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In diagnosing skin diseases, segmentation of lesion region and classification of detected lesion 

type are the two major processes. This paper conducts a systematic review related to the lesion 

descriptors extracted from the skin region and the machine learning classifiers utilized in 

differentiating the descriptor types and also discusses the deep learning schemes that impact 

skin lesion diagnosis. More specifically, the paper focuses on lesion region detection-based 

deep learning schemes that are derived from the Mask Region-based CNN (RCNN), U-Net, and 

DeepLabV3+ architectures.  In the case of skin lesion segmentation, the recent multi-attention 

scheme results in a recall, precision, and F1-score of 93.97%, 93.94%, and 93.73% respectively 

in the ISIC-2016 dataset which is higher than other lesion detection approaches. In the case of 

skin lesion classification, the Diverse CNN approach results in a maximum accuracy, recall, and 

precision of 96.12%, 93.11%, and 94.63% respectively when evaluated using the HAM-10000 

dataset which is higher than other lesion classification approaches. 

Keywords: Skin lesion detection, deep learning, lesion descriptors, Mask RCNN, DeepLab 

V3+. 

 
1.Introduction 

The skin lesion [1] is an abnormal appearance or growth of the skin region when compared to normal skin. The skin 

lesions can be classified as primary and secondary types [2]. The skin lesion that presents at birth, and can grow 

over time is termed to be primary type. The major reason for skin cancer death is due to delayed diagnosis, and 

treatment, A survey reports [3] that 2 to 3 million non-melanoma type skin lesion subjects are diagnosed across the 

globe, however only 130,000 melanoma-type subjects are diagnosed. Fig.1 shows the death rate [4] in the US for the 

year between 1992 and 2021. Early detection and treatment is an effective way of reducing skin cancer deaths. Due 

to the development of computer-aided medical diagnosis algorithms, early skin lesion detection is possible which 

increases the chance of early-stage treatment. 

 

Fig.1: Death rate in the US for the years 1992 to 2021 

Benign and Malignant type lesions [5] are another classification of lesion types. The benign skin lesions are non-

cancerous, and their growth does not spread to other normal skin surfaces. The malignant type skin lesions are 

cancerous [6], and they can grow, invade nearby skin tissues, and spread to other body parts. The growth of such 
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lesions is abrupt and can change over time. The lesions region can be itchy and can bleed or ulcerated. Such lesions 

require treatments like targeted therapy (radiation), chemotherapy, or surgical removal. 

 

(a)         (b)                 (c)                (d)            (e)           (f)        (g) 

Fig. 2: Dermatofibroma (b) Benign Keratosis (c) Melanoma (d) Basal cell carcinoma (e) Melanocytic Nevi (f) Actinic 

Keratoses (g) Vascular lesions 

 

Fig.3: Representation of stages involved in detecting and identifying the lesion types 

The dermoscopic images of different lesion types are illustrated in Fig. 2. approaches and classification of lesion 

types as illustrated in Fig. 3.  

The contributions of the review paper are as follows, 

(i) This study is on artifacts present in the skin lesion dermoscopic images and preprocessing approaches 

used for the removal of such artifacts. 

(ii) The paper analyses different datasets to detect lesion and classify them.  

(iii) The paper discusses about deep learning schemes to detect the tumor region. 

(iv) Finally, the deep learning-based lesion classification approaches are discussed and analyzed with their 

performance measures. 

2.Skin lesion artifact removal Enhancement Methods 

This section discusses the different schemes that are used as preprocessing for the removal of different artifacts and 

to enhance the lesion images along with various artifacts.  

2.1Artifacts in skin lesion images 

The dermoscopic skin images contain different artifacts [7] that makes the detection of lesion regions or extraction 

of lesion features more challenging as discussed below in fig[4] 

 

Fig. 4: Representation of different artifacts (a) Low contrast boundaries (b) Frame artifact (c) Wrinkle artifact 

(d) Irregular boundaries (e) Background artifact (f) Blood vessel artifact (g) Bubble (h) Hairs 



392  
 

J INFORM SYSTEMS ENG, 10(20s) 

2.2Approaches for the removal of lesion artifacts  

Different artifact removal approaches and dermoscopic image enhancement approaches have been used in recent 

algorithms. 

 

Fig. 5 Sample pre-processed results   

Schemes such as DullRazor [8], Multi-scale decomposition [9], enhanced DullRazor [10], Frangi vesselness filter 

[11], fast line detector [12], Averaging filter, Threshold decomposition [13], and Morphological operation [14] are 

used in the removal of artifacts such as blood vessels, and hairs. Algorithms such as standard deviation 

normalization [15], Z-score transform [16], contrast stretching [17], log transform [18], Top bottom filtering [19], 

Contrast Limited Adaptive Histogram Equalization (CLAHE) [20], Gamma Correction [21], and Median filter are 

used for the enhancement of lesion region. Fig. 5 illustrates the combination of CLAHE lesion enhancement 

followed by the DullRazor approach for the removal of hair artifacts.   

3.Datasets and evaluation measures 

3.1Datasets: Various datasets are employed for the task of skin lesion detection and classification. ISIC-

2016 has 899dermoscopicimages.  

ISIC-2017 features 2000+ images distributed over three types of lesions.  

ISIC-2018 or HAM 10000, contains 10,015 images spread over seven classes of lesion.  

ISIC-2019expands further, with 25,331images and other squamous cell carcinoma types.  

ISIC-2020 includes six classes of lesion and 27,124 images of unknown type. Other datasets include 

DermQuest (137 images), DermIS (69 images), PH2 (200 images with segmentation masks), and PAD-UFES-

20 (2298 images across six lesion types). These represent rich benchmarks for deep learning-based skin 

lesion analysis. [27], [28],[29],[30],[31],[32],[33],[34] 

Table I: Number of images in each dataset 

Lesion type ISIC 

2016 

ISIC 

2017 

ISIC 

2018 

ISIC 

2019 

ISIC 

2020 

DERM 

QUEST 

DERMIS PH2 PAD-

UFES-20 

Melanoma 173 374 1113 4522 584 76 43 40 52 

Atypical Nevus 726 1372 6705 12875 46 61 26 80 244 

Common nevus - - - - 5193 - - 80 - 

Dermatofibroma - - 115 239 - - - - - 

Seborrheic Keratosis - 254 1099 2624 135 - - - 235 

Basal cell carcinoma - - 514 3323 7 - - - 845 

Squamous cell 

carcinoma 

- - - 628 - - - - 192 

Pyogenic Granuloma - - - - - - - - - 

Hemangioma - - 327 867 37 - - - - 

Actinic Keratosis - - 142 253 - - - - 730 
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Unknown - - - - 27124 - - - - 

Total number of images 899 2000 10015 25331 33126 137 69 200 2298 

Table I illustrates the number of images in each lesion class for different datasets that are commonly used for 

analysis. A few of the sample images from the datasets are illustrated in Fig. 6. 

