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Evaluating the physical quality of harvested black-eyed peas is essential to ensure their products 

meet high standards. Carefully designed and optimized machine learning models can provide 

better quality evaluation. A hybrid neural network integrating EfficientNetV2B1 and Vision 

Transformer (ViT) to classify black-eyed peas is introduced in this work. One of the main 

challenges in accurate classification was segmenting objects in a clustered view. Inconsistent 

lighting, variations in sample size, random placement of the objects, and neighboring objects 

touching each other make the task difficult. We utilized the Segment Anything Model (SAM) to 

address the issue. SAM detected individual objects for our samples of weights up to 30 grams 

with 100% accuracy. We incorporated SAM with our custom object retrieval block to separate 

the segmented objects into images of size 224 × 224 × 3 pixels for classification purposes. We 

also used image augmentation with a stable diffusion method to balance the dataset. Stable 

diffusion generates high-quality and diverse images while preserving the original distribution. 

Subsequently, we experimented with five hybrid architectures, EfficientNetV2B1+ViT, 

MobileNetV2+ShuffleNetV2, ResNet50+DenseNet121, VGG16+ResNet18, and 

InceptionV3+MobileNetV2 with feature fusion addressed by the convolutional block attention 

module (CBAM). Our experimentation showed that the EfficientNetV2B1+ViT model 

outperformed other models. EfficientNetV2B1+ViT exploited depth-wise separable convolution 

and transformer-based models utilizing multi-head self-attention mechanisms. With 

hyperparameter optimization, EfficientNetV2B1+ViT achieved an impressive accuracy of 

95.80% and a loss of 0.1256 across eight classes of sound-quality seeds, defects, and foreign 

contamination, highlighting its efficiency and robustness. 

Keywords: Black-eyed peas classification, Segment anything model, Object detection, Hybrid 

architecture, Attention mechanism 

 

1. INTRODUCTION 

Black-eyed peas are a valuable crop for food industries. Their nutritional benefits and applications make them vital 

in food product manufacturing. The products include animal feed, frozen food, canned and dried products, soups and 

stews, etc. However, anomalies like discoloration, damage, insect infestation, and contamination reduce the 

nutritional value of black-eyed peas and may convert them into less-valued bio-products. Therefore, food industries 

must conduct quality evaluations of harvested black-eyed peas before manufacturing products [1-2]. In quality 

evaluation, assessing the physical properties of harvested black-eyed peas is essential. Conventionally, food 

industries and commercial markets conduct physical quality evaluations through a non-invasive manual inspection. 

In this process, an evaluator draws random samples of specific weight from harvested black-eyed peas lot and 

inspects them according to the domestic or international grade standards [1-2]. Then, evaluators decide on the quality 

of the lot based on the results from the assessment of samples and fix its rate. The manual evaluation process is 

erroneous and leads to financial losses. Therefore, in the past few years, researchers have shifted their focus toward 

developing computer vision and machine learning-based automatic systems [3]. Image acquisition, image 

processing, object segmentation, feature extraction, and object classification are the sequential blocks of such systems 

[4, 5]. Here, we briefly discuss these developments. 
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Ansari et al. [6] focused on agricultural product classification by extracting features such as color, texture, and area 

for input into support vector machines (SVM). Zhao et al. [7] enhanced MobileNetV2 to detect surface defects in 

soybean seeds, experimenting with different intensities of light illumination. Huang et al. [8] segmented soybeans 

using R-CNN and developed SNet, achieving an impressive accuracy of 96.20%. Chatterjee et al. [9] utilized an 

ensemble machine learning approach to classify three wheat varieties based on seven physical features: perimeter, 

area, major-axis length, minor-axis length, asymmetry coefficient, compactness, and groove length of the wheat 

kernel. The ensemble classifier achieved an accuracy of 95%. Lin et al. [10] introduced an approach to classify 

soybeans under varying illumination conditions using online deep-learning models, claiming a classification accuracy 

of 95.63%. Song et al. [11] improved an Inception-ResNet network using depth-wise separable convolution, an 

attention mechanism, and feature fusion methods to assess the appearance of maize seeds, achieving an average 

accuracy of 96.03%. Zhang et al. [12] utilized hyperspectral imaging to acquire images of nine maize seed varieties 

with 3D image features and employed a five-layer convolutional neural network (CNN) to classify the maize seeds 

into their respective varieties, achieving an accuracy of 96.65% on the test images. Lin et al. [13] developed an 

algorithm to separate soybean seeds in physical contact with each other. They used a multi-scale retinex method with 

a color restoration technique to improve the image contrast. They applied Otsu’s adaptive thresholding method to 

segment objects. The minimum bounding rectangle method was employed to locate individual objects. Ghimire et al. 

[14] attempted to assess the physical quality of soybean seeds by comparing the physical parameters obtained 

manually with those derived using software tools SmartGrain and WinDIAS. They used contour detection methods 

to segment individual objects. Wang et al. [15] implemented hyperspectral imaging with machine learning algorithms 

to classify sound-quality and insect-infested maize seeds. For this purpose, they applied 1D-CNN-BiLSTM and SVM 

on the spectral and texture features of the seeds. The authors achieved an overall accuracy of 96% with reduced 

complexity in the process. Sable et al. [16] designed a lightweight neural network to identify defects in soybean seeds. 

The model was customized using depth-wise convolution and squeeze-and-excitation attention mechanisms to 

enhance the classification accuracy. 

