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Enhancing disease detection and localization in cotton plants using an 

upgraded version of YOLOv8, a cutting-edge object detection model noted for 

its efficiency and accuracy. Cotton plants are subject to a variety of diseases, 

including bacterial blight, armyworm, and powdery mildew, which reduce 

agricultural production. The study focuses on using advanced deep learning 

architectures, notably ResNet50 combined with YOLOv8 and Faster R-CNN, 

to improve disease identification and localization in cotton plants. CVAT was 

used to annotate a rigorously curated dataset of 2100 photos with bounding 

boxes, allowing for model training. To guarantee accurate performance 

assessment, the dataset was divided into three sets: training, validation, and 

test. ResNet50 was incorporated into the YOLOv8 and Faster R-CNN 

architectures, which were specifically designed to identify and localize bacterial 

blight, armyworm, and powdery mildew, as well as healthy cotton plants. Fine-

tuning hyperparameters and optimizing model configurations were used in the 

experiments to obtain high illness classification accuracy and exact 

localization. The results obtained were commendable, with both models 

achieving an object detection IoU of approximately 0.95. It is worth noting that 

ResNet50-YOLOv8 exhibited superior classification accuracy at 98%, while 

ResNet50-FRCNN achieved a respectable 90%, thereby illustrating nuanced 

performance variations. In terms of precision, recall, and F1-score, ResNet50-

YOLOv8 presented impressive values of 0.989, 0.986, and 0.988, respectively. 

Contrastingly, ResNet50-FRCNN displayed values of 0.858, 0.905, and 0.88, 

indicating variations in precision and recall 

Keywords: Cotton Plant Disease Detection, Localization, Hybrid models, 

ResNet50, YOLOv8, Faster R-CNN 

1. Introduction 

According to the "Indian Food and Agriculture Organization" (FAO), agricultural plants have the 

potential to prevent a global decline in production of approximately 20-40% [1]. Plant disease is defined 

as any condition that hinders a plant from reaching its maximum productivity or potential [2]. Plant 

diseases pose a significant obstacle to both global food security and the future sustainability of 

agriculture [3]. Hence, it is essential to pay attention to crops and detect diseases at an early stage to 

reduce crop losses. Traditional methods to detect diseases in plants include visual inspection [4], 

symptom recognition, field surveys, sampling and laboratory analysis, expert consultation and 

observations of crops, and classification of diseases based on changes in the color, appearance, or 
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texture of leaves. Laboratory-based methods, including hyperspectral techniques, gas chromatography, 

mass spectrometry, Thermography, and polymerase chain reaction have been used to identify diseases 

[5]. However, these methods suffer from drawbacks such as long detection times, the high level of 

expertise required, limited accuracy, the inability to detect at early stages, limited scalability, and a lack 

of real-time monitoring. Artificial Intelligence presents immense opportunities in agriculture [6]. Deep 

learning and computer vision have revolutionized plant disease detection by automating the process of 

identifying and diagnosing diseases in crops. Leveraging neural network architectures, such as 

“Convolutional Neural Networks” (CNNs), can be used to analyze large datasets of plant images and 

learn intricate patterns and features associated with various diseases. This allows for the accurate 

classification of healthy and infected plants based on visual cues, eliminating the need for manual 

inspection. Deploying such models in real-time applications, whether through mobile devices or remote 

sensing technologies, facilitates the rapid and scalable monitoring of agricultural fields. The integration 

of deep learning and computer vision not only expedites the detection process but also opens avenues 

for proactive disease management strategies, ultimately contributing to more sustainable and 

productive agriculture. 

Existing solutions in the field have explored various deep-learning methods for disease detection in 

plants. For instance, VGGNet pre-trained on ImageNet [7], and an enhanced convolutional neural 

network (CNN) [8] is used for rice plant analysis, while basic CNN architectures such as GoogLeNet, 

AlexNet, and ResNet have been employed for identifying tomato leaf diseases [9]. The DenseNet 

structure has been shown to achieve almost the same accuracy level as ResNet with fewer parameters 

[10]. In another method, model training is accelerated and semantic information is extracted from 

diseased leaf images using transfer learning with an adapted CNN, integrating deep and handcrafted 

features while enhancing discriminative power with a center loss constraint [11]. Also, methods like 

Resnet-50 with a modified Red Deer optimization algorithm are used for salient feature extraction 

before using the Deep Learning Convolutional neural network for the plant village dataset and the rice 

plant dataset [12]. In [13], Residual Network (ResNet34) was trained to perform the task of 

classification on 15200 crop images. Multimodal, with SVM classifier as pre-extraction along with Res 

net -18, Res net-34, and VGG-16, respectively, are used for disease detection in apple leaf [14]. 

