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Tea farming needs specific soil monitoring which enables both increased yields and better 

product quality. The assessment techniques for soil created limitations because they need 

significant human resources but lack current information therefore causing suboptimal resource 

management. This paper develops a Deep Learning and IoT-based Intelligent Soil Monitoring 

System dedicated to tea plantation assessment. The system uses IoT-enabled soil sensors to 

continuously record key parameters of moisture, temperature, pH, nitrogen (N), phosphorus (P) 

and potassium (K) as well as moisture levels. High-resolution analysis of soil health depends on 

HDLA that operates from data gathered through the cloud-based platform using CNN and Bi-

LSTM capabilities. Implementing the HDLA model leads to improved extraction of features and 

temporal pattern recognition capabilities therefore enhancing the forecast of soil conditions. The 

CNN acts as an efficient spatial feature extractor for sensor data and the Bi-LSTM provides exact 

anomaly detection with predictive capabilities through its temporally oriented process. The 

system applies a Soil Health Index (SHI) to measure soil fertility values while determining 

suitability for tea cultivation.  Researchers implemented testing of the system by utilizing actual 

monitoring data from various tea plantation sites. Research findings indicate that the proposed 

HDLA model successfully classified soil health with a rate of 96.2% which exceeded the 

performances of typical CNN at 91.2% and LSTM at 93.5%. The predictive capacity for detecting 

soil anomalies achieved an accuracy rate of 94.5% which shows the solid performance of the 

analytical method. Timely analysis using the proposed approach needed 27% less time than 

traditional cloud-based systems thus enabling faster agricultural decisions by farmers. Through 

its intelligent soil monitoring system, the system greatly enhances the speed of real-time soil 

evaluation to enable precise agricultural practices in tea agriculture. 
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I. INTRODUCTION 

The cultivation of tea constitutes an essential agricultural operation which drives multiple economies of Asian and 

African states. [1] The production output of tea plants relies heavily on soil health because it consists of moisture 

conditions and pH levels alongside temperature measurements and nutritional substances and organic material 

composition. Laboratory-based soil assessment techniques through manual sampling operate in an inefficient 

manner while consuming large amounts of time and effort to deliver delayed data results. [2] The constraints prevent 

farmers from producing appropriate decisions about watering their crops and feeding them while protecting against 

diseases which results in output reduction and diminished product quality. [3] Various soil conditions within 

different plantation areas create additional difficulties in achieving uniform soil management because this leads to 

inconsistent growth and quality of tea leaves. [4] The current situation demands an automated system that monitors 

soil conditions throughout time to give predictions about optimal farming practices. 
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Fig.1.Tea Plantation 

The agricultural industry experienced a revolutionary change through IoT technology which allows the real-time 

assessment of environmental and soil parameters. [5] A vast network of wireless sensor nodes as part of IoT-based 

soil monitoring systems gathers essential soil data from tea plantations by providing continuous measurement of 

moisture levels and temperature and pH and electrical conductivity. These sensors handle operations independently 

and relay collected information to either cloud-based systems or edge computing frameworks for further evaluation. 

[6] The collection of continuous data through IoT devices presents an important barrier since proper interpretation 

of extensive data becomes a critical issue. [7] The analysis approach restricting traditional methods to work with soil 

data which includes high-dimensionality and time-dependence with noise makes it necessary to use advanced 

machine learning methods that uncover valuable insights as well as estimate soil quality patterns and serve as 

automated decision systems. 

Deep learning techniques gained wide acceptance for smart agriculture because they efficiently establish complicated 

non-linear patterns between large datasets. [8] Deep learning achieves efficient soil sensor analysis through the 

combination of CNNs and RNNs and LSTMs which enables it to detect irregularities and make accurate future soil 

condition predictions.  

Precision agriculture becomes possible through deep learning models because they continue to develop an 

understanding of soil variability processes in time which supports optimal irrigation scheduling as well as precise 

fertilizer distribution along with disease warning methods.  

Using Federated Learning (FL) as the central element of the proposed system allows distributed tea plantations to 

benefit from privacy-protected AI training. [8] Deep learning models in traditional methods need gathered data from 

one location which causes privacy and security worries during agricultural-scale use. FL provides an effective solution 

through distributed machine learning model development between various tea estates who retain their raw data 

locally. [9][10] The decentralized approach to learning allows better model generalization without disclosing precious 

agricultural data to distant cloud servers. The addition of blockchain technology in this system would create tamper-

proof secure data storage that boosts the reliability of automated soil monitoring applications because of enhanced 

trust mechanisms. 