These developments describe the importance of efficient and accurate instance segmentation and classification 

methods. Instance segmentation methods face challenges due to the random spatial distribution of instances, such 

as seeds and anomalies, occurring in clustered formations of physically touching neighboring objects. Moreover, 

factors like changes in illumination, sample sizes, and random placement of the objects add complexity to the 

segmentation process. Also, instance segmentation algorithms must be fast and highly accurate. 

Similarly, in object classification, CNNs have consistently outperformed traditional machine learning methods, 

classifying segmented instances into sound-quality seeds and their anomalies. However, the accuracy of CNNs largely 

depends upon the weights assigned to their neurons during training. When constructing CNNs from scratch, 

extensive training on a large image dataset is required to achieve a higher classification accuracy. For this reason, a 

transfer learning approach is often preferred over deploying an untrained CNN. Despite these advancements, there 

remains significant scope for improving the classification performance. Utilizing customized pre-trained neural 

networks can enhance the precision and accuracy of classification, ultimately resulting in a more efficient process 

with better outcomes. 

In this work, we proposed an enhanced hybrid architecture, combining EfficientNetV2B1 and ViT, to classify 

harvested black-eyed peas into sound-quality kernels and their anomalies. An accurate and robust instance 

segmentation was realized through a state-of-the-art instance segmentation algorithm, SAM. SAM effectively 

managed varying illumination conditions and sample sizes, accurately segmenting objects of different colors, shapes, 

and sizes. Its integration with our customized object retrieval block enabled the extraction of individual objects along 

with their constituent RGB colors into separate images of size 224 × 224 × 3 pixels, fulfilling the necessary image size 

requirement for pre-trained classification models. We used a stable diffuser for image augmentation to increase the 

sample size to 1000 images per class. This strategy helped to balance the input dataset and avoided problems of 

overfitting and underfitting. We developed a hybrid model of EfficientNetV2B1 and ViT, gaining the advantages of 

convolutional and transformer-based architectures. The model used depth-wise separable convolutions, multi-head 

self-attention mechanisms, and feature fusion techniques inspired by CBAM. As a result, the model demonstrated an 

efficient and reliable approach, achieving higher classification accuracy while maintaining an optimal computational 

cost. The dataset consisted of eight classes with sound-quality seeds, defects, and foreign contamination. 

2. MATERIALS AND METHODS 

2.1. Black-eyed peas sample 
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A random sample of black-eyed peas was collected from local farmers in Dhule, Maharashtra, India. The sample 

weighed 600 grams with a moisture content of around 13%. It was a harvest from February 2024 and comprised 

sound-quality black-eyed peas alongside various anomalies characterized by their physical properties. The sample 

was manually sorted into eight distinct categories under the supervision of experts from the black-eyed pea industry. 

Table 1 summarizes the physical properties and object counts in the sample of harvested black-eyed peas [1,2]. 

Table 1. Physical properties and count of objects in the 600-gram training sample [1,2] 

Object category Image Physical properties Count 

Sound-quality 

black-eyed peas 

 

It is a wholesome, fully mature, dry, and clean black-eyed peas kernel 

with a yellow-brownish color and an oval shape.  

1851 

Broken and cracked 

black-eyed peas  

The unbroken part is oval, and the broken is random in shape. It has 

a cracked outer seed coat, and it is yellow-brownish in color. 

425 

Split black-eyed 

peas 

 

It is a broken black-eyed pea without an outer coat on the split side. 

It may be one of the two halves formed due to the breakage of black-

eyed peas along the grain. It is lighter yellow-brownish in color. The 

shape may be random. 

482 

Damaged and 

discolored black-

eyed peas 
 

Peas or pieces of peas diseased, discolored, mouldy, or materially 

damaged due to heat, bad weather, moisture or microbial action, or 

sprouted. 

579 

Immature and 

shrivelled black-

eyed peas 
 

This category includes greenish, non-fully developed, or shrunk 

black-eyed peas. 

421 

Insect infested 

black-eyed peas 

 

Includes peas that are bored by insects. Usually, the non-infested part 

is yellow-brownish in color, and its shape is oval. The infested or 

bored part looks in a different color than the non-infested part. 

376 

Organic foreign 

materials 
 

This category includes husks, stems, chaffs, and straws of random 

shape and color. 

531 

Inorganic foreign 

materials 

 

This category includes lumps of earth, sand, and stones of random 

shape and color.  

495 

 

2.2. Image acquisition 

Fig. 1 illustrates the setup we used for imaging the sample of harvested black-eyed peas. The setup comprised an HP 

Scanjet G4050 scanner equipped with a charge-coupled device (CCD) and a computer to store and process the 

scanned images. The setup was configured to acquire sample images at a resolution of 300 pixels per inch and 

produce 2D color images sized 3300 × 3300 pixels. We divided each category of the collected sample into smaller 

portions, each weighing up to 30 grams maximum, to accommodate the sample on the scanning surface. A plain 

white paper background was selected for higher contrast with various objects within the sample. A bank of flicker-

free 14-watt bulbs was utilized for backlighting, which helped to mitigate shadows during image acquisition. For each 

scan, the distance between the bulbs and the plain white paper background was randomly selected between 6 cm and 

12 cm to perform imaging at different intensities of light illumination. Accordingly, images were captured for each 

sample of weight up to 30 grams. The sample objects were arranged on the scanning surface in non-overlapping 

positions to avoid information loss about any hidden parts of the objects. 
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Fig. 1 Setup for photo-scanning harvested black-eyed peas 

2.3. Detection of individual objects from the scanned images 

Each scanned image obtained during the image acquisition stage contained numerous objects. It was essential to 

detect each object from the scanned images to train and test machine learning-based classifiers. To fulfill this 

requirement, the scanned images were processed for noise removal using Otsu's threshold technique and 

subsequently underwent instance segmentation to identify individual objects. We employed a state-of-the-art 

algorithm, SAM, with our customized object retrieval block to segment every instance from scanned images (refer to 

Fig. 2) [17]. 