Lightweight, improved object detection models like the Yolov5-based algorithm are implemented to 

achieve real-time localization and ripeness detection in tomato fruits [15]. In [16], A multilayered 

convolutional neural network is suggested for the categorization of mango leaves that are affected by 

anthracnose sickness. 

ResNet50, a deep neural network architecture, was applied to plant disease detection to harness its 

advanced feature extraction capabilities. The ResNet model is trained using an open-source data set 

[17]. With 50 layers and residual connections, ResNet50 overcomes the challenges of training deep 

networks, enabling the effective learning of intricate disease-related patterns from plant images. Its 

architecture aids in capturing varied features that are important for the accurate classification of healthy 

and diseased plants. ResNet50 excels in plant disease detection tasks and offers heightened accuracy. 

By leveraging the benefits of ResNet50, the model can efficiently analyze large datasets, providing a 

robust tool for the automated, precise, and scalable monitoring of plant health and contributing to early 

disease detection and effective agricultural management. The residual block of the ResNet is measured 

using Equation. 

   (1) 

Here, the input and output layers represent variables like o and z. The remaining maps are denoted by 

the function G [18]. 

You Only Look Once (YOLO), originally proposed by Joseph Redmon, Ross Girshick, Ali Farhadi, and 

Santosh Divvala, in 2016, is widely regarded as one of the most efficient detection algorithms due to its 

unique methodology [19]. Through one-stage detection, the category and location of the object can be 

obtained [20]. YOLOv8 “You Only Look Once version 8”, a state-of-the-art object detection model, is 

employed in plant disease detection owing to its efficiency and accuracy. With a well-organized 

architecture, YOLOv8 processes entire images in one forward pass, thereby facilitating real-time disease 

localization. Their multiscale detection capabilities are useful for identifying various diseases in diverse 

plant species. YOLOv8 ensures the accurate localization and classification of diseases within plants, 

o= G(z,U+z)
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enabling precise intervention. The speed and accuracy of the model make it a preferred choice for large-

scale agricultural monitoring. YOLOv8 enhances the efficiency of plant disease detection, contributing 

to timely and targeted agricultural management strategies. 

The Fast “Region-based Convolutional Neural Network” (R-CNN) is a type of detection network that 

takes in region suggestions as input and returns the objects of those suggestions together with the offsets 

of the bounding boxes [21]. This method uses an instrument known as a Region Proposal Network 

(RPN), which generates prospective object regions before classifying and refining them [22]. Fast RCNN 

is more efficient than RCNN since it eliminates the need to input 2000 region proposals to the CNN, 

resulting in reduced processing time [23]. Faster R-CNN is applied to plant disease detection and 

localization due to its robust object detection capabilities. Utilizing a two-stage process involving region 

proposal and classification, Faster R-CNN accurately identifies and localizes diseases within plant 

images. Its Region Proposal Network (RPN) efficiently generates potential bounding boxes, enhancing 

localization precision. Faster R-CNN excels at handling overlapping instances, which are a common 

occurrence in plant disease scenarios. With a balanced trade-off between accuracy and speed, faster R-

CNN is suitable for real-time detection and localization in agriculture. The versatility of the model 

allows it to adapt to various plant species and disease types, making it a valuable tool for comprehensive 

plant health monitoring, aiding in timely intervention and effective disease management strategies in 

agricultural settings. 

In this study, two hybrid models were developed. These hybrid models were specifically crafted for the 

detection and localization of diseases in cotton plants. Three distinct disease categories, namely, 

bacterial blight, armyworm, and powdery mildew, were considered, along with a fourth class denoting 

a healthy status. The primary objective of these models was to discern whether a given cotton plant 

exhibited signs of disease, and if so, to identify the specific disease category. Furthermore, the models 

were designed to pinpoint the affected region of the leaf, providing a comprehensive analysis of plant 

health for effective agricultural management. These hybrid models represent a powerful synergy that 

leverages the strengths of both architectures, thereby leading to enhanced plant disease detection and 

localization. ResNet50, renowned for its depth and feature extraction process, captures intricate 

patterns in plant images and learns rich representations of various diseases. By serving as the backbone, 