 

Fig.6: Sample images from the publicly available datasets (a) PAD-UFES-20 dataset (b) HAM-10000 dataset (c) 

PH2 dataset 

3.2 Evaluation measures 

For the evaluation of the lesion detection and classification schemes, evaluation measures such as precision, recall, 

accuracy, specificity, and F1-score are commonly used as illustrated in Table II. 

Table II: Evaluation metrics used for the analysis of lesion segmentation and classification 

 

 In these equations 𝑆𝐹𝑃 , 𝑆𝑇𝑃, 𝑆𝑇𝑁 and 𝑆𝐹𝑁  resemble the false positives, true positives, true negatives, and false 

negatives results obtained during segmenting. In classification, the terms 𝐶𝐹𝑃 , 𝐶𝑇𝑃, 𝐶𝑇𝑁 and 𝐶𝐹𝑁 are estimated based 

on the classified result and the annotated lesion classes.   

4.Detection of skin lesion region: Skin lesion detection schemes can broadly classified  

4.1 Traditional Segmentation Approaches - The traditional approach uses schemes such as an edge 

detection-based approach [35], a region-based approach [36], and a threshold-based approach [37]. Clustering 

algorithms such as K-means [38], and fuzzy C-means [39] are also commonly used in differentiating the 

background skin region and foreground lesion region. The thresholding-based approach includes Adaptive 

thresholding [40], Otsu’s thresholding [41], Renyi’s entropy [42], etc. The region-based approach segments the 

group of related pixels to the lesion or skin region. The region-based approach includes region growing [43], the 

Mumford-Shah approach [44], Splitting, and merging approach [45]. Region growing approach includes the 

contour-based model such as active contour models. Different masks such as Canny, Laplacian, Robert, Sobel, and 

Prewitt operators [46] are utilized to detect the edge between the lesion and the skin surface. 

4.2  Deep learning approach to detect lesion region 

Few deep learning structures that provide better segmentation results are discussed below  

(a) U-Net based approaches-The U-Net architecture [47] contains a bottleneck layer between the contraction 

path and the expansion path. The spatial dimension gets reduced while the feature channel increases in the 

contraction path. The attention U-Net [48] utilizes attention gates (AG) that give more weightage to the relevant 

area (lesion region), and less weightage to the irrelevant area (normal skin region) as illustrated in Fig. 7. The 

attention weights 𝛽0 is estimated as,
 
𝛽

0
= 𝑅𝑒𝐿𝑈(𝑐𝑔 × 𝑓𝑑 + 𝑐𝑤 × 𝑓𝑒 + 𝑐𝑏)    (1) 
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Here, 𝑐𝑔, and 𝑐𝑤 resembles the learnable weights The term 𝑓𝑑, and 𝑓𝑒 resembles the features of encoder, and 

decoder, while 𝑐𝑏 resembles the bias. Thus, the attention map is computed as, 

𝛽1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽0) =
1

1+𝑒−𝛽0
      (2) 

 

Fig.7: Attention U-Net structure in detecting lesion region 

Xia et al. [49] combined U-Net with a dual discriminator to create a GAN using dilated convolution for fine-grain 

feature extraction. Multi-scale attention [50] in U-Net enhances feature aggregation while suppressing redundancy 

with bidirectional ConvLSTM. Variants like Psoriasis U-Net (29 layers), Anti-aliasing U-Net [52], and U-Net++ [54] 

improve spatial data collection, shift equivariance, and gradient disappearance issues. Combining CNN with U-Net 

achieves 97.96% accuracy on HAM-10000 for lesion classification and detection. 

 (b) Mask-RCNN based approach-The mask RCNN [55, 56] architecture can able to perform two simultaneous 

tasks such as skin lesion region detection as well as lesion type classification. The major components in mask 

RCNN include a backbone network for feature extraction, a region proposal network (RPN) to generate anchors. 

The mask RCNN also has mask prediction to construct the mask for the region that was detected as depicted in Fig. 

8. 

 

Fig.8: Mask R-CNN structure in detecting lesion region and identification of lesion type 

The author Bagheri et al. combined Mask R-CNN structure [57] with DeepLab to obtain two different segmented 

lesion regions. Transfer learning architecture was deployed in mask R-CNN [58], in which the mask R-CNN 

segmented lesion is fed to DenseNet architecture to collect the descriptors. This approach results in 92.7%, and 

93.6% accuracy when analyzed using ISIC-2017, and ISIC-2016 datasets. 

(c) DeepLabV3+ based approaches -The DeepLabV3+ [59] has two major blocks namely encoder, and 

decoder. The descriptors are dilated at different levels to obtain multi-scale descriptors. The decoder refines the 

descriptors by performing up-sampling that improves the accuracy of the segmented lesion region as depicted in 

Fig. 9.  
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Fig.9: DeepLabV3+ structure in the detection of lesion region 

A three-step process was proposed by Bagheri et al. [60] for segmenting the lesion region. The DeepLabV3+ 

architecture uses the MobileNetV2 model [61] to detect the lesion. This approach can simultaneously classify, and 

detect the lesions. Saeed et al. used DeepLabV3+ along with VGG-19, and VGG-16 architectures to develop 

generative AI-based architecture [62]. This architecture when evaluated using the ISIC-2018 dataset results in 97% 

segmentation accuracy. The actual classification was done by a vision transformer [63] that has 8 blocks, where 

each block has 8 multi-head attention. This hybrid architecture results in an accuracy of 97.73%, and 96.97% when 

evaluated using the ISIC-20, and ISIC-19 dataset.  

4.3 Performance analysis 

The performance of the deep learning-based lesion detection algorithms was evaluated using measures such as 

recall, precision, and F1-score using the datasets namely PH2, ISIC-2016, and ISIC-2017 datasets.  

