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The dynamic behavior of a two-wheeler suspension system significantly affects ride comfort, 

stability, and human body vibrations, especially on uneven road surfaces. This study offers a 

mathematical modeling and simulation analysis of a two-wheeler with a seated rider navigating 

a Class C road profile, in accordance with ISO 8608 requirements. The model integrates essential 

suspension characteristics, such as tire stiffness (both front and rear), suspension spring stiffness 

(both front and rear), and damping coefficients (both front and rear), which were methodically 

altered to examine their effects on vehicle and rider dynamics. A Simulink-based multi-degree-

of-freedom (MDOF) system was created to mimic vertical acceleration and displacement 

reactions across many body parts, including the head, upper torso, lower torso, viscera, and seat. 

A parameter sweep was performed across 729 distinct suspension configurations, and the 

resulting time-domain responses were analyzed to determine the maximum acceleration and 

displacement magnitudes for each body location.  

Multiple regression-based modeling techniques were utilized to numerically describe the impact 

of suspension parameters on the observed biomechanical responses. The efficacy of many 

regression models was assessed to determine a precise predictive correlation among suspension 

stiffness, damping characteristics, and the resulting rider acceleration and displacement. The 

established models offer a computational framework for analyzing two-wheeler ride dynamics 

and serve as a basis for future research in suspension tuning, optimization, and human-centric 

ride comfort assessment. 

Keywords: Vehicle-Rider Interaction, Suspension Stiffness and Damping, Vertical 

Acceleration Response, Biomechanical Vibration Analysis, Regression-Based Modelling, 

Simulink Suspension Simulation, Human Body Vibrations, ISO 8608 

 

1.INTRODUCTION 

Motorcycles are a favored means of transportation, especially over short distances, owing to their efficiency and 

capacity to maneuver through traffic. One major concern for motorcycle riders is exposure to whole-body vibration 

(WBV), which can lead to discomfort, musculoskeletal illnesses, and chronic health difficulties such as low back pain 

(LBP), neck pain, and spinal abnormalities. WBV is mostly induced by inconsistencies in road surfaces, which are 

conveyed to the rider via the motorcycle's suspension system. The transfer of vibrations can lead to considerable 

discomfort and may result in long-term health consequences for riders. Prior research has shown that whole-body 

vibration (WBV) exposure in motorcycles is significantly greater than in other vehicle categories, such as 

automobiles, mainly because of the direct interaction between the rider and the vehicle (Kumar et al., 2013; Saran et 

al., 2013; Eluri et al., 2019). As vehicle speed escalates or when navigating uneven road surfaces, the severity of whole-

body vibration (WBV) intensifies, resulting in enhanced discomfort and an elevated risk of health issues, especially 

for professional riders subjected to these conditions for prolonged durations (Tathe et al., 2013; Chen et al., 2003). 

The motorcycle's suspension system is essential for minimizing the transfer of vibrations from the road to the rider's 

body. Passive suspension systems, which do not actively adapt to road conditions, are frequently employed in 
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motorcycles; however, they usually inadequately deliver maximum comfort when the vehicle's load varies, such as 

with fluctuations in the rider's weight or road conditions. Researchers have discovered that these systems frequently 

fail to adequately mitigate vibrations, resulting in enhanced discomfort and health hazards for the rider (Nagarkar et 

al., 2016; Mitra et al., 2016). The suspension system must absorb road shocks to reduce vibrations transmitted 

through the bike frame and seat, hence improving comfort. Improvements in suspension design, including the 

integration of variable stiffness and damping properties, have demonstrated a substantial reduction in vibration 

transmission, hence enhancing comfort and safety (Nagarkar et al., 2016). 

Besides suspension system attributes, rider posture and seat design are vital elements that affect WBV exposure and 

related discomfort. Studies have shown that inadequate seating arrangements and postures, such slouching or 

suboptimal seating angles, may worsen the detrimental effects of whole-body vibration (WBV), especially on the 

lumbar spine (Amiri et al., 2019; Kumbhar et al., 2012). These postural tensions intensify discomfort, elevate the risk 

of spinal injury, and lead to tiredness. Conversely, an ergonomic seat design with enough support may reduce these 

consequences by equally dispersing the body's weight and diminishing pressure on critical areas. Specifically, seat 

angle, lumbar support, and the configuration of the seat cushion can substantially influence the level of whole-body 

vibration (WBV) exposure encountered by the rider (Tathe et al., 2013; Kumar et al., 2013). 

