiency, this illness eventually has an impact on crop output. In addition to diseased leaf samples, a significant 

number of images of healthy sweet corn leaves are supplied to help the model differentiate between infected and 

unaffected leaves. By providing a vital point of comparison, these healthy samples improve the model's accuracy in 

classifying diseases. By maintaining a well-balanced dataset with a range of images, lowering misclassification errors, 

and improving real-world applicability, the study ensures that the CNN model generalizes successfully. 

 

Figure 10: Data Processing Pipeline 

6.1.2 Dataset Distribution: To ensure a representative and balanced dataset for the classification of sweet corn 

illnesses, the dataset is carefully arranged to include about equal numbers of photographs for each category. 

Maintaining an equitable distribution is necessary to prevent class imbalance, which could lead to distorted model 

predictions. The algorithm may learn to favor a single illness class with a disproportionately high number of images, 

leading to poor generalization for underrepresented disorders. An effort is made to collect a sufficient number of 

images for each class—Common Rust, Northern Leaf Blight, Southern Leaf Blight, and healthy leaves—to ensure that 

the model attains high classification accuracy across all categories. [6] 

The dataset is assembled and then divided into three subsets: test, validation, and training sets.  The Convolutional 

Neural Network (CNN) model is trained using the training set, which usually makes up 70–80% of the dataset. This 

allows the CNN model to recognize patterns and extract features from the images.  The validation set, which typically 

makes up 10% to 15%, is used to optimize hyperparameters, correct for overfitting, and fine-tune the model.  The 

remaining 10% to 15% is known as the test set, which is maintained apart from the training phase and is only used to 

assess how well the model performs in the end on unobserved data.  This section makes sure that the model works 

effectively on fresh, untested photographs in addition to being correct on the training data, demonstrating its 

practicality. [7] 

 

Figure 11: Dataset Distribution across categories 

The dataset is randomly divided while maintaining an equal number of photographs per class to ensure that each 

subset includes a diverse representation of different image conditions, such as shifting lighting, backdrops, and 

angles. This randomization prevents any bias that would arise from sequential image collecting, such as taking 
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successive pictures of the same plant under the same circumstances. By introducing randomization into the dataset 

partitioning, the model is exposed to a wide range of variables during training, assisting it in developing a robust 

feature extraction mechanism that improves its generalization in several situations. 

For the model to perform better and be more reliable, the dataset must be distributed in an orderly fashion. Certain 

disease categories may dominate the learning process if an unequal dataset is employed, leading the model to 

incorrectly categorize underrepresented populations. Furthermore, overfitting—a condition in which the model 

performs remarkably well on training data but is unable to correctly categorize unseen images—can result from 

improper dataset segmentation. The work provides a solid basis for creating an accurate and dependable deep 

learning model for the classification of sweet corn diseases by guaranteeing a well-balanced dataset and a suitable 

separation into training, validation, and test sets.[12] 

6.1.3 Data Preprocessing: The dataset undergoes several preparation steps after acquisition in order to enhance 

image quality, ensure consistency, and get it ready for deep learning model training. Image-based classification tasks 

require preprocessing since raw photographs often differ in terms of resolution, background noise, lighting, and size. 

If these differences are not addressed, the convolutional neural network's (CNN) performance may suffer. By using 

consistent preparation processes, we ensure that the model learns meaningful patterns rather than being affected by 

irrelevant dataset fluctuations. All photos are resized to a specific resolution, typically 224 by 224 pixels, as part of 

the fundamental preprocessing phase known as image scaling. Since deep learning models need inputs of consistent 

size, resizing the input format ensures that the model processes every photo efficiently. Additionally, shrinking helps 

to reduce computational complexity because high-resolution photos require a lot of memory and processing 

resources. By employing a standard resolution, the model can effectively extract features without unnecessary 

expense. Despite the resizing process, care must be taken to preserve the structural integrity of the disease symptoms 

so that key traits may still be recognized.[4] 

Normalization, which entails scaling pixel values to a predefined range, typically between 0 and 1, or modifying them 

so that the mean is zero and the standard deviation is one, is another essential step. Raw image pixel values typically 

range from 0 to 255, which can cause significant variations in numerical values and hinder long-term learning. By 

normalizing the images, we ensure that the model handles all images uniformly and accelerates convergence during 

training. This step also prevents numerical instability issues in deep networks, where large pixel values might lead to 

gradient explosion or slow learning rates. 