ResNet50 provides a robust foundation for subsequent detection models. For YOLOv8, ResNet50 

enriches the model with detailed features, enabling YOLOv8 to make precise predictions at different 

scales. YOLOv8’s ability to process images holistically aligns seamlessly with ResNet50’s feature-rich 

representations, enhancing the real-time detection efficiency. Similarly, when paired with Faster R-

CNN, ResNet50 contributes to accurate region proposals through its feature maps. The faster R-CNN’s 

two-stage process for region proposal and classification is empowered by the detailed features extracted 

by ResNet50, resulting in refined disease localization. By combining ResNet50 with both YOLOv8 and 

Faster R-CNN, the fused models benefited from a holistic understanding of plant images at various 

scales, leading to improved accuracy in disease detection and localization. This fusion of capabilities 

addresses the complexity of diverse plant diseases, making this combined approach a potent solution 

for advancing automated plant health monitoring and enabling more effective agricultural management 

strategies. 

In a comparative study, the ResNet50-YOLOv8 integration exhibited superior performance with a 

classification accuracy of 97.50% and an average IOU of 0.95 across four classes. In contrast, the 

ResNet50-Faster R-CNN combination achieved a classification accuracy of 90%, with a slightly higher 

average IOU of 0.953. These results highlight the effectiveness of combining ResNet50 with YOLOv8 

for precise plant disease detection and localization. 

The main contributions of the study are described below: 

1. To curate this dataset, approximately 2100 images were sourced from Kaggle. Bounding boxes were 

annotated across all images using the Computer Vision Annotation Tool (CVAT). 

2. In this paper, we have created and compared two hybrid models by integrating ResNet50 into Faster R-

CNN and ResNet50 into Yolov8, which involved substituting the original backbone with a pre-trained 

ResNet50 that has 50 layers in 5 blocks. 
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3. Evaluation measures such as training accuracy, testing accuracy, precision, recall, and F1-score were 

used to evaluate classification results, while the IoU metric was used to assess object detection 

performance. 

4. Finally, an overall comparison of both models was conducted. Both models performed almost at par, 

with Yolov8-ResNet50 showing slightly better performance. 

2. Review of literature 

Dang et al. [24] completed an extensive study on seven iterations of the state-of-the-art YOLO object 

detector to accurately identify the location of weeds in cotton fields. The dataset used in this study was 

the CottonWeedDet12, consisting of about 5648 pictures representing 12 distinct weed categories. The 

Monte Carlo cross-validation, conducted with 5 replications, revealed that the detection accuracy, as 

assessed by mAP@50, ranged from 88.14% for YOLOv3-tiny to 95.22% for YOLOv4.Two distinct 

experiments were carried out, one including augmented data and the other without. The inclusion of 

augmented data resulted in expedited model training. Furthermore, the mean average precision at 50 

(mAP@50) had a boost to 95.63%. Wang et al., (2023) [25] presented a novel intelligent recognition 

technique that utilizes an enhanced version of the YOLOv8 model. The suggested approach achieves 

exceptional recognition accuracy and speed. In the Backbone network, the Global Attention Mechanism 

(GAM) is used to assign weights to relevant feature information, resulting in enhanced model accuracy. 

Upon verification of the rice and cotton datasets, the mean average precision (mAP) accuracy indicator 

achieves 71.27% and 82.91% in the respective datasets. The upgraded model's detection accuracy is 

shown to be effective and superior when compared to the Faster R-CNN, YOLOv7, and the original 

YOLOv8 models. Zheng et al., (2024) [26] presented a YOLOv8-DMAS model that utilized the YOLOv8 

detection technique to accurately identify cotton weeds in challenging situations. In order to improve 

the model's capacity to detect various weed types at different scales, the BottleNeck components in the 

C2f network are substituted with the Dilation-wise Residual Module (DWR). Additionally, the final 

layer of the backbone now includes the Multi-Scale module (MSBlock). SoftNMS is implemented as a 

replacement for the original “Non-Maximum Suppression” (NMS) approach in order to enhance the 

accuracy of dense weed identification. The findings demonstrate that the enhanced model can 

effectively identify cotton weeds in intricate field settings in real time, hence offering valuable assistance 

for intelligent weeding investigations. 