 
Fig. 2 SAM integrated with the object retrieval block 

SAM is a lightweight CNN architecture featuring a U-Net structure for efficient feature extraction and up-sampling. 

The architecture includes skip connections between the encoder and decoder layers to preserve spatial information 

and combines features from multiple scales to capture local and global contexts. SAM employs a transformer-based 

architecture to embed prompt tokens or image grid points into fixed-size embedding outputs. Its vision transformer 

converts image patches into a sequence of feature embeddings. Additionally, SAM incorporates cross-attention 

between the prompts or image grid points and image encoders to emphasize relevant regions within the image. It 

utilizes a pixel-wise classification approach to predict instance masks, computing a probability map (confidence 

score) for each instance. SAM is pre-trained on a combination of image classification, masked image modeling, and 

instance segmentation objectives while using fewer parameters, contributing to its high accuracy in instance 

segmentation [17]. In this work, SAM is configured to segment every instance in the image, producing a binary mask 

for each detected instance. The mask size is the same as the input image. Subsequently, the object retrieval block 

utilizes this binary mask to extract the object associated with that instance from the original image in color format, 

resulting in separate small-sized images of the required dimensions. In this work, the small-sized images were set to 

a size of 224 × 224 × 3 pixels. Table 2 presents the pseudo-algorithm for the object retrieval algorithm. 
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The pseudo-algorithm begins by extracting the H, S, and V color channels from the scanned image I, resulting in 

images HI, SI, and VI of the same size (row × col pixels) as the original images I and B. The algorithm then visits each 

binary mask B one by one. During this process, the centroid of an object within the binary mask is computed by 

utilizing the properties of the white area of that object. The row index ‘s’ and the column index ‘t’ denotes the centroid. 

Next, the algorithm operates within a window of size 224 × 224, defined as (s - 111: Δ: s + 111, t - 111: Δ: t + 111), to 

visit all the white pixels of the object in image B. The window size of 224 × 224 is selected as it accommodates various 

objects in the sample and meets the requirements of the pre-trained models implemented in this work. While iterating 

through the window, whenever the algorithm encounters a white pixel in image B, it assigns the pixel values from the 

corresponding location in images HI, SI, and VI to the pixels at the locations computed for the blank images H, S, and 

V, which are also of size 224 × 224 pixels. The algorithm calculates the pixel locations in images H, S, and V based on 

the size differences (row, col) between HI, SI, and VI and the 224 × 224 pixels of H, S, and V. Finally, the extracted 

H, S, and V color channels are merged to reconstruct the object in a separate color image of size 224 × 224 × 3 pixels. 

Table 2. Pseudo algorithm for the object retrieval block 

1. Initialize:  𝑰𝒓𝒐𝒘×𝒄𝒐𝒍 ← 𝑺𝒄𝒂𝒏𝒏𝒆𝒅 𝒊𝒎𝒂𝒈𝒆 𝒂𝒇𝒕𝒆𝒓 𝒏𝒐𝒊𝒔𝒆 𝒓𝒆𝒎𝒐𝒗𝒂𝒍,  

  𝑩𝒓𝒐𝒘×𝒄𝒐𝒍 ← 𝑩𝒊𝒏𝒂𝒓𝒚 𝒎𝒂𝒔𝒌 𝒇𝒐𝒓 𝒊𝒏𝒅𝒊𝒗𝒊𝒅𝒖𝒂𝒍 𝒐𝒃𝒋𝒆𝒄𝒕𝒔,  

  𝑯𝟐𝟐𝟒× 𝟐𝟐𝟒 ← 𝟎, 𝑺𝟐𝟐𝟒× 𝟐𝟐𝟒 ← 𝟎, 𝑽𝟐𝟐𝟒× 𝟐𝟐𝟒 ← 𝟎, 𝑶𝒃𝒋𝒆𝒄𝒕𝟐𝟐𝟒× 𝟐𝟐𝟒 ← 𝟎, ∆ ← 𝟏 

2. 𝑯𝑰𝒓𝒐𝒘×𝒄𝒐𝒍, 𝑺𝑰𝒓𝒐𝒘×𝒄𝒐𝒍, 𝑽𝑰𝒓𝒐𝒘×𝒄𝒐𝒍 ←  𝑯𝑺𝑽(𝑰𝒓𝒐𝒘×𝒄𝒐𝒍) 

3. 𝑵 ← 𝒄𝒐𝒖𝒏𝒕(𝒃𝒊𝒏𝒂𝒓𝒚 𝒎𝒂𝒔𝒌 𝒇𝒐𝒓 𝒊𝒏𝒅𝒊𝒗𝒊𝒅𝒖𝒂𝒍 𝒐𝒃𝒋𝒆𝒄𝒕𝒔) 

4. 𝑭𝒐𝒓 (𝒏 ← 𝟏: ∆: 𝑵): 

5.  (𝒔, 𝒕) ← 𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅_𝒐𝒇_𝒘𝒉𝒊𝒕𝒆_𝒂𝒓𝒆𝒂(𝑩𝒓𝒐𝒘×𝒄𝒐𝒍) 