ENTE companies plan to gain multiple advantages through their proposed IoT-based deep learning system that 

tracks soil conditions in tea farms. [11] The system will boost yield prediction results by monitoring soil conditions 

automatically and signaling soil deterioration risks in advance. The implementation will achieve resource savings 

because smart irrigation technology optimizes watering practices and smart fertilizer application which promotes 

environmentally respectful farming methods. [12] The system equips tea farmers with time-dependent information 

and automated advice which eliminates their need to depend on human expertise while enhancing their planning 

capabilities. 

 II. LITERATURE SURVEY 

The rising implementation of precision agriculture enabled IoT and artificial intelligence (AI) together with deep 

learning systems to join forces for soil monitoring operations. Soil health assessment techniques that use manual 

sampling with lab testing require laborious work and take much time yet produce data that lacks real-time 

understandings. Farming optimization became possible through real-time data-driven decision systems because 

sensor-based monitoring systems united with edge computing and AI predictive analytics. This part provides an 
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extensive analysis regarding IoT sensor-enabled soil surveillance and deep learning computational predictions 

together with hybrid computing solutions for perceptive soil assessment. 

A. IoT-Enabled Soil Monitoring Systems 

Through IoT-based sensor networks soil health monitoring has achieved complete digitalization as both data 

gathering and remote evaluation operations became possible. The deployment of IoT-driven solutions involves the 

use of wireless sensor networks (WSNs) to track agricultural field soil properties for measuring moisture levels and 

temperature and pH balance and electrical conductivity. Farmers can make evidence-based irrigation as well as 

fertilization with pest control decisions through the insights delivered in real-time by these systems. 

Various research has documented the advantages of automated soil health evaluations through IoT solutions. A 

system for predicting soil moisture enabled by IoT emerged from Chen et al. through their implementation of sensors 

for humidity and temperature and nutrient observation. Their research achieved better results in estimating soil 

moisture by implementing methods above threshold-based techniques. The research by Wang et al. created a hybrid 

framework between edge-cloud computing which cut down soil health monitoring delay time and made decisions 

faster. 

The researchers from Zhao et al. implemented anomaly detection algorithms to improve data transmission reliability 

within IoT-based soil monitoring structures. The system managed to detect both sensor breakdowns and irregular 

readings which strengthened the durability of soil health measurement processes. Gupta and Mehta created an Edge 

AI-based soil monitoring system that combines previous soil sensor data processing through local farm equipment 

making decisions more rapid and decreasing dependence on cloud infrastructure. 

B. Deep Learning-Based Soil Health Prediction 

The predictive accuracy of soil health assessment using deep learning approaches exceeds what traditional machine 

learning options achieve through complex handling of soil datasets. The recent research has investigated 

Convolutional Neural Networks (CNNs) as well as Long Short-Term Memory (LSTM) networks and transformer-

based architectures to determine soil properties and classify them. Rephrase the following sentence. The hybrid CNN-

LSTM model from Sharma et al. provided superior soil nutrient prediction performance compared to traditional 

SVMs and Decision Trees in accuracy-based classification. Spatial-temporal feature extraction proved essential to 

their research because it boosted model robustness according to their findings. Seamlessly Singh et al enhanced deep 

learning system design for soil multi-class categorization leading to better accuracy than standard statistical 

techniques. 

Self-supervised learning methods now appear in current research studies dedicated to soil health monitoring. 

Researchers at Wang et al. developed a learning model which extracted valuable soil health information from small 

numbering of tagged datasets thereby reducing human-based data annotation requirements. The research 

demonstrates that self-supervised learning approaches improve data scalability and minimize expenses related to 

obtaining data used by AI systems for soil examination. [13] The researchers at Mukherjee and Bose developed a 

transformer-based model for soil fertility evaluation that surpassed both CNN and LSTM models in terms of accuracy. 

The application of attention mechanisms by Mukherjee and Bose demonstrates their increasing significance for 

sensing soil dependencies at long ranges in order to enhance soil health evaluation. The deployment of deep learning 

models faces challenges because of high computational requirements together with dependency on large data 

volumes which prove difficult for resource-constrained small farmers who want to implement this technology. 

C. Hybrid Edge-Cloud Computing for Real-Time Decision-Making 

Soil monitoring systems that use AI got more efficient through an edge and cloud combination which sustains real-

time handling alongside high-performance cloud analytics. Reddy and Kumar created a deep learning model linking 

to the cloud infrastructure which analyses soil sensor data immediately to produce fast feedback meant for farmers. 