Zhao et al. (2022) [27] The MC-YOLOv4 model was implemented by replacing the CSPDarkNet53 

component in the YOLOv4 network with the MobileNet v3 network, resulting in improved efficiency. 

Additionally, an attention mechanism was included to improve the capability of extracting features for 

the detection of weeds in potato fields. As a consequence, there was a 3.2% enhancement in the mean 

average precision (mAP) value of YOLOv4. Chavan et al. [28] combined AlexNet with VGGNet and used 

the Plant seedling dataset to build the AgroAVNET model. In the case of single-object identification, 

when each picture would only include a single weed, the model attained a classification accuracy of 

93.64%. Abdalla et al. (2019) [29] examined the efficacy of identifying weeds in dense vegetation using 

semantic segmentation and reached a 96% accuracy rate using a pre-trained VGG16 network. Ferreira 

et al. (2019) [30] evaluated the use of clustered Convolutional Neural Network (CNN) algorithms using 

both labeled and unlabeled data in order to decrease the amount of manual labeling required. The 

method demonstrated high efficacy in semi-automatic weed detection using annotated data. Zhao et al. 

[31] implemented an enhanced DenseNet algorithm capable of reliably detecting companion weeds in 

uncultivated maize seedlings. By incorporating DropBlock regularization and "Efficient Channel 

Attention" (ECA), the model was able to attain an average classification accuracy of 98.63%. Han et al. 

(2023) [32] demonstrated a streamlined crop recognition model for identifying maize seedlings in 

challenging field conditions. Integrated the ExG index algorithm with the improved Otsu approach to 

efficiently extract weed information, taking into account the distribution features of the weeds. Liao et 

al. (2024) [33] introduced the SC-Net model, which utilizes a banded convolutional network and the 

banded multiscale convolution technique to expand the receptive field of the convolutional layer. 

Additionally, the model employs an attention-based feature fusion approach to successfully combine 

low- and high-level information for efficient identification of rice and weeds. 

https://www.sciencedirect.com/science/article/pii/S0950705124008384#bib0013
https://www.mdpi.com/2079-9292/13/11/2105#B18-electronics-13-02105
https://www.mdpi.com/2079-9292/13/11/2105#B19-electronics-13-02105
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Ren et al., (2024) [34] suggested a new and better weed identification system, based on YOLOv8. By 

incorporating multi-scale dilation convolution and large kernel convolution, the Dilated Feature 

Integration Block enhances feature extraction in the backbone network by making use of data from 

many levels and scales. While the number of model parameters is just 6.62 M, extensive studies on two 

publicly available datasets demonstrate that the proposed model surpasses the benchmark model. 

Specifically, mAP50 improves by 4.7%, mAP75 by 5.0%, and 5.3% by 3.3%. Gao et al., (2024) [35]. 

Developed and tested a smart detection model for cotton pests and illnesses using deep learning. By 

combining state-of-the-art Transformer technology with knowledge graphs, the model is able to 

improve the accuracy of pest and disease feature detection. Mobile systems can now process data and 

analyze inferences more efficiently thanks to edge computing technologies. A rate of 0.94 for accuracy, 

0.95 for mean average precision (mAP), and 49.7.90 for frames per second (FPS) were all reached by 

the suggested strategy in the experiments. Zayani et al., (2024) [36] presented a YOLOv8 algorithm-

based deep-learning strategy for automated tomato disease identification. The model improved upon 

an earlier Roboflow dataset and reached a total accuracy of 66.67%. But there is a wide range of class-

specific performance, which shows how difficult it is to distinguish between certain disorders. 

Additional investigation into data balance, investigating other designs, and implementing disease-

specific metrics is recommended. Wang et al. (2022) [37], presented a detector that takes contextual 

information into account in order to overcome the difficulty of dealing with complicated backdrops in 

remote sensing photos. It also made improvements to the RCNN region proposal network. 

Furthermore, authors in paper [38] designed an MPFPN to retrieve minor object characteristics that 

had been lost in the deep semantic data. However, these approaches aren't practicable for low-power 

edge image processing devices since they need a lot of memory and computing power. 

3. Methodology 

2.1 Dataset 

The dataset employed in this study focuses on cotton plants and encompasses three distinct diseases 

bacterial blight, armyworm, and powdery mildew—along with a category denoting the healthy state. To 

curate this dataset, approximately 2100 images were sourced from Kaggle 

https://www.kaggle.com/datasets/shaikmahmamadrafi/cotton-plant-disease-detection-datasets. 