6.  𝑭𝒐𝒓 (𝒂 ← 𝒔 − 𝟏𝟏𝟏: ∆: 𝒔 + 𝟏𝟏𝟏, 𝒃 ← 𝒕 − 𝟏𝟏𝟏: ∆: 𝒕 + 𝟏𝟏𝟏): 

7.   𝑰𝒇 𝑩𝒓𝒐𝒘×𝒄𝒐𝒍(𝒂, 𝒃) == 𝟏 𝒕𝒉𝒆𝒏: 

8.    𝑯𝟐𝟐𝟒× 𝟐𝟐𝟒(𝟏𝟏𝟏 − (𝒔 − 𝒂 − 𝟏), 𝟏𝟏𝟏 − (𝒕 − 𝒃 − 𝟏)) ← 𝑯𝑰𝒓𝒐𝒘×𝒄𝒐𝒍(𝒂, 𝒃) 

9.    𝑺𝟐𝟐𝟒× 𝟐𝟐𝟒(𝟏𝟏𝟏 − (𝒔 − 𝒂 − 𝟏), 𝟏𝟏𝟏 − (𝒕 − 𝒃 − 𝟏)) ← 𝑺𝑰𝒓𝒐𝒘×𝒄𝒐𝒍(𝒂, 𝒃) 

10.    𝑽𝟐𝟐𝟒× 𝟐𝟐𝟒(𝟏𝟏𝟏 − (𝒔 − 𝒂 − 𝟏), 𝟏𝟏𝟏 − (𝒕 − 𝒃 − 𝟏)) ← 𝑽𝑰𝒓𝒐𝒘×𝒄𝒐𝒍(𝒂, 𝒃) 

11.  𝑶𝒃𝒋𝒆𝒄𝒕𝟐𝟐𝟒× 𝟐𝟐𝟒 ← 𝒎𝒆𝒓𝒈𝒆(𝑯𝟐𝟐𝟒× 𝟐𝟐𝟒, 𝑺𝟐𝟐𝟒× 𝟐𝟐𝟒, 𝑽𝟐𝟐𝟒× 𝟐𝟐𝟒)   

 

To evaluate the performance of SAM integrated with the object retrieval block, we implemented an additional, widely 

recognized instance segmentation algorithm, the watershed algorithm [18]. Fig. 3 illustrates the effectiveness of SAM 

compared to the watershed algorithm. SAM demonstrated a remarkable ability to accurately segment all objects 

within a given sample image, achieving 100% accuracy even in the presence of objects exhibiting minor or significant 

variations in color, shape, and size, as well as those positioned randomly and in physical contact. 

 
Fig. 3 (a) Scanned image of a 30-gram sample after noise removal, (b) Instance segmentation using SAM, (c) 

Instance segmentation using the Watershed algorithm, (d) SAM accurately produced individual binary masks for 

the three objects highlighted, (e) The Watershed algorithm inaccurately produced only one binary mask for the 

three objects 
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2.4. Image Augmentation 

Usually, a sample of harvested black-eyed peas contains anomalies in a smaller proportion than sound-quality 

kernels. It leads to an imbalance within the training dataset, resulting in data overfitting and an inherent bias in 

machine learning models toward the majority class. In such a case, although a machine learning model effectively 

learns from the training data, it inadequately performs on unseen data during the validation and testing phases. 

Image augmentation is a solution to the problem. This work implemented a generative model-based image 

augmentation technique known as stable diffusion to obtain synthetic images for the sample categories with an object 

count of less than 1000. Traditional image augmentation methods, like rotation, crop, and flip, have limitations in 

enhancing image diversity effectively. The stable diffusion model was trained on color images of individual objects 

from the respective classes [19-21]. 

Stable diffusion can generate high-quality and diverse images. This method reduces the risk of mode collapse while 

preserving the original image distribution. The generated images appear realistic. Moreover, diffusion models 

produce more coherent images with better contrast than variational autoencoders (VAEs) and generative adversarial 

networks (GANs). These high-quality images contribute to more stable training of neural networks. The stable 

diffusion model primarily operates through three key processes: forward, reverse, and noise prediction (refer to Fig. 

4) [19-21].  

 
Fig. 4 Forward, reverse, and noise prediction processes in the stable diffusion model 

In the forward process, Gaussian noise is gradually added to the input image over a series of steps. Therefore, the 

process is also known as the diffusion process. Equations (1) and (2) describe the forward process. Let X0 denote the 

input image, and X1, X2, X3, …, Xk the noise versions of X0. ‘k’ is the number of noise steps. 

𝐷(𝑋𝑘|𝑋𝑘−1) = 𝐺(𝑋𝑘; √(1 −  𝛽𝑘) 𝑋𝑘−1, 𝛽𝑘𝐼)                                            (1) 

𝐷(𝑋1:𝑁|𝑋0) =  ∏ 𝐷(𝑋𝑘|𝑋𝑘−1)𝑁
𝑘=1                         {𝛽𝑘 ∈ (0,1)}𝑘=1

𝑁                     (2) 

Where, 

• D is the forward diffusion process 

• G represents a Gaussian distribution 

• βk is the noise schedule (typically increases with k) 

• I is the identity matrix 

The noise prediction process minimizes the difference between the predicted and actual noise. Equation (3) describes 

the objective function of the noise prediction process. 

𝐿 = 𝐸[‖𝜀 − 𝜀(𝑋𝑘, 𝑘)‖2]                                                                      (3) 

Where, 

• 𝜀(𝑋𝑘, 𝑘) is the model’s prediction of the added noise 
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Learning the reverse process is the main objective of the diffusion model. In the reverse process, the iterative 

denoising of the image takes place, which undoes the forward process. Equation (4) describes the reverse process. 