Table III: Comparison of recall, precision, and F1-score in segmenting the lesion region  

Method PH2 ISIC-2016 ISIC-2017 

Recall Precision F1 Recall Precision F1 Recall Precision F1 

U-Net [64] 88.51 84.43 86.43 91.17 90.48 88.66 70.18 89.66 78.73 

Attention U-Net++ 

[65] 

93.05 91.66 92.35 90.68 92.94 88.34 74.34 92.54 80.66 

U-Net++ [66] 93.74 93.40 93.57 87.32 93.77 90.20 70.70 88.15 80.16 

DCSAU-Net [67] 93.23 95.00 94.11 91.42 91.32 92.72 88.01 83.93 85.93 

CASF-Net [68] 93.78 95.44 94.60 92.26 92.12 91.46 84.51 85.14 84.20 

MS-Net [69] 94.18 94.93 94.55 91.54 91.36 89.40 76.79 91.07 83.31 

Multi-attention 

[70] 

94.11 95.97 95.03 93.97 93.94 93.73 91.22 93.92 87.15 

 

Table III illustrates the performance comparison of different deep learning architectures in detecting the lesion 

region. The comparison was made between the architectures U-Net [64], attention U-Net++ [65], U-Net++ [66], 

DCSAU-Net [67], CASF-Net [68], MS-Net [69] and multi-attention [70]. The recall, precision, and F1-score are 

higher for the multi-attention approach than other deep learning architectures. The recall, precision, and F1-score 

were estimated as 94.11%, 95.97%, 95.03% for the multi approach when evaluated using the PH2 dataset. The 

precision and recall estimated using Mult-attention architecture is 0.53% and 0.43% higher than the CASF-Net 

[68] approach. But the recall of multi-attention approach is 0.07% less than the MS-Net [69] approach. In case of 

ISIC-2016 dataset the recall, precision and F1-score was estimated as 93.97% 93.94% and 93.73% respectively using 

the Multi-attention approach. The same approach results in recall, precision and F1-score of 91.22%, 93.92% and 

87.15% when evaluated using the ISIC-2017 dataset.  Fig.10 illustrates the graphical comparison chart for the 

performance between the deep learning-based lesion detection approaches. In case of ISIC-2016 dataset the recall 
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and precision estimated using the multi-attention is 1.71% and 0.17% greater than the CASF-Net [80] and U-Net++ 

[66] approach respectively, while the F1-score is 1.01% higher than the DCSAU-Net architecture [67].  In case of 

ISIC-2017 dataset, the recall and F1-score estimated using the multi-attention is 3.21% and 1.22% greater than the 

DCSAU-Net [67] approach, while the precision is 1.38% higher than the attention-U-Net++ architecture [66].   

 

Fig.10: Comparison of performance by different architectures in segmenting the lesion region 

 

Fig.11: Segmentation result obtained by different deep learning architectures on datasets  

5.Lesion descriptor and machine learning approaches: Few of the handcrafted and deep features are 

provided in Table IV. 

Table IV: Accuracy comparison of machine learning classifiers utilizing different descriptors 

Type  Descriptor # 

Descriptor 

ISIC-2017 ISIC-2016 

SVM MLP KNN RF SVM MLP KNN RF 

Texture LBP 256 25.96 19.47 43.67 46.95 44.41 38.47 44.73 48.25 

Texture Moments 4 24.62 22.15 28.84 33.64 24.73 21.28 34.92 41.68 

Color LCH 264 41.38 28.63 48.07 67.04 46.84 38.17 63.66 69.60 

Color CEDD 144 49.98 44.74 64.38 64.63 50.38 45.11 75.09 75.62 

Color GCH 66 40.53 29.32 76.95 84.13 46.31 37.25 78.52 87.44 

Color Haralickcolor 15 34.62 31.51 45.62 69.00 24.40 20.32 40.89 75.53 



397  
 

J INFORM SYSTEMS ENG, 10(20s) 

 

Table IV illustrates the accuracy comparison of different machine learning classifiers namely SVM [71], MLP [72], 

KNN [73], and RF. Texture features such as local binary pattern (LBP) [74] and moments and Color descriptors 

such as local color histogram (LCH) [75], Color and edge directivity descriptors (CEDD) [76], Global color 

histogram (GCH) [77], and Haralickcolor features [78] are used for analysis. Also, the hybrid color and texture 

descriptors such as fuzzy color and texture histogram (FCTH) [79] and joint composite descriptors are used in the 

analysis. Deep learning-based feature-extracting models [80] are also considered for analysis.  

 
    (a)               (b) 

Fig.12: Comparison of classification accuracy for the different machine learning classifiers  

Fig.12 shows the graphical illustration of classification accuracy and Among the four classifiers, the SVM classifier 

provides moderate results when utilizing Generic features extracted by deep learning architectures. 

6.Deep learning-based lesion classification approaches: Deep learning approaches that are commonly 

used in classification of lesion types. 

 6.1 ResNet based approaches 

The ResNet-based architecture [81] minimizes problems like vanishing gradients. The ResNet utilizes the residual 

blocks that can bypass layers with the use of skip connections as depicted in Fig. 13.  

 
Fig.13: ResNet50 Model in classifying skin lesions 

Texture, color FCTH 192 45.99 41.42 64.53 67.34 41.46 37.84 71.21 75.09 

Texture, color JCD 168 50.66 44.26 69.56 71.34 50.84 44.72 78.8 79.59 

Generic Xception 2048 61.81 48.77 62.75 55.02 70.90 59.35 76.81 64.93 

Generic InceptionV3 2048 59.95 48.20 63.59 54.04 70.08 58.51 79.83 64.78 

Generic DenseNet121 1024 67.10 56.87 75.85 66.72 72.82 61.72 85.65 75.77 

Generic VGG19 512 62.51 52.23 67.85 59.72 71.33 61.44 84.02 71.46 

Generic VGG16 512 62.98 52.77 69.28 60.80 71.50 60.79 85.34 72.16 

Generic MobileNet 1024 64.67 53.44 73.15 58.43 74.78 63.22 89.03 71.68 

Generic ResNet50 2048 67.06 53.16 74.25 64.68 77.51 64.72 88.80 76.40 
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The ResNet architecture was modified to derive multi-channel ResNet [82] that attains 91.7% accuracy in 

classifying the lesion types such as ResNet18 [83], VGG-16, and AlexNet are used to extract the deep features which 

are classified using SVM to differentiate the lesion type Seborrheic keratosis, and melanoma. Support vector 

machine [84] is utilized to train the multiple descriptors collected by inter, and intra architecture. Pre-trained 

models are used to classify the features from the segmented lesion region which was detected by full-resolution 

CNN [85]. When comparing EfficientNet-B0, and ResNet-50, models the EfficientNet-B0 [86] shows better 

performance in classifying the skin lesion. To minimize a residual learning CNN was proposed by Zhang et al. [87]. 

6.2 EfficientNet based approaches 

The EfficientNet [88] architecture provides a higher classification performance. The EfficientNet performs uniform 

width, depth, and resolution represented as, 

(𝑠𝑑 , 𝑠𝑤 , 𝑠𝑟) = (𝛼1
𝜏 ∙ 𝑠𝑑

(0)
, 𝛼2

𝜏 ∙ 𝑠𝑤
(0)

, 𝛼3
𝜏 ∙ 𝑠𝑟

(0)
)                (3) 

Here, 𝛼1, 𝛼2, and 𝛼3 resembles the constant to control the scaling. 𝜏 resembles the parameter used to control the 

network size. 𝑠𝑑
(0)

, 𝑠𝑤
(0)

, and 𝑠𝑟
(0)

 resembles the initial, depth, width, and resolution. These MBConv blocks are 

represented as the block in EfficientNet architecture provided in Fig. 14. The architecture uses switch activation 

that scales the input 𝑣 using the transform to generate the output as. 