However, the downloaded images lacked bounding boxes, a critical component for model training. To 

address this, bounding boxes were meticulously annotated across all images using the Computer Vision 

Annotation Tool (CVAT). This comprehensive annotation process ensured the accurate delineation of 

disease-affected regions within each image. 

Subsequently, the dataset was partitioned into training, validation, and test sets. The training set 

comprised 1750 images, providing a substantial volume for the models to learn and generalize patterns. 

The validation set, consisting of 250 images, served as a crucial component for hyperparameter tuning 

and performance validation during training. The test set, comprising approximately 100 images, 

remained untouched during training and validation, facilitating an unbiased assessment of model 

generalization to unseen data. 

The dataset was then prepared for compatibility with the distinct architectures of ResNet50 combined 

with Faster R-CNN and ResNet50 combined with YOLOv8. For the former, the dataset was converted 

to the JSON format, facilitating seamless integration with the ResNet50 and Faster R-CNN model 

pipeline. For the latter, the dataset underwent conversion to the XML and TXT format, aligning with 

the requirements of the ResNet50 and YOLOv8 model fusion. 

This meticulous dataset preparation process ensures the models are equipped with a diverse and 

representative collection of images, encompassing the nuanced variations in cotton plant diseases. The 

strategic partitioning of the dataset into training, validation, and test sets, combined with precise 

bounding box annotations, establishes a robust foundation for the subsequent evaluation of ResNet50 

with Faster R-CNN and ResNet50 with YOLOv8 models. These efforts contribute to the reliability and 

generalizability of the models in accurately detecting and localizing diseases on cotton plants. 

2.2 Resnet50 and Yolov8 

The YOLOv8 architecture consists of three main components: Backbone, Neck, and Head [39]. The 

backbone is a modified variant of the CSPDarknet53 architecture, and the neck network, also known as 
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the mid-section or transition layers, follows the backbone. It is responsible for aggregating and refining 

features extracted by the backbone. The design, techniques like “Feature Pyramid Networks” (FPN) or 

“Path Aggregation Networks” (PANet) are frequently employed, whereas the head has several 

convolutional layers followed by a sequence of fully connected layers. The primary function of the head 

is to make predictions regarding the boundaries of the boxes, objectness ratings, and class probabilities 

for the items that have been spotted inside an image. 

Several parameters are integral to YOLOv8, including a default input size of 640 × 640 and a default 

number of layers set to 53. For the BBox loss, YOLOv8 employs three distinct loss functions: 1. Complete 

Intersection over Union (CIoU) Loss: Utilized for bounding box regression, CIoU loss is designed to 

improve localization accuracy. DFL (Distribution Focal Loss) Loss: This loss function contributes to 

better handling of challenging scenarios, enhancing the model’s ability to detect objects, especially those 

of smaller sizes. BCE (Binary Cross-Entropy) loss for classification Loss: Applied to classification tasks, 

BCE loss is instrumental in optimizing the accuracy of class predictions. Empirical evidence has 

demonstrated that these losses significantly enhance the ability to identify items, particularly when 

dealing with minuscule objects. 

In this approach, the backbone of Yolov8 was modified from CSPDarknet to Resnet50. To achieve this, 

adjustments were made to the model. Yaml file in the Ultralytics YOLOv8 repository, cloned from 

GitHub. After cloning the repository, direct navigation into the paralytics/models/v8 directory was 

performed. Subsequently, relevant sections in the model yaml file were updated using the ResNet50 

architecture, accompanied by the necessary configuration changes. An additional update was made to 

the cfg file to specify the path of the modified model. 

The loading of the pre-trained ResNet50 weights was achieved by specifying the path to the weights file 

in the weight parameter. The adjustment involved changing weights from None to 

path_to_resnet50_weights.pt. The code in tasks.py and trainer.py handles the loading of weights, 

ensuring the expected functionality. 

Considering the differences between the YOLOv8 and ResNet50 architectures, changing the backbone 

to ResNet50 necessitated further adjustments for compatibility and optimal model performance. 

Experiments with various configurations were performed, and the results were systematically evaluated 

to determine the optimal setup for disease detection in cotton plants. 

In the YOLOv8 model, the backbone comprises initial layers that process the input image before passing 

it through detection layers. This backbone extracts essential features from an image and is crucial for 

subsequent object detection. 

 

 
Figure 1: ResNet50 with YOLOv8 Architecture.  