Various biodynamic models have been created to examine the effects of WBV on riders. These models replicate the 

interaction between the human body and the motorcycle's suspension system, assisting researchers in forecasting 

the rider's reaction to varying vibration levels. The predominant models employed for these assessments consist of 

lumped-parameter models, finite element models, and multibody dynamics models. These models provide a 

comprehensive examination of vibration transmission from the suspension system to the rider’s body and permit the 

modification of suspension parameters to mitigate WBV exposure (Mitra et al., 2016; Nagarkar et al., 2016). These 

models facilitate the assessment of suspension performance for vibration dose value (VDV), frequency-weighted RMS 

acceleration, and acceleration magnitudes at pivotal body areas, including the head and lumbar spine (Nagarkar et 

al., 2016; Kumar et al., 2013). 

The impact of WBV on the rider can be assessed using objective metrics such as VDV and RMS acceleration, which 

are essential indications of rider comfort. Prior studies have formulated recommendations, including ISO 2631-1, to 

evaluate WBV exposure and its related health hazards. These standards specify safe exposure thresholds for different 

vehicle categories and circumstances. By integrating these criteria with biodynamic models, researchers can enhance 

suspension systems to decrease the rider's exposure to hazardous vibrations. This technique entails assessing the 

biomechanical responses of the rider and identifying the suspension characteristics (such as dampening and spring 

stiffness) that alleviate discomfort while preserving vehicle stability (Chen et al., 2003; Saran et al., 2013). 

This study aims to examine the impact of whole-body vibration (WBV) exposure on rider comfort and health, 

specifically analyzing the correlation among suspension system characteristics, road conditions, and rider posture. 

The project aims to develop suspension systems to mitigate WBV exposure by merging advanced simulation tools 

with biodynamic models. This project investigates the application of machine learning techniques to forecast the 

impact of various suspension configurations on rider comfort, contributing in the creation of motorcycles that 

prioritize both comfort and health. The results of this study may guide future design enhancements, rendering 

motorbikes safer and more pleasant for riders, especially those in occupations necessitating prolonged riding 

exposure (Mansfield and Griffin, 2002; Mitra et al., 2016; Saran et al., 2013). 

2.METHODOLOGY 

A multi-degree-of-freedom (MDOF) model of a two-wheeler with a seated rider was developed in Simulink to 

replicate the system's dynamic behavior. The model incorporates the vehicle's suspension system, rider dynamics, 

and their interaction, utilizing the Class C road profile, as defined by ISO 8608 standards, as the input excitation for 

the suspension system to simulate road roughness. The suspension system was modeled utilizing many critical 

parameters: tire stiffness (kf), spring stiffness (kr), damping coefficients (cf, cr), and tire stiffness (kft, krt). The 

parameters were adjusted within designated ranges to produce a total of 729 distinct suspension configurations. Each 

configuration was simulated to capture the maximum vertical acceleration and displacement responses at several 

rider body regions, including the head, upper torso, lower torso, viscera, and seat.  

The simulation data were gathered for all 729 possibilities, recording the greatest acceleration and displacement at 

each body location. The data were structured into arrays, with each entry containing values for acceleration and 
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displacement related to the different suspension settings. (Fig 1) Regression models were built to analyse the 

relationship between suspension parameters and the rider's response. Feature selection was performed, utilizing the 

suspension settings as input features and the maximum acceleration and displacement as output responses. A variety 

of regression approaches were utilized, including Linear Regression, Support Vector Regression (SVR), Random 

Forest Regression, K-Nearest Neighbors (KNN) Regression, Decision Tree Regression, and Gradient Boosting 

Regression. The evaluation of model performance included standard metrics, including Mean Squared Error (MSE), 

R-Squared (R²), Root Mean Squared Error (RMSE), and Adjusted R-Squared. The regression model with the lowest 

error metrics and highest R² was chosen for further study.  