𝑆(𝑣) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣) × 𝑣 =
𝑣

1+𝑒−𝑣              (4) 

The feature vector is passed through a dense network to estimate the final score.  

 

Fig.14: Structure of EfficientNet in the classification of skin lesions 

Multi-resolution EfficientNet [89] is derived from the EfficientNet architecture by Alexandar et al. Different 

EfficientNet models namely EfficientNet B0-B7 [90] are used to fine tune the weights using HAM10000 datasets. 

The EfficienNetV2-M model is proposed by Stephen et al. [91]. A wide variety of skin lesions are classified by the 

EfficientNet model [92] by Abdual et al. The architecture EfficientNet results in higher accuracy than ResNet, and 

VGG networks. Vipin et al. [93] used the regression layer in the EfficientNet instead of using the classification layer. 

EfficientNet architecture is derived [94] that attains an AUC (area under the ROC curve) of 98.65% 

6.3 Vision transformer-based approach 

The vision transformer structure [95] initially subdivides an image into non-overlapping patches. The positional 

encodings along with patches embedding are applied to a transformer encoder that has multi-head attention, feed-

forward network, and residual connections as illustrated in Fig. 15. To minimize the class imbalance problem GAN-

based vision transformers [96] consist of four major steps Synthetic image generation, augmentation, pattern 

identification, followed by classification. A deep bottleneck transformer was proposed by Han et al. [97] that 

extracts deep features and uses these features for global correlation. The dual encoder was further modified to a 

bidirectional encoder [98] that minimizes the intra-class variation problems caused by inconsistent lesion shapes.  
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Fig.15: Structure of Vision transformer approach in the classification of skin lesions 

The vision transformer in combination with attention-based U-Net termed hybrid TransUNet results in a 92.11% 

accuracy which is higher than other transformer models. A full transformer network [99] was utilized to extract the 

contextual features in classifying the skin lesion. An improved transformer was proposed [100] that uses a three-

phase process. The traditional loss function in the CNN model is replaced by the focal loss function and the 

resultant architecture is combined with a vision transformer [101] to extract high-level descriptors.  

6.4 Performance analysis 

This section shows the performance comparison between different schemes that show better results that are used in 

the classification of skin lesion types. The evaluation measures such as F1-score, precision, recall, and accuracy are 

used for analysis. The schemes such as Ensemble DNN [102], multi-crop [103], Ensemble CNN [104], GAN [105], 

Synthetic GAN [106], MobileNetV2 with LSTM [107], Soft attention [108], EfficientNet [88], Lightweight network 

[109], Modified LSTM [110], Multi-scale attention [111], CNN with DenseNet [112], Transformer model [97], CNN 

with machine learning [113], U-Net with CNN [53], DenseNet with ConvNeXt [114], Diverse CNN [115], and 

TResNet [116] are used for analysis. When comparing these schemes, the diverse CNN results in an F1-score, 

precision, recall, and accuracy of 93.86%, 94.63%, 93.11%, and 96.12% respectively as illustrated in Table V. This 

evaluation was done using the HAM-10000 dataset. 

Table V: Comparison of performance for different skin lesion classification schemes 

Method F1-Score Precision Recall Accuracy 

Ensemble DNN (2018) [102] 83.0 86.1 80.4 96.8 

Multi-crop (2018) [103] 84.1 88.8 80.9 97.2 

Ensemble CNN (2018) [104] 82.3 82.6 83.3 95.8 

GAN (2019) [105] 83.44 84.43 82.86 - 

Synthetic GAN (2020) [106] 73.2 76.9 74.3 95.2 

MobileNetV2+LSTM (2021) [107] - - 92.24 90.21 

Soft attention (2021) [108] - 93.7 - 93.4 

EfficientNet (2022) [90] 87.9 88 88 87.9 

Lightweight network (2022) [109] 72.61 75.15 70.71 95.66 

Modified LSTM (2022) [110] 90.48 90.38 90.58 91.03 

Multi-scale Attention (2022) [111] - - 73.5 91.6 

CNN+DenseNet (2022) [112] 93.27 - - 92.25 

Transformer model (2022) [97] - 96.1 - 95.84 

CNN+ML (2022) [113] 86 88 85 95.19 

U-Net+CNN (2023) [53] - 88.47 84.86 97.96 

DenseNet+ConvNeXt (2023) [114] 83.45 83.75 83.81 - 

TResNet (2024) [116] 89.48 90.23 88.85 98.23 

Diverse CNN (2024) [115] 93.86 94.63 93.11 96.12 

 

The Diverse CNN [115] results in an increase in F1-score and recall of  0.59% and 0.87% than the CNN with 

DenseNet architecture [112] and MobileNetV2 with LSTM architecture [107] respectively. The transformer model 

[97] results in a maximum precision of 96.1% and the TResNet [116] architecture results in a maximum accuracy of 

98.23%. 
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7.Discussion and future perspectives 

Skin lesion classification achieves high performance with Diverse CNN (F1: 93.86%, Acc: 96.12%), TResNet (Acc: 

98.23%), and transformers (Precision: 96.1%, Acc: 95.84%). For segmentation, attention-based models like multi-

attention (F1: 93.73%) outperform others. CNN-derived architectures with attention mechanisms, Vision 

Transformers, and EfficientNet excel, especially on large datasets, while data augmentation aids small 

datasets.Fine-tuning pretrained models enhances generalization across different demographics. Hyperparameter 

tuning via Bayesian optimization, grid search, and random search improves performance. U-Net-based models 

enhance lesion detection accuracy, crucial for effective treatment. Hardware deployment using ASIC, FPGA, or DSP 

enables real-time diagnosis with dermoscopic images. 

8.Conclusion 

The paper provides a systematic review related to the detection and classification of skin lesions. In the case of 

machine learning classifier, the use of an SVM classifier with generic deep features that are extracted by ResNet or 

DenseNet architecture provides a moderate result in the classification of lesions. In detecting the lesion region, the 

attention-based deep learning models and U-Net++ models provide better performance. Recently the approach 

multi-attention [70] resulted in recall, precision, and F1-score of 93.97%, 93.94%, and 93.72% respectively when 

evaluated utilizing the ISIC-2016 dataset. In the classification of lesion types, the usage of hybrid architectures and 

transformer models provides a better performance. Recently the Diverse CNN [115] results in an F1-score, 

precision, recall, and accuracy of 93.86%, 94.63%, 93.11%, and 96.12% respectively.  