To further enhance image quality, methods for noise reduction, contrast augmentation, and brightness correction 

are applied. Photographs shot in real-world agricultural settings may have shadows, distortions caused by variations 

in illumination, or unnecessary background objects. Noise reduction methods such as Gaussian filtering and median 

filtering are used to smooth out anomalies while preserving important characteristics. Contrast normalization is also 

carried out to increase the visibility of disease indicators and facilitate the separation of healthy from sick areas. This 

stage is particularly useful for photos taken in different lighting conditions since it guarantees that the deep learning 

model can focus on the disease-related characteristics rather than changes in brightness or contrast. [26] 

6.1.4 Model Training: To achieve high accuracy and generalization when training the Convolutional Neural Network 

(CNN) model for the classification of sweet corn illnesses, hyperparameters must be tuned properly. To optimize the 

learning process, the Adam optimizer is employed with a learning rate of 0.0001. The Adam optimizer, an adaptive 

learning rate optimization technique, ensures efficient and dependable convergence by fusing the benefits of the 

momentum-based and RMSprop optimizers. A moderate learning rate of 0.0001 is chosen to prevent sudden weight 

changes that can cause unstable training and less-than-ideal results. The model maintains a small, controlled step 

size while gradually altering its weights to continuously improve its classification performance. 

 

Figure 12: Preprocessing and training dataset steps 
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To ensure proper generalization and prevent overfitting, the dataset is divided into three subsets: 80% for training, 

10% for validation, and 10% for testing. The training set is used to update the model's parameters, the validation set 

helps track the model's performance during training, and the test set is saved for evaluating the final model's accuracy 

on anonymous data. Instead of memorizing training data, this divide ensures that the model learns practical patterns 

that can be applied to new images. The validation set is particularly important since it allows model selection and 

hyperparameter tuning without affecting the final test's performance.[33] 

When handling multi-class classification issues, categorical cross-entropy, the loss function used in this study, 

performs brilliantly. This function penalizes inaccurate predictions more severely by computing the discrepancy 

between the actual class labels and the projected probability distribution. The model improves its accuracy in 

identifying sweet corn illnesses by reducing the categorical cross-entropy loss. During training, a batch size of 32 is 

used to improve compute performance and stabilize gradient updates. Instead of adjusting weights after each 

individual image, the model processes 32 photographs in a batch and modifies weights based on their cumulative 

gradient. This approach prevents drastic changes in weight adjustments by reducing computation costs and 

simplifying the optimization procedure. 

If the number of epochs is originally set to 10, the model will go through the entire training dataset 10 times. On the 

other hand, Early Stopping reduces unnecessary training time and prevents overfitting. Early Stopping monitors the 

validation loss and stops training after few epochs if there is no appreciable improvement. This ensures that the 

model ends training when it achieves optimal performance, preventing it from retaining too much training data while 

maintaining its exceptional generalization capabilities.[3] 

6.1.5 Performance & Evaluation Metrics:  To understand how well a deep learning model can classify sweet corn 

infections, it is crucial to evaluate its performance. Important metrics that are used to assess the robustness and 

reliability of the model include accuracy, precision, recall, F1-score, confusion matrix, and the Receiver Operating 

Characteristic (ROC) curve with the Area Under the Curve (AUC) score. By providing a comprehensive analysis of 

the model's capacity to differentiate between healthy and ill leaves, these metrics ensure the model's suitability for 

real-world agricultural applications. 

Accuracy, or the ratio of correctly identified photos to all images, is one of the primary performance measures. It 

provides an overall measure of accuracy but does not distinguish between false positives and false negatives. While 

accuracy is useful, it can sometimes be misleading when dealing with unbalanced datasets, where one class 

significantly outperforms the others. Therefore, more evaluation metrics are needed to have a more complete grasp 

of model performance.[4] 

A more comprehensive assessment is offered by F1-Score, Precision, and Recall, particularly for multi-class 

classification problems. Precision determines the proportion of correctly predicted disease episodes out of all 

instances predicted for that disease class, indicating the model's dependability in lowering false positives. Recall (also 

called sensitivity) gauges how successfully the model detects infected leaves while reducing false negatives by 

calculating the proportion of correctly predicted disease cases out of all actual diseased cases. A fair evaluation that 

accounts for both false positives and false negatives is offered by the F1-score. It is computed as the precision and 

recall harmonic means. When dealing with diseases that require early identification, the approach is especially 

helpful in ensuring that significant cases are not missed. 