After selecting the optimal regression model, it was evaluated by cross-validation procedures to confirm its 

robustness and generalizability. The resulting model was utilized to forecast the acceleration and displacement 

responses for any specified set of suspension settings. The regression model findings were meticulously examined to 

ascertain the impact of each suspension parameter on vertical acceleration and displacement at several rider body 

regions, specifically the head, upper torso, and lower torso. The influence of suspension stiffness, damping 

coefficients, and tire stiffness on rider comfort and safety was assessed. In conclusion, an optimization approach was 

implemented, suggesting the optimal suspension arrangement that reduces vertical acceleration and displacement 

at key body areas, hence improving ride comfort and mitigating health hazards linked to vibration exposure.  

 

Fig 1 Methodology 

3 SIMULINK MODEL 

The developed Simulink model is a four degree-of-freedom dynamic system designed to simulate the biomechanical 

response of a seated human subject under vibratory excitation. The model represents the human body and its 

interaction with the seat through four interconnected dynamic elements. Each degree of freedom corresponds to a 

key segment: the head, upper torso, lower torso (or waist), and the seat. In addition to these, the model captures 

additional motion characteristics in the viscera and provides displacement outputs for the head, torso, and seat. (Fig 

2) 

 

Fig.2 Simulink Model 
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3.1. Class C modelling based on ISO 8608 

The International Standard ISO 8608 categorizes road roughness by the Power Spectral Density (PSD) of road 

elevation. Class C roads have moderate roughness, inferior to Class A/B but superior to Class D.The Power Spectral 

Density (PSD) function characterizes the roughness of a road surface. ISO 8608 models the road profile as a 

stochastic process using the following equation: 

𝐺𝑞(𝑛) = 𝐺𝑞0(
𝑛

𝑛0
)−𝜔 

where 

𝐺𝑞(𝑛) = 𝑃𝑜𝑤𝑒𝑟 Spectral 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑃𝑆𝐷)𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑎𝑑 𝑝𝑟𝑜𝑓𝑖𝑙𝑒
𝑚3

𝑐𝑦𝑐𝑙𝑒

𝑚

 

𝐺𝑞0 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑆𝐷 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑛0 (0.1
𝑐𝑦𝑐𝑙𝑒𝑠

𝑚
)  

𝑛 = 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑐𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑚𝑒𝑡𝑒𝑟) 

𝑛0 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (0.1
𝑐𝑦𝑐𝑙𝑒𝑠

𝑚
) 

𝜔 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡(2) 

 

PSD Values for Class C road Classes (ISO 8608)  

 

A Band-Limited White Noise block produces a stochastic signal that emulates fluctuations in road roughness. The 

Noise Power is established at 5 x 10-6 Class C roughness intensity. 

Since a raw random signal is unrealistic, we apply a transfer function filter to shape the spectrum (fig 5).The filter 

follows the ISO 8608 model: 

𝑯(𝒔) =
𝟏

𝒔𝟐 + 𝟐𝜻𝝎𝒄𝒔 + 𝝎𝒄
𝟐
 

where: 

ωc=2π×0.5 rad/s (cutoff frequency),ζ=0.1 (damping factor) 

This eliminates artificial high-frequency elements and simulates actual road irregularities. The filtered signal is 

directed to an Outport (Road Output), which may be linked to a car model's suspension system. Figure 3 illustrates 

the road profile for a 100-meter road sample. 
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Fig3 .Road Profile for 100m road sample 

 

Fig 4. Random Road Profile 

 

Fig 5. Filtered Road Profile 

3.2 Two-wheeler single DoF model 

For finding biodynamic responses of the model mass and geometric parameters of the model are required. In this 

study these parameters are taken from available literature. Single-degree-of-freedom model of the motorcycle as 

indicated in Fig. 6. (Rohidas Tathe, S., Wani, K. P., 2013) 

 

Fig 6 Two-wheeler single DoF model 

The values of equivalent mass, equivalent stiffness and equivalent damping are calculated using following formulae 

𝑚𝑒𝑞 = 𝑚𝑠 + 𝑚𝑟  

𝑐𝑒𝑞 = 𝑐𝑟 + 𝑐𝑓 
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𝐾𝑒𝑞 =
𝑘𝑓𝑘𝑡

𝑘𝑓 + 𝑘𝑓𝑡
+

𝑘𝑟𝑘𝑟𝑡

𝑘𝑟 + 𝑘𝑟𝑡
 

 

where, 

For our simulation  

mr=70 kg; 

ms=158.6kg; 

𝑚𝑒𝑞𝑧̈0 + 𝑐𝑒𝑞(𝑧0̇ − 𝑧𝑔̇) + 𝑘𝑒𝑞(𝑧0 − 𝑧𝑔) = 0 

Where, 

zg= ground excitation displacement 

3.3 Model of rider 

Biodynamic model equation 

Considering Wan & Schimmel's 4 DOF Model as shown in figure 7 following equations are developed. (Kumbhar, P. 