References 

[1]. Gloster Jr, H. M., & Neal, K. (2006). Skin cancer in skin of color. Journal of the American Academy of 

Dermatology, 55(5), 741-760. 

[2]. Madan, V., Lear, J. T., & Szeimies, R. M. (2010). Non-melanoma skin cancer. The lancet, 375(9715), 673-685. 

[3]. Leiter, U., Keim, U., & Garbe, C. (2020). Epidemiology of skin cancer: update 2019. Sunlight, Vitamin D and 

Skin Cancer, 123-139. 

[4]. Mangione, C. M., Barry, M. J., Nicholson, W. K., Chelmow, D., Coker, T. R., Davis, E. M., ... & US Preventive 

Services Task Force. (2023). Screening for skin cancer: US Preventive Services Task Force recommendation 

statement. JAMA, 329(15), 1290-1295. 

[5]. Sharma, S., Guleria, K., Kumar, S., & Tiwari, S. (2023, January). Benign and malignant skin lesion detection 

from Melanoma skin cancer images. In 2023 International Conference for Advancement in Technology 

(ICONAT) (pp. 1-6). IEEE. 

[6]. Mortaja, M., & Demehri, S. (2023). Skin cancer prevention–Recent advances and unmet challenges. Cancer 

Letters, 216406. 

[7]. Hosny, K. M., Elshoura, D., Mohamed, E. R., Vrochidou, E., & Papakostas, G. A. (2023). Deep learning and 

optimization-based methods for skin lesions segmentation: a review. IEEE Access, 11, 85467-85488. 

[8]. Shinde, A., & Chaudhari, S. (2022, November). Statistical Analysis of Hair Detection and Removal 

Techniques Using Dermoscopic Images. In International Conference on Computer Vision and Image 

Processing (pp. 402-414). Cham: Springer Nature Switzerland. 

[9]. Tadmor, E., Nezzar, S., & Vese, L. (2008). Multiscale hierarchical decomposition of images with applications 

to deblurring, denoising, and segmentation. 

[10]. Sa’idah, S., Suparta, I. P. Y. N., & Suhartono, E. (2022). Modification of convolutional neural network 

GoogLeNet architecture with dull razor filtering for classifying skin cancer. Jurnal Nasional Teknik Elektro 

dan TeknologiInformasi, 11(2). 

[11]. Jerman, T., Pernuš, F., Likar, B., & Špiclin, Ž. (2015, March). Beyond Frangi: an improved multiscale 

vesselness filter. In Medical imaging 2015: Image processing (Vol. 9413, pp. 623-633). SPIE. 

[12]. Abbas, Q., Garcia, I. F., Emre Celebi, M., & Ahmad, W. (2013). A feature‐preserving hair removal algorithm 

for dermoscopy images. Skin Research and Technology, 19(1), e27-e36. 

[13]. Chen, Y., & Leedham, G. (2005). Decompose algorithm for thresholding degraded historical document 

images. IEE Proceedings-Vision, Image and Signal Processing, 152(6), 702-714. 

[14]. Louverdis, G., Vardavoulia, M. I., Andreadis, I., & Tsalides, P. (2002). A new approach to morphological 

color image processing. Pattern recognition, 35(8), 1733-1741. 



401  
 

J INFORM SYSTEMS ENG, 10(20s) 

[15]. Sepasian, M., Balachandran, W., & Mares, C. (2008, October). Image enhancement for fingerprint minutiae-

based algorithms using CLAHE, standard deviation analysis and sliding neighborhood. In Proceedings of the 

World congress on Engineering and Computer Science (pp. 22-24). 

[16]. Sharma, T., & Verma, N. K. (2021). Single Image Dehazing and Non-uniform Illumination Enhancement: 

AZ-Score Approach. SN Computer Science, 2(6), 488. 

[17]. Negi, S. S., & Bhandari, Y. S. (2014, May). A hybrid approach to image enhancement using contrast 

stretching on image sharpening and the analysis of various cases arising using histogram. In International 

conference on recent advances and innovations in engineering (ICRAIE-2014) (pp. 1-6). IEEE. 

[18]. Hossain, F., & Alsharif, M. R. (2007, November). Image enhancement based on logarithmic transform 

coefficient and adaptive histogram equalization. In 2007 International conference on convergence 

information technology (ICCIT 2007) (pp. 1439-1444). IEEE. 

[19]. Kim, H., Choi, S. M., Kim, C. S., & Koh, Y. J. (2021). Representative color transform for image enhancement. 

In Proceedings of the IEEE/CVF international conference on computer vision (pp. 4459-4468). 

[20]. Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-

time image enhancement. Journal of VLSI signal processing systems for signal, image and video 

technology, 38, 35-44. 

[21]. Guan, X., Jian, S., Hongda, P., Zhiguo, Z., & Haibin, G. (2009, December). An image enhancement method 

based on gamma correction. In 2009 Second international symposium on computational intelligence and 

design (Vol. 1, pp. 60-63). IEEE. 

[27]. Gutman, D., Codella, N. C., Celebi, E., Helba, B., Marchetti, M., Mishra, N., & Halpern, A. (2016). Skin lesion 

analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging 

(ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint 

arXiv:1605.01397. 

[28]. Codella, N. C., Gutman, D., Celebi, M. E., Helba, B., Marchetti, M. A., Dusza, S. W., ... & Halpern, A. (2018, 

April). Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on 

biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In 2018 IEEE 15th 

international symposium on biomedical imaging (ISBI 2018) (pp. 168-172). IEEE. 

[29]. Tschandl, P., Rosendahl, C., & Kittler, H. (2018). The HAM10000 dataset, a large collection of multi-source 

dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1), 1-9. 

[30]. Combalia, M., Codella, N. C., Rotemberg, V., Helba, B., Vilaplana, V., Reiter, O., ... & Malvehy, J. (2019). 

Bcn20000: Dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288. 

[31]. Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., ... & Soyer, H. P. 

(2021). A patient-centric dataset of images and metadata for identifying melanomas using clinical 

context. Scientific data, 8(1), 34. 

[32]. Hosny, K. M., Kassem, M. A., & Foaud, M. M. (2019). Classification of skin lesions using transfer learning 

and augmentation with Alex-net. PloS one, 14(5), e0217293. 

[33]. DermIS. Dermatology Information System. Accessed: Apr. 7, 2024. [Online]. Available: 

https://www.dermis.net/dermisroot/en/home/ index.htm 

[34]. Mendonça, T., Ferreira, P. M., Marques, J. S., Marcal, A. R., & Rozeira, J. (2013, July). PH 2-A dermoscopic 

image database for research and benchmarking. In 2013 35th annual international conference of the IEEE 

engineering in medicine and biology society (EMBC) (pp. 5437-5440). IEEE. 