The Confusion Matrix provides a more thorough view of the model's classification results by displaying the number 

of true positives (correct disease predictions), true negatives (correct healthy predictions), false positives (incorrect 

disease predictions), and false negatives (incorrect healthy predictions). When a machine wrongly labels a damaged 

leaf as healthy, for example, this matrix helps uncover specific patterns of misclassification that could negatively 

impact agricultural disease control. Finding model errors and improving the learning process are two areas where 

the matrix is particularly useful. 

The ROC Curve (Receiver Operating Characteristic Curve) and AUC Score (Area Under the Curve) are used to assess 

the discriminative power of the model in more detail. The ROC Curve, which shows the true positive rate (sensitivity) 

versus the false positive rate at various classification thresholds, illustrates the model's capacity to distinguish 

between diseased and healthy leaves. A model with perfect classification would have an AUC value of 1.0, but one 

with a score of 0.5 would suggest performance no better than random guessing. A higher AUC value indicates a strong 

model ability to distinguish between distinct disease groups, which increases the robustness of the model. 
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We can guarantee that the suggested CNN model achieves high classification accuracy while finding a balance 

between sensitivity and specificity by integrating these evaluation criteria. The model's efficacy and dependability for 

use in diagnosing sweet corn diseases in the actual world are thoroughly validated by the combination of accuracy, 

precision, recall, F1-score, confusion matrix, and ROC-AUC analysis. The model's performance is visually shown by 

the confusion matrix and ROC curve in Figures X and Y. This enhances the investigation of the model's classification 

capabilities. 

7. RESULTS 

A range of performance indicators are used to assess the CNN-based model for classifying sweet corn diseases. These 

include the confusion matrix, the F1-score, accuracy, precision, recall, and the Receiver Operating Characteristic 

(ROC) curve with the Area Under the Curve (AUC) score. This evaluation's main objective is to ascertain how well 

the model can differentiate between sweet corn leaves that are healthy and those that are damaged in practical 

situations. 

After training on a sizable dataset of both healthy and damaged sweet corn leaves, the CNN model was subjected to 

an independent test set in order to fully evaluate its generalization ability. To ensure that the model was assessed in 

real-world agricultural environments, the test set includes images with a range of backgrounds, lighting conditions, 

and viewpoints. The CNN model's overall classification accuracy of 96.3% demonstrates its dependability in 

distinguishing between different disease types. This study shows the effectiveness of deep learning in the 

classification of plant diseases, where early and accurate detection is crucial for lowering crop losses and increasing 

agricultural productivity. 

The CNN model's capacity to extract hierarchical representations of disease symptoms from unprocessed visual data 

is one of its primary features. CNNs use many convolutional layers to automatically extract meaningful patterns from 

images, in contrast to standard machine learning models that rely on manually produced features like color 

histograms, edge detection, or texture analysis. CNNs can identify complex patterns of illness that may be difficult to 

identify with traditional methods thanks to this feature extraction process. As a result, the model performs well even 

under difficult circumstances including variations in leaf texture, illness progression, and picture illumination. 

Additionally, the model needs to be able to generalize well to new data in order to be applied in actual agricultural 

settings. Given that environmental factors such as soil composition, humidity levels, and pest infestations can 

influence how disease symptoms appear, the model's exceptional performance on an unseen test dataset illustrates 

its significant adaptability. This adaptability is crucial for developing AI-driven disease detection tools that farmers, 

agronomists, and researchers may use for early disease detection and precision farming applications. 

The model's classification performance is broken out in depth in the confusion matrix, which demonstrates how 

effectively it can differentiate between sweet corn leaves that are healthy and those that are infected. The matrix's 

diagonal elements show samples that have been correctly classified, whereas the off-diagonal components show 

samples that have been misclassified. In order to prevent needless pesticide applications, the model's 99.2% accuracy 

in identifying healthy leaves ensures that there are few false positives. Common Rust is highly accurate in identifying 

sick groups, however because of similarities in lesion texture and color, about 3% of cases are mistakenly identified 

as Northern Leaf Blight. The highest misinterpretation rates (~4%) are also seen in Northern Leaf Blight and 

Southern Leaf Blight, most likely due to the fact that both illnesses produce elongated lesions that make them 

superficially identical.  