2.3 Resnet50 and FRCNN 

The Faster R-CNN architecture encompasses several key components, each playing a crucial role in the 

ability of the model to detect and localize objects within an image. 
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2.3.1 Backbone - Convolutional Feature Extraction: 

A conventional backbone network is tasked with processing the input image and extracting hierarchical 

features that are essential for subsequent stages of object detection. These features serve as the 

foundation for accurate localization and classification. 

2.3.2 Region Proposal Network (RPN): 

The RPN, an integral part of the Faster R-CNN architecture, is responsible for generating region 

proposals or candidate bounding boxes. Operating on the feature maps produced by the ResNet50 

backbone, the RPN identifies potential objects within the image and enhances the localization efficiency 

of the model. 

2.3.3 Region of Interest (RoI) pooling: 

Pooling of the Regions of Interest (RoI) occurs after the RPN for the suggested areas. In order to 

maintain input size consistency for the following layers, this step entails extracting feature maps from 

RoIs with varied sizes. RoI pooling enhances the adaptability of the model to objects of diverse scales. 

2.3.4 Fully Connected Layers (FCNs): 

The RoI-pooled features progress to Fully Connected Layers (FCNs), where intricate processing occurs. 

These layers are pivotal for refining bounding box coordinates and predicting class probabilities, 

particularly in the context of disease categories for plant disease detection. 

2.3.5 Bounding-box Regression and Classification: 

The final output of the model encompasses predictions for the bounding box coordinates (regression) 

and class probabilities (classification). Bounding box regression is typically represented as offsets from 

the anchor boxes proposed by the RPN. This comprehensive output encapsulates the model’s 

understanding of object locations and categories within a given image. 

In our approach, the integration of ResNet50 into Faster R-CNN involves substituting the original 

backbone with pre-trained ResNet50, which has 50 layers in 5 blocks. This strategic substitution allows 

the model to leverage ResNet50's powerful feature extraction capabilities, enhancing its ability to 

discern complex patterns in data. Importantly, this modification maintained the consistency of the 

overall architecture, encompassing the RPN, RoI pooling, and final classification layers. This ensures 

seamless integration of ResNet50 into the general Faster R-CNN framework, resulting in improved 

performance, particularly tailored for the nuanced domain of plant disease detection and localization. 

 
 

 
Figure 2: ResNet50 with FRCNN Architecture. 

2.4 Hyperparameters 

2.4.1 Resnet50 – Yolov8 

The hybrid ResNet50 with YOLOv8 model for plant disease detection and localization was configured 

mostly with the default hyperparameters of Yolov8. Input images of size 640 × 640 pixels, strike a 

balance between computational efficiency and spatial information retention. A batch size of 4 was used 

instead of the default, which was 64 for optimizing the training process. The Adam optimizer facilitated 

adaptive learning rate adjustments, set at 0.01, with a momentum of 0.937 for efficient optimization. A 

weight decay of 0.0005 addresses overfitting concerns. The training spanned 300 epochs, 

implementing early stopping criteria to conclude at the 270th epoch. 
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2.4.2 Resnet50-FRCNN 

The image size chosen for the experiment was 1333 × 800 pixels. The dataset was organized into three 

folders: training, validation, and test. To maintain the integrity of the actual test data and ensure its 

complete novelty, the images in the validation folder were duplicated in the test folder. 

The neck type selected for the architecture was a Feature Pyramid Network. The optimization algorithm 

employed was “Stochastic Gradient Descent” (SGD) with a learning rate of 0.02 and a momentum of 

0.9. Additionally, the weight decay was set to 0.0001 to mitigate overfitting during training. 

The loss function utilized for training was the Cross-Entropy Loss. Non-maximum suppression (NMS) 

was applied to the model's output to filter redundant bounding boxes. In this process, an Intersection 

over Union (IoU) threshold of 0.7 was specified to determine the overlap required for NMS to suppress 

redundant detections. 

The warm-up parameter was configured as "Linear." This strategy facilitated a smooth transition in the 

learning rate from an initial low value to the desired learning rate. This approach is particularly 

beneficial in the initial stages of training, when the model acquires fundamental features and 

representations, contributing to a more stable and controlled training process. Finally, the hybrid model 

of Resnet50-FRCNN was trained for 300 epochs. 

Overall, these experimental configurations were designed to enhance the performance of the model by 

carefully selecting parameters and strategies in the training pipeline. 