[35]. Gupta, D., & Anand, R. S. (2017). A hybrid edge-based segmentation approach for ultrasound medical 

images. Biomedical Signal Processing and Control, 31, 116-126. 

[36]. Gould, S., Gao, T., & Koller, D. (2009). Region-based segmentation and object detection. Advances in neural 

information processing systems, 22. 

[37]. Mustaqeem, A., Javed, A., & Fatima, T. (2012). An efficient brain tumor detection algorithm using watershed 

& thresholding based segmentation. International Journal of Image, Graphics and Signal Processing, 4(10), 

34. 

[38]. Dhanachandra, N., Manglem, K., & Chanu, Y. J. (2015). Image segmentation using K-means clustering 

algorithm and subtractive clustering algorithm. Procedia Computer Science, 54, 764-771. 

[39]. Yang, J., Ke, Y. S., & Wang, M. Z. (2017). An adaptive clustering segmentation algorithm based on 

FCM. Turkish Journal of Electrical Engineering and Computer Sciences, 25(6), 4533-4544. 



402  
 

J INFORM SYSTEMS ENG, 10(20s) 

[40]. Bhattacharyya, S., Maulik, U., & Dutta, P. (2011). Multilevel image segmentation with adaptive image 

context based thresholding. Applied soft computing, 11(1), 946-962. 

[41]. Goh, T. Y., Basah, S. N., Yazid, H., Safar, M. J. A., & Saad, F. S. A. (2018). Performance analysis of image 

thresholding: Otsu technique. Measurement, 114, 298-307. 

[42]. Khehra, B. S., Singh, A., Pharwaha, A. P. S., & Kaur, P. (2016). Image segmentation using two-dimensional 

Renyi entropy. In Proceedings of the International Congress on Information and Communication 

Technology: ICICT 2015, Volume 1 (pp. 521-530). Springer Singapore. 

[43]. Abbas, Q., Fondón, I., Sarmiento, A., & Emre Celebi, M. (2014). An improved segmentation method for non-

melanoma skin lesions using active contour model. In Image Analysis and Recognition: 11th International 

Conference, ICIAR 2014, Vilamoura, Portugal, October 22-24, 2014, Proceedings, Part II 11 (pp. 193-200). 

Springer International Publishing. 

[44]. Kim, B., & Ye, J. C. (2019). Mumford–Shah loss functional for image segmentation with deep learning. IEEE 

Transactions on Image Processing, 29, 1856-1866. 

[45]. Bansal, S., & Maini, R. (2013). Performance analysis of color based region split and merge and otsu’s 

thresholding techniques for brain tumor extraction. International Journal of Engineering Research and 

Applications, 3(4), 1640-1643. 

[46]. Ahmed, A. S. (2018). Comparative study among Sobel, Prewitt and Canny edge detection operators used in 

image processing. J. Theor. Appl. Inf. Technol, 96(19), 6517-6525. 

[47]. Iranpoor, R., Mahboob, A. S., Shahbandegan, S., & Baniasadi, N. (2020, December). Skin lesion 

segmentation using convolutional neural networks with improved U-Net architecture. In 2020 6th Iranian 

Conference on Signal Processing and Intelligent Systems (ICSPIS) (pp. 1-5). IEEE. 

[48]. Wu, F., Liu, S., Li, B., & Tang, J. (2022, December). Increase Channel Attention Based on Unet++ 

Architecture for Medical Images. In International Conference on Machine Learning for Cyber Security (pp. 

516-520). Cham: Springer Nature Switzerland. 

[49]. Lei, B., Xia, Z., Jiang, F., Jiang, X., Ge, Z., Xu, Y., ... & Wang, S. (2020). Skin lesion segmentation via 

generative adversarial networks with dual discriminators. Medical Image Analysis, 64, 101716. 

 [50]. Alahmadi, M. D. (2022). Multiscale attention U-Net for skin lesion segmentation. IEEE Access, 10, 59145-

59154. 

 [51]. Dash, M., Londhe, N. D., Ghosh, S., Semwal, A., & Sonawane, R. S. (2019). PsLSNet: Automated psoriasis 

skin lesion segmentation using modified U-Net-based fully convolutional network. Biomedical Signal 

Processing and Control, 52, 226-237. 

 [52]. Le, P. T., Pham, B. T., Chang, C. C., Hsu, Y. C., Tai, T. C., Li, Y. H., & Wang, J. C. (2023). Anti-aliasing 

attention U-net model for skin lesion segmentation. Diagnostics, 13(8), 1460. 

 [53]. Anand, V., Gupta, S., Koundal, D., & Singh, K. (2023). Fusion of U-Net and CNN model for segmentation 

and classification of skin lesion from dermoscopy images. Expert Systems with Applications, 213, 119230. 

 [54]. Zhao, C., Shuai, R., Ma, L., Liu, W., & Wu, M. (2022). Segmentation of skin lesions image based on U-

Net++. Multimedia Tools and Applications, 81(6), 8691-8717. 

[55]. Bharati, P., & Pramanik, A. (2020). Deep learning techniques—R-CNN to mask R-CNN: a 

survey. Computational Intelligence in Pattern Recognition: Proceedings of CIPR 2019, 657-668. 

[56]. Suchetha, M., Ganesh, N. S., Raman, R., & Dhas, D. E. (2021). Region of interest-based predictive algorithm 

for subretinal hemorrhage detection using faster R-CNN. Soft Computing, 25(24), 15255-15268.  

[57]. Bagheri, F., Tarokh, M. J., & Ziaratban, M. (2021). Skin lesion segmentation from dermoscopic images by 

using Mask R-CNN, Retina-Deeplab, and graph-based methods. Biomedical Signal Processing and 

Control, 67, 102533. 

 [58]. Khan, M. A., Akram, T., Zhang, Y. D., & Sharif, M. (2021). Attributes based skin lesion detection and 

recognition: A mask RCNN and transfer learning-based deep learning framework. Pattern Recognition 

Letters, 143, 58-66. 

[59]. Peng, H., Xue, C., Shao, Y., Chen, K., Xiong, J., Xie, Z., & Zhang, L. (2020). Semantic segmentation of litchi 

branches using DeepLabV3+ model. Ieee Access, 8, 164546-164555. 

 [60]. Bagheri, F., Tarokh, M. J., & Ziaratban, M. (2022). Skin lesion segmentation by using object detection 

networks, DeepLab3+, and active contours. Turkish Journal of Electrical Engineering and Computer 

Sciences, 30(7), 2489-2507. 



403  
 

J INFORM SYSTEMS ENG, 10(20s) 

 [61]. Zafar, M., Amin, J., Sharif, M., Anjum, M. A., Mallah, G. A., & Kadry, S. (2023). DeepLabv3+-based 

segmentation and best features selection using slime mould algorithm for multi-class skin lesion 

classification. Mathematics, 11(2), 364. 