Given the low rates of misclassification, there may be space for improvement even though the classification 

performance is generally good. To further improve accuracy, more sophisticated deep learning techniques like multi-

modal data fusion or attention procedures could be applied. Attention mechanisms would allow the model to reduce 

confusion between diseases that are visually similar by concentrating on disease-specific regions in an image. 

Additionally, using spectrum imaging or environmental data may improve the differentiation of illnesses. These 

enhancements would make the model even more robust and reliable for real-world precision agriculture applications, 

ensuring accurate disease diagnosis and effective crop management. 

Three crucial metrics—precision, recall, and F1-score—are examined in order to assess the classification performance 

across various sweet corn disease categories. By measuring how well the CNN separates healthy from diseased leaves 
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while reducing incorrect classifications, these metrics offer a deeper understanding of the model's advantages and 

possible areas for development. 

 

Figure 13: Confusion Matrix 

The number of samples that are truly correctly categorized as having a given condition is known as precision. It is 

determined by dividing the total number of anticipated positives for each illness class by the number of real positive 

predictions. The model is producing less false positive errors when the precision value is increased. This is especially 

crucial when it comes to detecting agricultural diseases, as incorrectly labeling a healthy plant as diseased may result 

in needless treatments that raise farmers' expenses. Due to their visual similarities, Northern Leaf Blight and 

Southern Leaf Blight have somewhat lower precision values than Healthy and Common Rust, which consistently have 

excellent precision values across all categories in our model (over 98%). 

 The percentage of real diseased samples that the model accurately detected is called recall, sometimes referred to as 

sensitivity. For each kind of illness, it is computed as the ratio of all true positives to actual positives. A high recall 

value lowers the possibility of false negatives by demonstrating that the model effectively captures the bulk of ill 

samples. When it comes to disease diagnosis, false negative results are especially troublesome since they can let an 

infected plant grow unchecked. Our CNN model's recall scores consistently remain over 96% for each category, 

suggesting that it can detect damaged leaves with minimal error. 

A balanced metric that accounts for both false positives and false negatives is offered by the F1-score. It is computed 

as the precision and recall harmonic means. It is particularly useful when the dataset is unbalanced. Our model 

consistently performs well in classification across a wide range of disorders, as seen by its good F1-score (above 97% 

for all disease categories), which ensures reliability in real-world scenarios. By maintaining high precision, recall, and 

F1-score, the model provides a dependable tool for automatic classification of sweet corn diseases, offering a workable 

alternative for precision agriculture and early disease intervention. 

 

Figure 14: Class-wise Performance Matrix 

The trade-off between the True Positive Rate (TPR) and the False Positive Rate (FPR) at various judgment thresholds 

is visually represented by the ROC curve. The FPR displays the proportion of healthy leaves that were mistagged, 

whereas the TPR (sometimes referred to as recall or sensitivity) shows the proportion of diseased leaves that were 

correctly detected. Plotting these results at different threshold levels gives the ROC curve a thorough picture of the 

model's categorization performance. 

On the other hand, a curve that bends toward the top-left corner indicates a low FPR and a high TPR in a model that 

performs well. The ROC curves for the four classes—Common Rust, Southern Leaf Blight, Northern Leaf Blight, and 

Healthy—are shown in Figure Y. The graphs show how the model can distinguish between healthy and sick leaves 
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with little class overlap. This robust separation guarantees accurate categorization by demonstrating that the CNN 

model has accurately acquired the unique characteristics of each disease kind. 

 

Figure 15: ROC Curve 

The AUC score provides a numerical description of the ROC curve by calculating the area beneath it. A perfect 

classifier is one that correctly and error-free classifies every class, as shown by an AUC value of 1.0. When the model's 

AUC score is 0.5, The fact that the CNN model receives AUC scores above 0.97 for each of the four research categories 

validates its high discriminative ability. The model's high AUC value demonstrates that it is very dependable in 

distinguishing distinct sweet corn diseases, even in challenging circumstances where symptoms may seem similar.  