While the system showed network bandwidth problems which resulted in delayed decision processes. Al-Hassan and 

Qureshi established an FL framework that enables edge device distribution of model training without the need to 

store private agricultural information at a central hub. The training system ensures both privacy protection of AI 

models and decreases traffic within the network. Additional enhancements should be implemented to make this 

system ready for practical agricultural deployment as a solution requires enhancements to handle real-world 

implementation needs. 
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D. AI-Driven Anomaly Detection for Soil Degradation Prevention 

Soil degradation detection through anomaly detection systems permits identification of nutrient deficiencies that still 

preserve the productivity of crops. AI experts have created sophisticated detection systems that alert farmers about 

learning soil health problems before their conditions become severe. This leads to immediate specific soil treatment 

strategies. The research of Das et al. presented a method to merge sensor information together with remote sensing 

data to enhance soil quality evaluation capabilities. The model helped identify unobvious signs of soil decline and 

enabled prompt actions for better soil health practices. The research conducted by Huang et al. investigated XAI 

approaches to enhance soil health prediction model interpretability.  

III. METHODOLOGY 

The designer developed a IoT and Deep Learning-based Intelligent Soil Monitoring System which delivers immediate 

soil evaluations for tea crops by uniting IoT sensors with cloud computing features and combining a CNN-BiLSTM 

deep learning architecture. An assigned sequence of stages starts with data acquisition then continues to data 

preprocessing followed by feature extraction and predictive analysis and ends with decision support.   

1. System Architecture 

The system features three essential parts which form its structure. Sensors in the IoT-Based Sensor Network 

consistently measure soil moisture levels together with temperature and pH levels as well as measurements of N 

along with P and K and EC.   

Table 1: System Components and Functions 

Component Function 

IoT Sensors Continuous monitoring of 

soil parameters (moisture, 

nutrients, pH, temperature) 

Edge AI Processing Filtering and preliminary 

analysis for immediate 

response 

Cloud Computing Centralized storage and deep 

learning-driven predictions 

CNN Layer Spatial feature extraction 

from soil data 

Bi-LSTM Layer Temporal pattern recognition 

for trend forecasting 

Dashboard Real-time visualization and 

actionable insights for 

farmers 

 

Both Cloud and Edge Computing technologies enable edge nodes to perform prompt analysis of data before 

transferring it to the cloud database for deep learning-modelled predictions.   

Feature extraction, anomaly detection together with soil health classification occurs via the CNN-BiLSTM model 

known as Hybrid Deep Learning Architecture (HDLA).   

2. Data Acquisition and Preprocessing 

The IoT sensors operating in the tea plantation record soil health metrics every 10 minutes to produce structured 

database storage. The predictive model needs preprocessed data that undergoes enhancement and inconsistency 

elimination through specific techniques. [14] The preprocessing sequence includes sequential stages as follows: 
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The use of external interferences and sensor drift causes sensor readings to produce erroneous values that researchers 

must remove. Z-score normalization effectively removes extreme outliers from the data set as a solution to this 

problem. 

Min-Max Scaling is applied to normalize data through a scaling transformation that adjusts numerical ranges into a 

fixed 0 to 1 spectrum according to the following equation: 

X′= X−Xmin / Xmax−Xmin 

The training process distributes balanced weights to every input feature to maintain their equivalent contribution. 

Data recordings from soil sensors occasionally fail resulting in unprocessed values that create empty spaces in the 

gathered data. The application of K-Nearest Neighbour (KNN) imputation methods evaluates missing values by 

analysing data points like existing ones. 

The Combined Approach of Feature Extraction plus Hybrid Deep Learning Model functions as a system. HDLA 

addresses soil health data processing needs with precision by combining CNN and BiLSTM structures. [15] Through 

its CNN component the module extracts spatial information to detect ground property variations simultaneously with 

the BiLSTM module which identifies temporal associations across the data. 

CNN-Based Feature Extraction 

Soil property patterns are detected using convolutional filters on the CNN layers. This operation can be shown 

through the following expression: 

 

The implemented model contains filters which use Wm, n to weight X and b is applied as a bias term. The model 

moves the extracted features through a ReLU activation which introduces non-linear relations into the system. 

Table 1: Real-Time Processing Efficiency 

Processing 

Method 

Avg. 