B., Xu, P., Yang, J., 2012) 

 

Fig 7 Four DOF Wan and Schimmels Model 

For finding biodynamic responses of the model mass and geometric parameters of the model are required. In this 

study these parameters are taken from available literature as shown in table 1. 

Table 1. Model Parameters for Wan & Schimmels 4 DOF Model 

Mass(kg) Damping(N-s/m) Stiffness(N/m) 

 m1 =36 c1=2475 k1=49340 

m2 =5.5 c2=330 k2=20000 

m3 =15 c3=200 k3=10000 

m4 =17 c4=250 k4=134400 

 c31=909.1 k31=192000 

 

m1 =mass of lower torso 

m2 =mass of viscera 

m3 =mass of upper torso 

m4 =mass of head and neck 

c1=damping coefficient between lower torso and seat 

c2= damping coefficient between viscera and lower torso 
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c3= damping coefficient between viscera and upper torso 

c4= damping coefficient between neck and upper torso 

c31= damping coefficient between lower and upper torso 

k1= stiffness between lower torso and seat 

k2= stiffness between viscera and lower torso 

k3= stiffness between viscera and upper torso  

k4= stiffness between neck and upper torso 

k31= stiffness between neck and upper torso  

𝑚1𝑧̈1 + 𝑐1(𝑧̇1 − 𝑧̇0) + 𝑐31(𝑧̇1 − 𝑧̇3) + 𝑐2(𝑧̇1 − 𝑧̇2) + 𝑘1(𝑧1 − 𝑧0) + 𝑘31(𝑧1 − 𝑧3) + 𝑘2(𝑧1 − 𝑧2) = 0……….(1) 

𝑚2𝑧̈2 + 𝑐2(𝑧̇2 − 𝑧̇1) + 𝑐3(𝑧̇2 − 𝑧̇3) + 𝑘2(𝑧2 − 𝑧1) + 𝑘3(𝑧2 − 𝑧3) = 0 … … … . . (2) 

𝑚3𝑧̈3 + 𝑐31(𝑧̇3 − 𝑧̇1) + 𝑐3(𝑧̇3 − 𝑧̇2) + 𝑐4(𝑧̇3 − 𝑧̇4) + 𝑘31(𝑧3 − 𝑧1) + 𝑘3(𝑧3 − 𝑧2) + 𝑘4(𝑧3 − 𝑧4) = 0 … … … … … … . . (3) 

𝑚4𝑧̈4 + 𝑐4(𝑧̇4 − 𝑧̇3) + 𝑘4(𝑧4 − 𝑧3) = 0…………………………(4) 

where  

z0=seat displacement 

z1=lower torso displacement 

z2=viscera displacement 

z3= upper torso displacement 

z4=head and neck displacement 

3.4 Responses of Simulink model 

Following responses are collected from Simulink model. Suspension parameters are provided for it.(Fig 8) 

For getting multiple inputs we used doepy. doepy is a library in python used to obtain full factorial design array of 

Design of Experiment (Sarkar, T. (2019)).As shown in table 2 

kf:[15000,16000,17000],cf:[640,740,840],kr:[70000,75000,80000] 

cr:[2040,2140,2240],kft:[150000,165000,180000] , krt:[150000,165000,180000] 

Table 2. DoE table 

Sr.No. kf cf kr cr kft krt 

1 15000 640 70000 2040 150000 150000 

2 16000 640 70000 2040 150000 150000 

3 17000 640 70000 2040 150000 150000 

4 15000 740 70000 2040 150000 150000 

5 16000 740 70000 2040 150000 150000 

… … … … … … … 

… … … … … … … 

… … … … … … … 

727 15000 840 90000 2240 180000 180000 

728 16000 840 90000 2240 180000 180000 
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729 17000 840 90000 2240 180000 180000 

 

a) Acceleration at Head    b) Displacement at Head 

 

c) Acceleration at Lower Torso  d) Displacement at Lower Torso 

 

e) Acceleration at Upper Torso   f) Displacement at Upper Torso 

 
g) Acceleration at Viscera   h) Displacement at Viscera 
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i) Acceleration at Seat       j) Displacement at Seat 

Fig. 8 Simulink Responses 

4. REGRESSION MODELS 

Regression models are used to model the relationship between a dependent (target) variable and one or more 

independent (predictor) variables. These models help predict outcomes and understand relationships between 

variables. 