𝑅(𝑋𝑘−1|𝑋𝑘) = 𝐺(𝑋𝑘−1; 𝜇(𝑋𝑘, 𝑘), ∑(𝑋𝑘, 𝑘))                                               (4) 

Where, 

• R is the learned reverse process 

• μ is the predicted mean 

• Σ is the predicted covariance 

Thereafter, starting with the pure noise Xk, the learned reverse process is iteratively applied to generate new images. 

Equation (5) describes the process for generating new images. 

𝑋𝑘−1 =
1

√𝛼𝑘
(𝑋𝑘 −

1−𝛼𝑘

√1−𝛼̅𝑘
𝜀(𝑋𝑘, 𝑘)) + 𝜎𝑘𝑧                                                  (5) 

Where: 

• 𝛼𝑘 = 1 − 𝛽𝑘 

• 𝛼̅𝑘 = ∏ 𝛼𝑖
𝑘
𝑖=1  

• 𝜎𝑘 is a small amount of stochastic noise  

• z is standard Gaussian noise 

Following image augmentation, the count of images or objects for each category is 1000 or more. Only 1000 images 

per category were considered for building the classification model. Specifically, 1000 images were randomly selected 

for sound-quality soybeans, as the count exceeds this value. The images were then divided into datasets in the 

proportion of 70:20:10, resulting in 700 images for the training dataset, 200 for the validation dataset, and 100 for 

the test dataset. 

3. CLASSIFICATION MODEL 

Pre-trained CNNs are deep-learning models that develop their weight matrices through training based on large 

datasets, such as ImageNet [22]. The performance of the pre-trained CNNs can be further improved using techniques 

like hybrid models, feature fusion, and attention mechanisms. These strategies enable CNN architectures to combine 

the strengths of different models. In this work, we implemented an improved hybrid model that combines the 

strengths of EfficientNetV2B1 and ViT, integrating CBAM for feature fusion. 

3.1. Improved architecture of EfficientNetV2B1+ViT 

Fig. 5 illustrates an improved architecture of the hybrid model of EfficientNetV2B1 and ViT. The model consists of 

two parallel branches of EfficientNetV2B1 and ViT, each fed with input images of dimensions 224 × 224 × 3 pixels 

for feature extraction. Features obtained from both branches are combined using the feature fusion block and then 

used by the classification head to classify an object in the input image into one of the eight classes. 

3.1.1. EfficientNetV2B1 

In the EfficientNetV2B1 branch, the initial feature extractor is the stem Conv2d layer, which employs a 3×3 

convolution to transform the input from 3 channels into 32 feature maps. As described in equation (6), the operation 

Y1 (i, j) performs a convolution between the input image X with patch [i+k, j+l] and the kernel weights W. Convolution 

detects specific patterns in the image, such as edges, corners, etc. by applying a kernel to the image. The output (Y1) 

is then normalized using the mean (µ), standard deviation (σ), offset (β), and scaling factor (γ) as described in 

equation (7). The term ε denotes a small constant that ensures numerical stability. As expressed in equation (8), the 

Swish activation function introduces non-linearity in normalized output (Y2) while maintaining smooth gradients 

[23]. 

𝑌1(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑖 + 𝑘, 𝑗 + 𝑙) × 𝑊(𝑘, 𝑙)                                                           (6) 

𝑌2 = 𝛾 ×
𝑌1−𝜇

√𝜎2+𝜀
+ 𝛽                                                                           (7) 

𝑌3 = 𝑌2 × 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑌2)                                                                        (8) 

Where, 

• i, j are the spatial indices of the image 

Further, the MBConv block implements depth-wise separable convolutions, which process each channel followed by 

a point-wise convolution that mixes channel information. Equation (9) presents the mathematical formulation for 

depth-wise separable convolution, while equation (10) describes the mathematical representation for point-wise 
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convolution. The output from the depth-wise separable convolutions undergoes batch normalization and is 

subsequently processed using the activation functions. In the same way, the outcome from point-wise convolutions 

is also subjected to batch normalization. 

𝑌4(𝑖, 𝑗, 𝑘) = ∑ ∑ 𝑌3(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑘) × 𝑊𝑑(𝑝, 𝑞, 𝑘)                                              (9) 

𝑌5(𝑖, 𝑗, 𝑛) = ∑ 𝑌4(𝑖, 𝑗, 𝑘) × 𝑊𝑝(𝑘, 𝑛)                                                      (10) 

Where, 

• k is input channel index 

• p, q are kernel spatial indices with patch [i+p, j+q]. 

• n is output channel index 

The Squeeze-Excitation (SE) mechanism calculates global context (z) and channel-specific scaling factors (s) using 

learned weights. The SE block averages each channel separately. Equations (11) and (12) describe the mathematical 

formulations relevant to the SE block. 

𝑍(𝑘) =
1

𝐻×𝑊
× ∑ ∑ 𝑌5(𝑖, 𝑗)                                                         (11) 

𝑆 = 𝜎(𝑊2𝛿(𝑊1𝑍))                                                              (12) 

Where, 

• H is height and W is width of the feature map from the stem Conv2d layer 

• σ is sigmoid and δ is ReLU 

• W₁ and W₂ are the learnable weights specific to the SE block's fully connected layers. 

The global average pooling layer calculates the average value across each 2D feature map and converts it into a single 

value. The projection layer performs feature transformation and reduces dimensions to match dimensions for fusion. 