 

Figure 16: AUC Curve 

Farmers and agricultural experts may easily detect sweet corn diseases thanks to an intuitive front-end interface 

designed to ensure practical usability in agricultural contexts. Users can upload an image of a potentially sick leaf 

using this tool. After analyzing the image, a CNN-based classification algorithm will provide an accurate diagnosis. 

The system is simple to use, requires no technical knowledge from the user, and yields reliable, fast results. 

Users can use a computer, tablet, or smartphone to take and upload a picture of a sweet corn leaf through the image 

upload feature in the front-end interface. Following upload, the preprocessed image is sent into the CNN model that 

has been trained to identify if the image is Healthy, Common Rust, Northern Leaf Blight, or Southern Leaf Blight. 

The user experience is flawless because the prediction appears on the screen in a matter of seconds. 

Alongside the classification result, the system also displays an accuracy score to boost user confidence. This score 

helps customers make well-informed judgments by indicating the model's level of prediction confidence. The 

technology notifies the user to upload a clearer photograph or seek professional confirmation if the confidence level 

is low. 

Following classification, customers have the choice to obtain comprehensive details regarding the ailment that was 

identified. The following crucial information is retrieved and shown by the system when they click the "More Info" 

button: 

Disease Symptoms: An explanation of the leaf's visible symptoms, including the forms of lesions, color shifts, and 

afflicted regions. 

Potential Reasons: Details about how the disease spreads in the field and the pathogen that causes it (such as a 

bacterial or fungal infection). 

Suggestions for Treatment: Good management practices include organic remedies, chemical treatments (pesticides, 

fungicides), and preventative measures including crop rotation and appropriate irrigation methods. 

The system also suggests optimal agricultural techniques to prevent disease from reoccurring. Because it may refer 

users to study articles or agricultural specialists if needed, it is a helpful tool for managing diseases in the real world.  

 

By fusing deep learning with an interactive front-end, this approach closes the gap between AI-driven disease 
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diagnosis and practical field applications. It provides farmers with quick, accurate, and practical insights to protect 

their crops. 

The proposed CNN-based sweet corn disease classification model shows good accuracy and reliability in identifying 

different disease groups. With an overall classification accuracy of 96.3%, the model effectively differentiates between 

diseased leaves suffering from Common Rust, Northern Leaf Blight, and Southern Leaf Blight. Confusion matrix 

analysis highlights strong classification performance with little misclassification errors, particularly when comparing 

visually comparable disorders. Additional evaluation using precision, recall, and F1-score confirms the model's 

resilience, ensuring that it performs well across all disease categories. Its remarkable prediction capabilities are 

demonstrated by the ROC curves and AUC values, which display almost flawless class separation. Furthermore, an 

intuitive front-end has been created that allows farmers to input leaf photos for prompt diagnosis, comprehensive 

symptoms, and suggested treatments. The system is a potent instrument for automated crop disease identification, 

facilitating early intervention and efficient disease control in the agricultural sector because to its combination of 

deep learning and practical application. 

8. DISCUSSION 

The study's findings show that sweet corn illnesses can be effectively and consistently classified using a CNN model 

that is based on deep learning. CNNs eliminate the need for manual feature engineering by automatically extracting 

hierarchical features, in contrast to traditional machine learning techniques. The algorithm's overall accuracy of 

96.3% in the study demonstrates that it can differentiate between various disease kinds even when image quality and 

environmental factors alter. Because of their comparable visual symptoms, Northern Leaf Blight and Southern Leaf 

Blight are often misclassified, despite the model's excellent performance. 

Although the model is very successful at classifying most disease categories, the confusion matrix and ROC curve 

analysis suggest that it might be further improved with a few little changes. Reducing misclassification errors may be 

possible by utilizing strategies like multi-modal data fusion, attention processes, and fine-tuning with larger datasets. 

The model's usefulness has also been improved by a front-end interface that enables farmers and agricultural 

specialists to upload leaf photos and get timely disease diagnosis and treatment recommendations. This method 

offers a quick, automated, and economical way to detect diseases in large agricultural areas, which has the potential 

to completely transform the management of plant diseases. 