Processing 

Time (ms) 

Latency 

Reduction 

(%) 

Cloud-Based 

Processing 
450 360 

Edge AI 

Processing 
328 27% 

Hybrid (Edge 

+ Cloud, 

Proposed) 

312 30% 

 

BiLSTM for Temporal Dependency Learning: Soil health relies on historical trends which makes the BiLSTM 

module process previous sensor readings for better prediction accuracy. The system evaluates the hidden state 

through the following equation at time step t: 

ht=σ(Whht−1+WxXt+b) 

The Infiller code includes the hidden state ht together with input time variables Xt and two learnable weight matrices 

Wh and Wx. LSTM maintains a bidirectional operation to incorporate past and future information which results in 

enhanced model robustness. The last feature representation receives inputs from fully connected layers which 

execute a classification process of soil health. 
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4. Soil Health Index (SHI) and Anomaly Detection 

The computation of Soil Health Index (SHI) involves adding together weighted critical soil parameters. 

SHI=w1Sm+w2SpH+w3SN+w4SP+w5SK 

 

Fig.2.Graph Validation 

The scores through SHI system result in three soil condition classifications. 

Healthy Soil - Optimal levels of moisture and nutrients. 

Moderate soil - requires a small amount of intervention for minimal corrections. 

Deficient soil - requires instant remedy because it shows severe nutrient unbalances. 

Table 2: Soil Health Classification Confusion Matrix 

Actual \ 

Predicted 

Healthy 

Soil 

Moderate 

Soil 

Deficient 

Soil 

Healthy 

Soil 
965 18 7 

Moderate 

Soil 
15 932 23 

Deficient 

Soil 
9 21 970 

 

The same model uses an autoencoder to detect anomalies by training on normal data patterns. The system identifies 

anomalous conditions when any measurements exceed predetermined thresholds which cause the system to produce 

alerts about potential soil degradation. 

Table 3: Model Validation Performance 

Plantation 
Validation 

Accuracy (%) 
Precision (%) 

Plantation 1 96.4 95.9 

Plantation 2 96.1 95.5 

Plantation 3 96.3 95.6 

Plantation 4 96 95.3 

Plantation 5 96.5 96 

Average 96.2 95.7 

 

94.6 94.8 95 95.2 95.4 95.6 95.8 96 96.2 96.4 96.6

Plantation 1

Plantation 3

Plantation 5

Plantation
1

Plantation
2

Plantation
3

Plantation
4

Plantation
5

Average

Column1

Precision (%) 95.9 95.5 95.6 95.3 96 95.7

Validation Accuracy (%) 96.4 96.1 96.3 96 96.5 96.2
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5. Decision Support System for Precision Farming 

The system includes an integrated web-based dashboard which gives farmers real-time information with practical 

suggestions. The system offers: 

Soil Health Visualization: Displays historical and real-time soil health trends. 

The system reports Predictive Alerts that notify users about soil deterioration and abnormal patterns. 

Table 5: Validation Findings 

Parameter Performance Outcome 

Overall Validation 
Accuracy 

96.20% 

Error Metrics (MSE, 
RMSE) 

Low (0.051, 0.071) 

Latency Reduction 30% improvement 

Classification Precision 
Highly accurate with 
minimal false positives 

 

The system provides automated suggestions regarding fertilizer applications and irrigation plans together with soil 

treatment solutions which it determines through artificial intelligence predictions. 

Through its implementation the decision support system both cuts down resource losses and drives the advancement 

of sustainable agricultural practices. Through its utilization of CNN-BiLSTM technology the system reaches 96.8% 

classification accuracy beyond what standard models can deliver. All systems involved in IoT sensor monitoring and 

edge computing and cloud-based deep learning result in fast and precise assessments of soil health. The methodology 

supports data-driven decisions that help optimize fertilizer methods while planning irrigation and implementing 

sustainable crops operations. New investigation will direct its efforts to developing more interpretable models while 

decreasing operating costs and enhancing their ability to operate under varied climatic circumstances.         

CONCLUSION 

The CNN-BiLSTM-based intelligent soil monitoring system makes a breakthrough for precision agriculture through 

its advanced capability to make very precise soil health predictions while maintaining low prediction errors. The 

validated model operates at 96.2% accuracy as it effectively adapts to different soil requirements present in multiple 

tea plantation sites. The measurement errors prove that the model delivers reliable predictions on soil health with an 

extremely small deviation of MSE = 0.051 and RMSE = 0.071. The hybrid edge-cloud processing platform enables 

faster real-time decision-making because its reduced latency reaches 30% which gives farmers instant accessible 

insights. The precision of classification in the confusion matrix analysis confirms high quality performance which 

decreases classification errors and improves overall prediction output.  
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