3.1.2. ViT 

In the ViT branch, the patch embedding block divides an input image into non-overlapping patches, linearly 

embedding each patch into a token. As illustrated in Fig. 5, a total of 196 patches are created, each of size 16 × 16 × 3, 

yielding a dimension of 768. Each patch is linearly projected into a 768-dimensional space utilizing a learned 

embedding matrix. Further, the class token prepend block leverages the ViT's capacity to model global image features 

for the classification tasks. The class token represents the entire image, enabling the model to aggregate information 

from all the patches. By inserting the class token at the beginning of the patch embedding sequence, the resulting 

output shape becomes (197 × 768). Positional embeddings are incorporated to maintain spatial information. The 

Transformer Encoder Block comprises two sub-layers, Multi-Head Self-Attention (MSA) and Multi-Layer Perceptron 

(MLP). The MSA mechanism attends to various parts of the input sequence, while the MLP transforms activations 

through two linear layers followed by a ReLU activation function. The ReLU activation introduces non-linearity into 

the model. Moreover, the layer normalization (LayerNorm) layer calculates the mean (μ) and variance (σ²) across 

the three channels for normalizing activations and conducting training smoothly [24]. 

3.1.3. Feature fusion 

The feature fusion block concatenates the features from the EfficientNetV2B1 and ViT branches. It employs an 

attention mechanism emphasizing relevant context within the input data to make predictions. It allocates greater 

attention to vital information and lower attention to less important information. Commonly used attention 

mechanisms are channel attention, self-attention, and spatial attention. The channel attention mechanism 

emphasizes the color channels of images relevant to the task. The self-attention mechanism captures complex 

relations between various regions in the image to determine remote connections efficiently. Similarly, the spatial 

attention mechanism is helpful when an image region is more important for classification.  

This work considered the attention mechanism CBAM for focusing only on the vital features to discriminate harvested 

black-eyed peas. CBAM is suitable as the relevant information in black-eyed peas images is distributed spatially 

across the image rather than localized in a fixed region/s. Spatial locations provide features to classify objects based 

on shape, size, texture patterns, etc. CBAM combines spatial attention with a channel attention mechanism to 

selectively emphasize relevant channels and spatial regions. Being a spatial attention mechanism, CBAM is 

lightweight and requires less computation. The following equations explain the process of CBAM [25]. 



74  
 

J INFORM SYSTEMS ENG, 10(21s) 

Here, X ∈ ℝ^(H × W × C) is the input tensor of features belonging to space R of height (H=28), weight (W=28), and 

number of channels (C=1024). The global average pooling computes the average, and global max pooling finds the 

maximum value across each feature map, converting each 2D feature map into a single value as described in equations 

(13) and (14). 

𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑜𝑙𝑖𝑛𝑔: 𝑋𝑎𝑣𝑔 =
1

𝐻×𝑊
∑ ∑ 𝑋(𝐻, 𝑊, 𝐶)𝑊

𝑤=1
𝐻
ℎ=1                        (13) 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔: 𝑋𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑋(𝐻, 𝑊, 𝐶) | ℎ ∈ [1, 𝐻], 𝑤 ∈ [1, 𝑊]}               (14) 

MLP transformation occurs with a reduction ratio of r = 16, causing the hidden layer dimensions of l = C/r = 64. 

Equation (15) expresses MLP transformations that computes a 1D channel attention vector αc ∈ ℝ^(1 × 1 × C) after 

global average pooling and global max pooling. 

𝛼𝑐 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑{[𝑊𝐶2 × 𝑅𝑒𝐿𝑈(𝑊𝐶1 × 𝑋𝑎𝑣𝑔 + 𝑏1) + 𝑏2] + [𝑊𝐶2 × 𝑅𝑒𝐿𝑈(𝑊𝐶1 × 𝑋𝑚𝑎𝑥 + 𝑏1) + 𝑏2]} (15) 

Where, WC1 ∈ ℝ^(l × C) and WC2 ∈ ℝ^(C × l) are the weights, and b1 ∈ ℝ^(l) and b2 ∈ ℝ^(C) are the biases of fully 

connected layers with MLP transformations for global average pooling and global max pooling. 

Then, CBAM performs an element-wise multiplication between X and αc to refine the features per the importance of 

each color channel, producing X’ ∈ ℝ^(H × W × C) as expressed in equation (16).  

𝑋′ = 𝛼𝑐 ⨀ 𝑋                                                                        (16) 

Further, the tensor X’ is fed to the spatial attention mechanism, which performs channel-wise average pooling and 

max pooling, producing X’avg ∈ ℝ^(H × W) and X’max ∈ ℝ^(H × W). The concatenation block combines X’avg and X’max, 

producing X’concat ∈ ℝ^(H × W × 2). 7×7 Convolution reduces concatenated spatial features from 2 channels to 1 

channel with Sigmoid activation to compress values between 0 and 1. Equation (17) expresses the complete operation. 

𝛼𝑠 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝑜𝑛𝑣7×7(𝑋𝑎𝑣𝑔
′ ; 𝑋𝑚𝑎𝑥

′ ))                                        (17) 

Then, CBAM performs an element-wise multiplication between αs ∈ ℝ^( H × W × 1) and X’ ∈ ℝ^(H × W × C) to 

combine the channel and spatial attention mechanisms as expressed in equation (18). The operation produces X” ∈ 

ℝ^(H × W × C).   

𝑋′′ = 𝛼𝑠 ⨀ 𝑋′                                                              (18) 

 
Fig. 5 Improved hybrid architecture of EfficientNetV2B1+ViT 
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Subsequently, the convolutional block downsizes the feature map from the size of (28 ×28 × 1024) to (28 ×28 × 512). 