The interpretability of deep learning models is another crucial factor to take into account. Despite its high accuracy, 

CNNs frequently behave like "black-box" models, making it challenging to comprehend how they arrive at their 

conclusions. Explainable AI methods such as Grad-CAM (Gradient-weighted Class Activation Mapping) may make it 

easier to identify which leaf sections the model prefers for categorization. Farmers and agricultural researchers would 

become more transparent and reliable as a result. Furthermore, real-time disease diagnosis would be possible without 

an internet connection by connecting the model to edge computing devices like cellphones or Internet of Things-

based systems, increasing the solution's usability for rural farming communities. 

Before the CNN model can be used in the real world, a number of issues and restrictions must be resolved, despite 

its remarkable accuracy. The reliance on high-quality photos is a major drawback because changes in illumination, 

background noise, and image resolution may have some impact on classification ability. Model generalization has 

been improved by data augmentation techniques, but other improvements such as domain adaptability and 

adversarial training may make the model more resilient to erratic environmental changes. Furthermore, just three 

major sweet corn illnesses are now the focus of the model; adding more fungal, bacterial, and viral infections to the 

dataset will broaden the system's scope. 

9. CONCLUSION 

With a high accuracy of 96.3%, a deep learning-based method utilizing CNNs was suggested in this work for the 

automatic categorization of sweet corn illnesses. Using hierarchical feature extraction, the model successfully 

distinguishes between three important diseases—Common Rust, Northern Leaf Blight, and Southern Leaf Blight—

and healthy leaves. CNNs automatically identify intricate disease patterns from photos, increasing classification 

accuracy and durability in contrast to conventional machine learning techniques that depend on human feature 

creation. Preprocessing and data augmentation approaches are combined to improve model performance and boost 

the model's adaptability to real-world situations. The model's dependability in accurately classifying disease 
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categories with low misclassification rates is assessed using performance metrics, confusion matrix analysis, and 

ROC-AUC scores. 

Adding more disease categories to the dataset and improving the model for real-time deployment on mobile and 

Internet of Things devices can improve the performance of the proposed approach, despite its good performance. 

Future studies should look into explainable AI strategies to boost farmer trust in automated diagnosis systems and 

enhance model interpretability. Incorporating edge computing for offline disease diagnostics would also make the 

technology more viable for large-scale agricultural applications. Taken together, this work demonstrates how deep 

learning may be applied to smart agriculture to offer a practical, scalable, and easily accessible solution for better 

crop management and early disease diagnosis. 

10. FUTURE WORK 

Although the proposed CNN-based model has demonstrated high accuracy in detecting sweet corn diseases, there is 

still much space for improvement. One significant area for improvement is the collection's expansion to include 

images collected at different stages of growth, additional types of sweet corn illnesses, and a wider range of 

environmental conditions. A bigger and more varied dataset would improve the model's generalization and increase 

its resistance to variations in backdrop, lighting, and disease symptoms. Additionally, replacing standard RGB photos 

with multispectral and hyperspectral photography could enhance the identification of sickness by capturing finer 

spectrum characteristics that may not be visible to the human eye. 

Another potential strategy is to use explainable AI (XAI) technologies to make the model more transparent and 

credible. Deep learning models, especially CNNs, are sometimes viewed as "black-box" systems due to their complex 

internal processing. Researchers and farmers may find it easier to comprehend which leaf portions the algorithm 

prioritizes for categorization if they use visualization tools such as Grad-CAM (Gradient-weighted Class Activation 

Mapping). This would provide agricultural experts with a learning tool to enhance their manual disease identification 

techniques, as well as validate the model's decision-making process. The model can also be improved by using 

transformer-based topologies and attention processes, which increase the accuracy of feature extraction and 

categorization. 

Lastly, scalability and real-world implementation continue to be crucial areas for further research. Farmers would be 

able to scan leaves in real-time and get immediate input on the presence, symptoms, and suggested treatments of 

diseases if the model were implemented on mobile applications, Internet of Things-based smart farming systems, 

and edge devices. Furthermore, centralized disease monitoring—where data from several farms is examined to 

identify early disease outbreaks at a regional level—may be made possible by incorporating the model into cloud-

based systems. In order to enable precision agriculture and lessen the overuse of pesticides, future studies should 

potentially investigate automated spraying techniques based on disease detection results. This research can make a 

substantial contribution to the future of AI-driven smart agriculture by moving further in these directions, which will 

enable farmers all around the world to detect diseases more quickly, accurately, and easily. 
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