4. Benefits 

ResNet50 with YOLOv8 

Combining ResNet50 with YOLOv8 enhances cotton plant disease detection and localization. YOLOv8’s 

real-time detection and ResNet50 feature extraction synergize, enabling the swift and accurate 

identification of diseases. The model excels in scenarios demanding rapid multi-instance detection, 

making it a valuable tool for efficient and timely plant health monitoring in cotton fields. 

 

ResNet50 with Faster R-CNN (FRCNN) 

Integrating ResNet50 with Faster R-CNN refined cotton plant disease localization. ResNet50’s robust 

feature extraction, coupled with Faster R-CNN’s 

region-based approach, ensures the precise identification and localization of diseases. This hybrid 

model excels in scenarios where a detailed understanding and accurate localization of disease regions 

are critical, offering valuable insights into cotton plant pathology. 

5. Results and Implementation 

4.1 Training 

Additionally, graphical representations were employed to comprehensively assess the training progress 

and performance stability of both hybrid models. The training graphs depict the evolution of the average 

precision, recall, and F1-score across epochs for ResNet50-YOLOv8 and ResNet50-FRCNN. 

The graphs show convergence and fluctuations in these metrics, offering valuable insights into the 

learning trajectories of the models. Notably, trends in precision, recall, and F1-score can be observed, 

aiding in the identification of optimal epochs where the models achieve a balance between accuracy and 

generalization. 

Precision, Recall, and F1-score in case ResNet50-YOLOv8 reached saturation at the 270th epoch, giving 

values of 0.989, 0.986, and 0.988, respectively. Contrastingly, ResNet50-FRCNN displayed values of 

0.858, 0.905, and 0.88, at the 300th epoch, indicating variations in precision and recall. 
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Figure 3.: Resnet50 + FRCNN Training Graph 

 

Figure 3 displays the model's performance metrics Average Precision, Average Recall, and Average F-1 

Score across 400 training epochs. The Average Precision starts around 0.2 and rapidly increases to 

approximately 0.85 by the 50th epoch. It then gradually improves, reaching slightly above 0.9 by the 

400th epoch. The Average Recall begins at around 0.5 and climbs steeply to about 0.9 by the 50th epoch, 

maintaining stability with minor fluctuations around 0.9 for the remaining epochs. The Average F-1 

Score starts at about 0.3 and quickly rises to approximately 0.85 by the 50th epoch, continuing to 

improve gradually and ending just under 0.9 by the 400th epoch. The model's performance significantly 

improves within the first 50 epochs and then maintains high values close to 0.9 with minimal variations 

thereafter. 

  

 
Figure 4: Resnet50 + YoloV8 Training Graph 

 

Figure 4 illustrates the model's performance metrics Average Precision, Average Recall, and Average F-

1 Score over 300 training epochs. The Average Precision begins low but quickly rises to approximately 

0.95 by the 30th epoch, after which it stabilizes and maintains this value throughout the remaining 

epochs. Similarly, the Average Recall starts low, sharply increases to about 0.95 by the 30th epoch, and 

then remains consistent at this level for the rest of the training period. The Average F-1 Score follows 

the same trend, starting low, rapidly increasing to around 0.95 by the 30th epoch, and stabilizing at this 

value for the duration of the epochs. The model quickly achieves high performance within the first 30 

epochs and maintains these high values close to 0.95 with minimal variation thereafter. 
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4.2 Testing 

100 unseen images were used for testing, with 25 images randomly selected from each class of cotton 

plants: Bacterial Blight, Powdery Mildew, Army Worm, and Healthy Plants. These images were 

consistent across both models for a fair comparison. The results of the hybrid model are summarized 

below. 
Table 1: Resnet50 with Yolov8 Result 

Disease Name Total Images Correctly Detected Incorrect Detected 

Army Worm 25 24 1 

Bacterial Blight 25 25 0 

Healthy 25 25 0 

Powdery Mildew 25 24 1 

Total 100 98 2 
 

Classification Accuracy 98.00% 
 

Average IoU 0.95 

 

Table 1 shows a model's effectiveness in detecting several plant diseases across 100 images, grouped 

into four categories: Army Worm, Bacterial Blight, Healthy, and Powdery Mildew. Out of 25 images in 

the Army Worm category, the model successfully spotted 24 examples while incorrectly detecting one. 