 [62]. Masood, H., Naseer, A., & Saeed, M. (2024). Optimized Skin Lesion Segmentation: Analysing DeepLabV3+ 

and ASSP Against Generative AI-Based Deep Learning Approach. Foundations of Science, 1-25. 

[63]. Masood, H., Naseer, A., & Saeed, M. (2024). Optimized Skin Lesion Segmentation: Analysing DeepLabV3+ 

and ASSP Against Generative AI-Based Deep Learning Approach. Foundations of Science, 1-25. 

[64]. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image 

segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th 

international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (pp. 234-241). 

Springer International Publishing. 

[65]. Li, W., Qin, S., Li, F., & Wang, L. (2021). MAD‐UNet: A deep U‐shaped network combined with an attention 

mechanism for pancreas segmentation in CT images. Medical Physics, 48(1), 329-341. 

 [66]. Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-net architecture 

for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for 

Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, 

ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 

4 (pp. 3-11). Springer International Publishing. 

 [67]. Xu, Q., Ma, Z., Na, H. E., & Duan, W. (2023). DCSAU-Net: A deeper and more compact split-attention U-

Net for medical image segmentation. Computers in Biology and Medicine, 154, 106626. 

 [68]. Zheng, J., Liu, H., Feng, Y., Xu, J., & Zhao, L. (2023). CASF-Net: Cross-attention and cross-scale fusion 

network for medical image segmentation. Computer Methods and Programs in Biomedicine, 229, 107307. 

 [69]. Zhao, X., Zhang, L., & Lu, H. (2021). Automatic polyp segmentation via multi-scale subtraction network. 

In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International 

Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24 (pp. 120-130). 

Springer International Publishing. 

 [70]. Dong, Z., Li, J., & Hua, Z. (2024). Transformer-based multi-attention hybrid networks for skin lesion 

segmentation. Expert Systems with Applications, 244, 123016. 

[71]. Melbin, K., & Raj, Y. J. V. (2021). Integration of modified ABCD features and support vector machine for skin 

lesion types classification. Multimedia Tools and Applications, 80(6), 8909-8929. 

[72]. Ali, A. R., Li, J., Kanwal, S., Yang, G., Hussain, A., & Jane O'Shea, S. (2020). A novel fuzzy multilayer 

perceptron (F-MLP) for the detection of irregularity in skin lesion border using dermoscopic 

images. Frontiers in medicine, 7, 297. 

[73]. Fisher, R. B., Rees, J., & Bertrand, A. (2020). Classification of ten skin lesion classes: Hierarchical knn 

versus deep net. In Medical Image Understanding and Analysis: 23rd Conference, MIUA 2019, Liverpool, 

UK, July 24–26, 2019, Proceedings 23 (pp. 86-98). Springer International Publishing. 

[74]. Banerjee, A., Sarkar, S., Nasipuri, M., & Das, N. (2023). Skin Diseases Detection Using LBP and WLD: An 

Ensembling Approach. SN Computer Science, 5(1), 72. 

[75]. Aydin, Y. (2023). A Comparative Analysis of Skin Cancer Detection Applications Using Histogram-Based 

Local Descriptors. Diagnostics, 13(19), 3142. 

[76]. George, Y., Aldeen, M., & Garnavi, R. (2019). Automatic scale severity assessment method in psoriasis skin 

images using local descriptors. IEEE Journal of Biomedical and Health Informatics, 24(2), 577-585. 

[77]. Malinga, B., Raicu, D., & Furst, J. (2006). Local vs. global histogram-based color image 

clustering. University of Depaul, Technical Reports: TR06-010. 

[78]. Mukadam, S. B., & Patil, H. Y. (2024). Machine learning and computer vision based methods for cancer 

classification: A systematic review. Archives of Computational Methods in Engineering, 1-36. 

[79]. Garcia-Arroyo, J. L., & Garcia-Zapirain, B. (2019). Segmentation of skin lesions in dermoscopy images using 

fuzzy classification of pixels and histogram thresholding. Computer methods and programs in 

biomedicine, 168, 11-19. 

[80]. Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., ... & Zhu, J. (2021). Pre-trained models: Past, present 

and future. AI Open, 2, 225-250. 

[81]. Sharma, M., Jain, B., Kargeti, C., Gupta, V., & Gupta, D. (2021). Detection and diagnosis of skin diseases 

using residual neural networks (RESNET). International Journal of Image and Graphics, 21(05), 2140002. 



404  
 

J INFORM SYSTEMS ENG, 10(20s) 

[82]. Guo, S., & Yang, Z. (2018). Multi-Channel-ResNet: An integration framework towards skin lesion 

analysis. Informatics in Medicine Unlocked, 12, 67-74. Skin Lesion Classification Using Hybrid Deep Neural 

Networks. 

 [83]. Mahbod, A., Schaefer, G., Wang, C., Ecker, R., & Ellinge, I. (2019, May). Skin lesion classification using 

hybrid deep neural networks. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech 

and Signal Processing (ICASSP) (pp. 1229-1233). IEEE. 

[84]. Gouda, N., & Amudha, J. (2020, October). Skin cancer classification using ResNet. In 2020 IEEE 5th 

International Conference on Computing Communication and Automation (ICCCA) (pp. 536-541). IEEE. 

[85]. Al-Masni, M. A., Kim, D. H., & Kim, T. S. (2020). Multiple skin lesions diagnostics via integrated deep 

convolutional networks for segmentation and classification. Computer methods and programs in 

biomedicine, 190, 105351. 

 [86]. Miglani, V., & Bhatia, M. P. S. (2020, February). Skin lesion classification: A transfer learning approach 

using efficientnets. In International Conference on Advanced Machine Learning Technologies and 

Applications (pp. 315-324). Singapore: Springer Singapore. 

 [87]. Zhang, J., Xie, Y., Xia, Y., & Shen, C. (2019). Attention residual learning for skin lesion classification. IEEE 

transactions on medical imaging, 38(9), 2092-2103. 

[88]. Hridoy, R. H., Akter, F., & Rakshit, A. (2021, July). Computer vision based skin disorder recognition using 

EfficientNet: A transfer learning approach. In 2021 International conference on information technology 

(ICIT) (pp. 482-487). IEEE. 

 [89]. Gessert, N., Nielsen, M., Shaikh, M., Werner, R., & Schlaefer, A. (2020). Skin lesion classification using 

ensembles of multi-resolution EfficientNets with meta data. MethodsX, 7, 100864. 

 [90]. Ali, K., Shaikh, Z. A., Khan, A. A., & Laghari, A. A. (2022). Multiclass skin cancer classification using 

EfficientNets–a first step towards preventing skin cancer. Neuroscience Informatics, 2(4), 100034. 