Now from above each response maximum acceleration and displacement at seat, upper torso lower torso, viscera and 

head is fetched. These are values are function of kr, kf, ktf , ktr, cr, ct. 

4.1 Data for regression model 

Responses from Simulink model is used to regression mathematical modelling. 

Table 3. Acceleration and displacement response of Simulink model at various body part 
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1 15000 640 70000 2040 150000 150000 0.0015 0.0015 0.0014 0.0015 

2 16000 640 70000 2040 150000 150000 0.0015 0.0015 0.0014 0.0015 

3 17000 640 70000 2040 150000 150000 0.0015 0.0015 0.0014 0.0015 

… … … … … … … … … … … 

… … … … … … … … … … … 
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727 15000 840 90000 2240 180000 180000 0.0014 0.0014 0.0014 0.0014 

728 16000 840 90000 2240 180000 180000 0.0014 0.0014 0.0014 0.0014 

729 17000 840 90000 2240 180000 180000 0.0014 0.0014 0.0014 0.0014 

 

4.2 Regression model explanation 

Following regression model is used: 

1. Linear Regression 

2. Random Forest 

3. Gradient Boosting 

4. Support Vector Regression (SVR) 

5. XG Boost 

Linear Regression is a simple and interpretable method, assuming a linear relationship between the dependent 

and independent variables, and is suitable for predicting continuous outcomes. Random Forest is an ensemble 

method that builds multiple decision trees and averages their predictions, offering robustness against overfitting and 

the ability to handle complex, non-linear relationships. Gradient Boosting constructs trees sequentially, where 

each tree corrects errors from the previous ones, providing high accuracy for complex tasks but requiring careful 

tuning to prevent overfitting. Support Vector Regression (SVR), based on the principles of Support Vector 

Machines, is effective for non-linear relationships and noise-resistant, though it can be computationally expensive. 

Lastly, XGBoost is a highly optimized variant of Gradient Boosting, known for its computational efficiency and 

regularization techniques, making it particularly effective for large-scale, high-performance regression tasks. Each of 

these models is chosen based on data complexity, accuracy requirements, and computational resources. 

4.3 Model performance parameter  

Following self-explanatory table shows performance measurements of all models. 

Table 4 Model Performance Parameters 

 

4.4 Model Training and Performance Evaluation for Multiple Output Variables 

In this study, various regression models were employed to predict multiple output variables, utilizing a set of input 

features. The input data, loaded from the "simulation_results.xlsx" file, contains six predictor variables: kf, cf, kr, 

cr, kft, and krt. These variables represent different factors related to the system being studied. The target output 

variables are related to different types of accelerations and displacements in the human body, such as 

max_accl_at_head, max_accl_at_lower_torso, max_accl_at_upper_torso, max_accl_at_viscera, 

max_accl_at_seat, max_head_disp, max_lower_torso_disp, max_seat_disp, and 

max_upper_torso_disp. Each output corresponds to the measurement of acceleration or displacement at various 

body parts under certain conditions. 
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To evaluate the effectiveness of the models in predicting these output variables, the data was split into training and 

testing sets, with 80% of the data used for training the models and 20% reserved for testing the models' predictive 

capabilities. This partitioning of the dataset helps ensure that the models are tested on unseen data, providing a more 

accurate assessment of their generalization ability. 

The models tested in this study include Linear Regression, Random Forest, Gradient Boosting, Support 

Vector Regression (SVR), and XGBoost, which are popular regression algorithms used in machine learning 

tasks. Each model was trained on the training set using the six input features to predict the target output variables. 

These models were selected due to their ability to handle both linear and non-linear relationships between the input 

and output variables. After training the models, predictions were made on both the training and testing datasets to 

assess their performance. 