For Bacterial Blight, the model accurately recognized 25 instances out of 25 images while incorrectly 

detecting 0. For the Healthy, the model successfully spotted 25 instances out of 25 photos while 

incorrectly detecting 0. The algorithm accurately recognized 24 incidences of Powdery Mildew out of 

25 photos, while incorrectly detecting one. Overall, the model correctly recognized 98 of 100 photos, 

with a classification accuracy of 98.00%. Furthermore, the model's Average Intersection over Union 

(IoU) score is 0.95, showing that its detections are very accurate. 
Table 2: Resnet50 with FRCNN Result 

Disease Name Total Images Correctly Detected Incorrect Detected/Not detected 

Army Worm 25 22 3 

Bacterial Blight 25 21 4 

Healthy 25 25 0 

Powdery Mildew 25 22 3 

Total 100 90 10 

  Classification Accuracy 90.00% 

  Average IoU 0.955 

 

Table 2 presents the performance of a model in detecting various plant diseases across a total of 100 

images, divided into four categories: Army Worm, Bacterial Blight, Healthy, and Powdery Mildew. For 

the Army Worm category, out of 25 images, the model correctly detected 22 cases and incorrectly 

detected 3 cases. For the Bacterial Blight, out of 25 images, the model correctly detected 21 cases and 4 

incorrectly detected. For the Healthy, out of 25 images, the model correctly detected 25 cases and 0 

were incorrectly detected. For the Powdery Mildew, out of 25 images, the model correctly detected 22 

cases and 3 incorrectly detected. Overall, the model correctly identified 98 out of 100 images, resulting 

in a classification accuracy of 90.00%. Additionally, the model's Average Intersection over Union (IoU) 

score is 0.955, indicating high precision in its detections. 
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4.3 Model Output Comparison 
 

Table 3: Model Output Result Comparison 

Disease Resnet50 + Yolov8 Resnet50 + Faster RCNN Comments 

Army 

Worm 

 

 

Correctly 

classified by 

both models 

with different 

IoU values 

Bacterial 

Blight 

  

Resnet50 

+Yolov8 - 

Correctly 

classified 

Resnet50 + 

FRCNN - 

Incorrectly 

classified 

Healthy 

 

 

Similar results 
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Powdery 

Mildew 

 

 

Same 

classification 

results, 

different IoU 

results 

 

Table 3 compares the performance of two model combinations for identifying plant diseases: Resnet50 

+ Yolov8 and Resnet50 + Faster RCNN. Both models properly diagnosed the disease "Army Worm," 

but with varying Intersection over Union (IoU) values. For "Bacterial Blight," the Resnet50 + Yolov8 

model properly categorized the disease, but the Resnet50 + Faster RCNN model wrongly classified it. 

The results for "Healthy" plants were similar across both models. Finally, for "Powdery Mildew," both 

models produced the same classification results but with different IoU values, showing differences in 

the precision of their predictions.

5 Conclusion 

In this research endeavor, we implemented two hybrid models, namely, ResNet50 combined with 

YOLOv8 and ResNet50 paired with FRCNN, to detect and localize diseases in cotton plants. Our efforts 

started with the careful preparation of datasets through image collection and annotation. The results 

obtained were commendable, with both models achieving an object detection IoU of approximately 

0.95. It is worth noting that ResNet50-YOLOv8 exhibited superior classification accuracy at 98%, while 

ResNet50-FRCNN achieved a respectable 90%, thereby illustrating nuanced performance variations. 

In terms of precision, recall, and F1-score, ResNet50-YOLOv8 presented impressive values of 0.989, 

0.986, and 0.988, respectively. Contrastingly, ResNet50-FRCNN displayed values of 0.858, 0.905, and 

0.88, indicating variations in precision and recall. 

Undertakings in the future can focus on experimenting with various backbones and exploring 

alternative object detection models to improve architectures. Additionally, expanding the models to 

encompass a wider range of plant species and diseases and deploying them at the edge for real-time 

detection are crucial directions for practical implementation. These kinds of studies aim to refine 

existing models and broaden their applicability, ultimately making them valuable tools for precision 

agriculture and disease management. In conclusion, this research establishes a foundation for 

advancements in plant disease detection, highlighting the importance of ongoing exploration and 

adaptation in diverse agricultural contexts. The proposed metrics provide valuable insights into the 

intricate performance of each hybrid model, guiding future enhancements and practical applications. 
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