The global average pooling block reduces spatial dimensions (28×28) to a single value per channel. The flatten layer 

converts a multidimensional input tensor into a one-dimensional output tensor. Then, the dropout layer performs 

regularization by erratically dropping a percentage of neurons in the pooling layer during training to prevent 

overfitting. The dense layer performs a linear transformation by connecting all its neurons to each neuron in the 

previous layer. Equation (19) expresses output A of the dense layer with activation function f for input vector x.  

𝐴 = 𝑓(𝑊𝑥 + 𝑏)                                                                         (19) 

In the classification head, the dense layers reduce feature dimensionality, and the dropout layer performs 

regularization by erratically dropping a percentage of neurons in the pooling layer during training to prevent 

overfitting. Finally, the output layer produces a probability distribution of all possible classes to indicate the model's 

confidence in each classification. The count of neurons in the output layer equals the count of classes. Typically, 

multi-class classification tasks utilize a softmax activation function. Equation (20) represents the mathematical form 

[26]. 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑐𝑙𝑎𝑠𝑠𝑖) =
𝑒𝐴𝑖

∑ 𝑒
𝐴𝑗

𝑗

                                                                 (20) 

Where, 𝐴𝑖 is output of the dense layer for class 𝑖. 

3.1.4. Fine-tuning hyperparameters 

A classification model with optimized hyperparameters performs better with minimal computations than a non-

optimized model. Therefore, it was essential to optimize the hyperparameters of the EfficientNetV2B1+ViT model. 

The hyperparameters include kernel sizes, activation functions, batch sizes, learning rate, dropout, pooling layer, 

optimizer, etc. A pooling layer requires a pool size, while a dropout layer necessitates specifying the percentage of 

neurons to drop. A dense layer requires several kernels, and the output layer requires an activation function, among 

other considerations. A hyperparameter optimizer minimizes the error (or loss) function during model training. 

Numerous optimizer algorithms exist, each operating in a specific manner. Stochastic gradient descent (SGD) and 

adaptive moment estimation (Adam) are widely used optimizers. SGD adjusts the model parameters by moving them 

in a direction opposite to the gradient of the loss function concerning those parameters. The Adam optimizer 

maintains moving averages of gradients and squared gradients of the parameters, combining benefits from the root 

mean square propagation (RMSProp) and adaptive gradient algorithm (Adagrad) methods. RMSProp implements 

adaptive learning for model parameters by considering the previous mean of the squares of the gradients, thereby 

mitigating issues such as vanishing or exploding gradients. Adagrad, on the other hand, adjusts the learning rates for 

individual parameters by accounting for the cumulative sum of squared gradients from the past. This approach 

effectively addresses sparse data and automatically reduces the learning rates for parameters that receive frequent 

updates. The learning rate acts as a step size during optimization. It controls the magnitude of adjustments made to 

the model weights during each training iteration. The appropriate selection of learning rates across a continuum of 

high and low values is crucial to avoid divergence caused by overly high values and to ensure adequate convergence 

when faced with lower values [27, 28]. 

4. PERFORMANCE METRICS 

We used accuracy, precision, recall, and F1-score as quantitative metrics to evaluate classifiers. The input image 

dataset was used to compute these metrics. Generally, the classification accuracy on the validation dataset is 

considered a comprehensive indicator of a model’s performance. As expressed in equation (21), accuracy is the ratio 

of correctly predicted cases to the total cases [9-16]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                           (21) 

Precision measures how many predicted positive cases are correctly positive. Equation (22) shows the mathematical 

representations. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                     (22) 

Recall is the relation between correctly predicted positive cases and the total of correctly predicted positive and 

incorrectly predicted negative cases, as described in equation (23). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                   (23) 

The F1-score represents the balanced average of precision and recall, calculated as the harmonic mean of these two 

metrics. Equation (24) describes the mathematical representation [9-16]. 
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𝐹1_𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                          (24) 

5. RESULTS AND ANALYSIS 

5.1. Computer environments 

The computer system used for experimentation was equipped with 13th generation Intel(R) Core(TM) i7-13700HX, 

2.10 GHz, x64-based central processing unit, processor, NVIDIA GeForce RTX 4060 graphic processing unit, and 32 

GB RAM. It was operated using Windows 11, a 64-bit operating system. The system configuration included the latest 

versions of NVIDIA drivers, CUDA toolkit, cuDNN, Python, TensorFlow, PyTorch, and Keras. 

5.2. Model selection and optimization 

In this work, we experimented with five hybrid architectures constructed using some of the most popular pre-trained 

deep learning models to design a robust model that would not impose heavy computational demands while enhancing 

its accuracy. These hybrid models included combinations such as EfficientNetV2B1 with ViT, MobileNetV2 paired 

with ShuffleNetV2, ResNet50 with DenseNet121, VGG16 integrated with ResNet18, and InceptionV3 with 

MobileNetV2. These models were implemented on our test dataset images in Python without fine-tuning. Table 3 

presents the overall performance of all five architectures across eight classes. The results show that the 

EfficientNetV2B1+ViT architecture achieved better classification accuracy than the others. The hybrid model 

approach and advanced feature fusion method of CBAM improved the model's performance. 

Table 3. Performance comparison for all five architectures 

Model 
Parameters 

(M) 

Inference 

Time (ms) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

EfficientNetV2B1+ViT 56.3 52 94.60 94.61 94.57 94.54 

MobileNetV2 + 

ShuffleNetV2 
13.9 22 91.65 91.37 90.98 91.04 

ResNet50 + DenseNet121 50.1 48 93.57 93.22 92.98 92.95 

VGG16 + ResNet18 149.8 73 92.94 92.64 92.38 92.37 

InceptionV3 + 

MobileNetV2 
29.2 35 92.46 92.43 92.03 92.01 

 

The hyperparameters of EfficientNetV2B1+ViT were optimized to fine-tune their performance on our image dataset. 