[91]. Venugopal, V., Raj, N. I., Nath, M. K., & Stephen, N. (2023). A deep neural network using modified 

EfficientNet for skin cancer detection in dermoscopic images. Decision Analytics Journal, 8, 100278. 

 [92]. Rafay, A., & Hussain, W. (2023). EfficientSkinDis: An EfficientNet-based classification model for a large 

manually curated dataset of 31 skin diseases. Biomedical Signal Processing and Control, 85, 104869. 

 [93]. Venugopal, V., Joseph, J., Das, M. V., & Nath, M. K. (2022). An EfficientNet-based modified sigmoid 

transform for enhancing dermatological macro-images of melanoma and nevi skin lesions. Computer 

Methods and Programs in Biomedicine, 222, 106935. 

 [94]. Hosny, K. M., Kassem, M. A., & Foaud, M. M. (2018, December). Skin cancer classification using deep 

learning and transfer learning. In 2018 9th Cairo international biomedical engineering conference 

(CIBEC) (pp. 90-93). IEEE. 

[95]. Flosdorf, C., Engelker, J., Keller, I., & Mohr, N. (2024). Skin Cancer Detection utilizing Deep Learning: 

Classification of Skin Lesion Images using a Vision Transformer. arXiv preprint arXiv:2407.18554. 

 [96]. Krishna, G. S., Supriya, K., & Sorgile, M. (2023). LesionAid: vision transformers-based skin lesion 

generation and classification. arXiv preprint arXiv:2302.01104. 

 [97]. Nakai, K., Chen, Y. W., & Han, X. H. (2022). Enhanced deep bottleneck transformer model for skin lesion 

classification. Biomedical Signal Processing and Control, 78, 103997. 

 [98]. Sarker, M. M. K., Moreno-García, C. F., Ren, J., & Elyan, E. (2022, July). TransSLC: Skin lesion 

classification in dermatoscopic images using transformers. In Annual Conference on Medical Image 

Understanding and Analysis (pp. 651-660). Cham: Springer International Publishing. 

[99]. He, X., Tan, E. L., Bi, H., Zhang, X., Zhao, S., & Lei, B. (2022). Fully transformer network for skin lesion 

analysis. Medical Image Analysis, 77, 102357. 

 [100]. Xin, C., Liu, Z., Zhao, K., Miao, L., Ma, Y., Zhu, X., ... & Chen, H. (2022). An improved transformer 

network for skin cancer classification. Computers in Biology and Medicine, 149, 105939. 

 [101]. Nie, Y., Sommella, P., Carratù, M., O’Nils, M., & Lundgren, J. (2022). A deep CNN transformer hybrid 

model for skin lesion classification of dermoscopic images using focal loss. Diagnostics, 13(1), 72. 

[102]. Li, Y., & Shen, L. (2018). Skin lesion analysis towards melanoma detection using deep learning 

network. Sensors, 18(2), 556. 

[103]. Gessert, N., Sentker, T., Madesta, F., Schmitz, R., Kniep, H., Baltruschat, I., ... & Schlaefer, A. (2018). Skin 

lesion diagnosis using ensembles, unscaled multi-crop evaluation and loss weighting. arXiv preprint 

arXiv:1808.01694. 



405  
 

J INFORM SYSTEMS ENG, 10(20s) 

[104]. Nozdryn-Plotnicki, A., Yap, J., & Yolland, W. (2018). Ensembling convolutional neural networks for skin 

cancer classification. International Skin Imaging Collaboration (ISIC) Challenge on Skin Image Analysis 

for Melanoma Detection. MICCAI. 

[105]. Rashid, H., Tanveer, M. A., & Khan, H. A. (2019, July). Skin lesion classification using GAN based data 

augmentation. In 2019 41St annual international conference of the IEEE engineering in medicine and 

biology society (EMBC) (pp. 916-919). IEEE. 

 [106]. Qin, Z., Liu, Z., Zhu, P., & Xue, Y. (2020). A GAN-based image synthesis method for skin lesion 

classification. Computer Methods and Programs in Biomedicine, 195, 105568. 

[107]. Srinivasu, P. N., SivaSai, J. G., Ijaz, M. F., Bhoi, A. K., Kim, W., & Kang, J. J. (2021). Classification of skin 

disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors, 21(8), 2852. 

[108]. Datta, S. K., Shaikh, M. A., Srihari, S. N., & Gao, M. (2021). Soft attention improves skin cancer 

classification performance. In Interpretability of Machine Intelligence in Medical Image Computing, and 

Topological Data Analysis and Its Applications for Medical Data: 4th International Workshop, iMIMIC 

2021, and 1st International Workshop, TDA4MedicalData 2021, Held in Conjunction with MICCAI 2021, 

Strasbourg, France, September 27, 2021, Proceedings 4 (pp. 13-23). Springer International Publishing. 

[109]. Hoang, L., Lee, S. H., Lee, E. J., & Kwon, K. R. (2022). Multiclass skin lesion classification using a novel 

lightweight deep learning framework for smart healthcare. Applied Sciences, 12(5), 2677. 

[110]. Elashiri, M. A., Rajesh, A., Pandey, S. N., Shukla, S. K., & Urooj, S. (2022). Ensemble of weighted deep 

concatenated features for the skin disease classification model using modified long short term 

memory. Biomedical Signal Processing and Control, 76, 103729. 

[111]. Qian, S., Ren, K., Zhang, W., & Ning, H. (2022). Skin lesion classification using CNNs with grouping of 

multi-scale attention and class-specific loss weighting. Computer Methods and Programs in 

Biomedicine, 226, 107166. 

[112]. Kousis, I., Perikos, I., Hatzilygeroudis, I., & Virvou, M. (2022). Deep learning methods for accurate skin 

cancer recognition and mobile application. Electronics, 11(9), 1294. 

[113]. Shetty, B., Fernandes, R., Rodrigues, A. P., Chengoden, R., Bhattacharya, S., & Lakshmanna, K. (2022). 

Skin lesion classification of dermoscopic images using machine learning and convolutional neural 

network. Scientific Reports, 12(1), 18134. 

 [114]. Wei, M., Wu, Q., Ji, H., Wang, J., Lyu, T., Liu, J., & Zhao, L. (2023). A skin disease classification model 

based on densenet and convnext fusion. Electronics, 12(2), 438. 

[115]. Tabibi, S. T., Nikravanshalmani, A., & Saboohi, H. (2024). An Ensemble Classifier Based on Diverse 

Convolutional Neural Networks for Skin Lesions Classification. IEEE Access. 

 [116]. Su, Q., Hamed, H. N. A., Isa, M. A., Hao, X., & Dai, X. (2024). A GAN-based data augmentation method for 

imbalanced multi-class skin lesion classification. IEEE Access. 