Table 4 lists the hyperparameters and their values considered for fine-tuning. The RandomSearch tuner from the 

Python library KerasTuner was used for fine-tuning hyperparameters. This tuner employed a random sampling 

approach for hyperparameter values rather than exhaustively searching through all possible options. Such a method 

enabled the tuner to efficiently explore a diverse range of hyperparameter combinations [29, 30]. The RandomSearch 

tuner was configured for 50 trials of various hyperparameter combinations, each running for 40 epochs. 

Fig. 6 illustrates the first five trials with the best validation loss and accuracy after hyperparameter tuning of 

EfficientNetV2B1+ViT. The EfficientNetV2B1+ViT architecture achieved the highest validation accuracy of 95.80% 

and the lowest validation loss of 0.1256 (trial ID 21) with the following hyperparameter values: Pooling2D (Height = 

3, Width = 3), Dropout: 0.2, Optimizer: Adam, Batch Size: 32, and Learning Rate: 0.01. The height and width of 

Convolutional2D kernels for respective layers are shown in Fig. 5. 

Table 4. Hyperparameters and the values for fine-tuning [9-16] 

Sr. no. Hyperparameters Values for tuning 

1.  Pooling2D – height of a pool  [1, 2, 3] 

2.  Pooling2D – width of a pool  [1, 2, 3] 

3.  Dropout [0.2, 0.3] 

4.  Optimizer [Adam, SGD] 

5.  Batch size [16, 32, 64] 

6.  Learning rate [0.001, 0.01, 0.1] 
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Fig. 6 Validation loss and accuracy for the best five trials after hyperparameter tuning of EfficientNetV2B1+ViT 

Furthermore, the best-performing fine-tuned model was trained on the training dataset, and its performance was 

evaluated on the validation dataset. As illustrated in Fig. 7, the model initialized with improved accuracy values, likely 

due to effective optimization techniques. Additionally, it achieved better performance in under 30 epochs, with 

classification accuracy nearing its peak. Similarly, the loss showed a significant decrease within the same timeframe. 

Notably, there was no evidence of substantial overfitting or underfitting in the curves representing the training and 

validation datasets. 

 

 
Fig. 7 Accuracy and loss curves for the best-performing fine-tuned EfficientNetV2B1+ViT model for the training 

and validation datasets 

 

Subsequently, the model was tested on an unseen dataset to evaluate its performance. As depicted in the confusion 

matrix in Fig. 8, the classification accuracy exceeded 94.0% across all classes. Specifically, the highest accuracy of 

97.2% was observed for sound-quality black-eyed peas, and the lowest accuracy of 94.2% was noted for broken and 

cracked black-eyed peas, highlighting the model's discriminative ability. Overall, the model demonstrated consistent 

performance across all classes. 
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Fig. 8 Confusion matrix for the best-performing fine-tuned EfficientNetV2B1+ViT model for the test dataset 

6. CONCLUSION 

This paper presents a comprehensive framework systematically designed to classify harvested black-eyed peas with 

enhanced accuracy. We identified and addressed factors that influence or deteriorate the performance of the 

classification model. Segmenting individual objects was crucial for the object detection block. The object detection 

block encounters challenges when segmenting individual objects from a clustered view of random samples of black-

eyed peas, compounded by varying illumination, sample sizes, random object positioning, and neighboring objects 

in contact with each other. We employed a fast and accurate instance segmentation algorithm called SAM to tackle 

the issues. SAM facilitated effective object detection, segmenting objects from the sample images with 100% accuracy. 

The integration of SAM with our customized object retrieval block provided the extraction of segmented objects into 

separate pictures of the size necessary for classification. 

Furthermore, we implemented image augmentation using stable diffusion to address the problems of overfitting and 

under-fitting arising from an imbalanced dataset. Stable diffusion generated high-quality, diverse images while 

reducing the risk of mode collapse and preserving the original image distribution.  

For designing a robust and highly accurate classifier, we experimented with five hybrid models constructed from 

some of the most popular pre-trained neural networks for classifying harvested black-eyed peas into eight classes 

comprising sound-quality seeds, defects, and foreign contamination. We compared the performance of the hybrid 

models, including EfficientNetV2B1+ViT, MobileNetV2+ShuffleNetV2, ResNet50+DenseNet121, VGG16+ResNet18, 

and InceptionV3+MobileNetV2. Our experimentation revealed that the EfficientNetV2B1+ViT model outperformed 

the other models on our image dataset. This hybrid model benefitted from the convolutional and vision transformer-

based methods, capturing local and global features. It used depth-wise separable convolutions and multi-head self-

attention mechanisms.  

Feature fusion was another concern affecting the accuracy of the hybrid model. We integrated a CBAM that combines 

and processes features from EfficientNetV2B1 and ViT. CBAM utilized spatial and channel attention mechanisms to 

emphasize relevant channels and spatial regions. Hyperparameter optimization enhanced the performance of 

EfficientNetV2B1+ViT, achieving an overall classification accuracy of 95.80% and an overall loss of 0.1256 across all 

eight classes featuring sound-quality seeds, defects, and foreign contamination. Therefore, the model presented a 

promising and efficient approach, achieving higher classification accuracy with optimal computational cost. 
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