For each output variable, scatter plots were generated to visually compare the actual versus predicted values for both 

the training and testing data. The scatter plots display the relationship between the observed (actual) values and the 

predicted values, with different markers representing training and testing data points. These plots help illustrate how 

well the models generalize from the training data to the unseen test data. A reference line (y = x) was included in the 

plots to provide a baseline for perfect predictions. The closer the points are to this line, the better the model’s 

predictions are. 

In addition to the scatter plots, key performance metrics were computed for each model and output variable to 

quantitatively evaluate the models' effectiveness. These metrics include R-squared (R²), which measures the 

proportion of the variance in the target variable that is explained by the model; Adjusted R-squared, which adjusts 

the R² value based on the number of predictors in the model, penalizing unnecessary predictors and making it a 

better measure for comparing models with different complexities; and Root Mean Squared Error (RMSE), 

which provides an estimate of the average magnitude of the errors made by the model in its predictions, with smaller 

values indicating better predictive accuracy. 

The performance metrics were displayed in each plot, allowing for a direct comparison between the models. These 

metrics were calculated for both the training and testing sets, providing a comprehensive view of how well each model 

fits the data and how it performs on unseen data. The study also calculated Adjusted R² for each model to account 

for the complexity of the model (i.e., the number of predictors used) and prevent overfitting, especially in models that 

include many features or when comparing models with varying numbers of predictors. 

By evaluating the models on multiple output variables, this study provides a detailed assessment of the ability of each 

regression algorithm to predict physical measurements related to human body dynamics. The visual and quantitative 

analyses combined in this approach allow for a comprehensive evaluation of the model performance, which is crucial 

for selecting the most appropriate model for real-world prediction tasks, where both accuracy and interpretability 

are important. Following graphs a) to i) shows the actual vs predicted data and corresponding R2 , adjusted R2 and 

RMSE values. 
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a) Displacement of seat 

 

b) Acceleration of seat 

 

c) Displacement of Head 
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d) Acceleration of Head 

 

e) Displacement of Upper torso 

 

f) Acceleration of upper torso 
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g) Displacement of lower torso 

 

h) Acceleration of Lower torso 

 

i) Acceleration of Viscera 
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Regressor Performance: 

Following self-explanatory table shows the performance of the regressor 

Output Variable Regressor R² Score 
Adjusted 

R² 
RMSE 

max_accl_at_head Linear Regression 0.97813 0.97719 0.00007 

max_accl_at_head Random Forest 0.99638 0.99622 0.00003 

max_accl_at_head Gradient Boosting 0.99914 0.99911 0.00001 

max_accl_at_head Support Vector Regression -0.03798 -0.08278 0.00048 

max_accl_at_head XGBoost 0.94628 0.94396 0.00011 

max_accl_at_lower_torso Linear Regression 0.99444 0.99420 0.00004 

max_accl_at_lower_torso Random Forest 0.99622 0.99606 0.00003 

max_accl_at_lower_torso Gradient Boosting 0.99905 0.99901 0.00002 

max_accl_at_lower_torso Support Vector Regression -0.00185 -0.04510 0.00050 

max_accl_at_lower_torso XGBoost 0.94579 0.94345 0.00012 

max_accl_at_upper_torso Linear Regression 0.99633 0.99617 0.00003 

max_accl_at_upper_torso Random Forest 0.99541 0.99521 0.00004 

max_accl_at_upper_torso Gradient Boosting 0.99905 0.99901 0.00002 

max_accl_at_upper_torso Support Vector Regression -0.00080 -0.04400 0.00054 

max_accl_at_upper_torso XGBoost 0.95523 0.95330 0.00011 

max_accl_at_viscera Linear Regression 0.98022 0.97937 0.00007 

max_accl_at_viscera Random Forest 0.99649 0.99634 0.00003 

max_accl_at_viscera Gradient Boosting 0.99926 0.99922 0.00001 

max_accl_at_viscera Support Vector Regression -0.03267 -0.07725 0.00051 

max_accl_at_viscera XGBoost 0.95244 0.95038 0.00011 

max_accl_at_seat Linear Regression 0.98158 0.98079 0.00006 

max_accl_at_seat Random Forest 0.99663 0.99648 0.00002 

max_accl_at_seat Gradient Boosting 0.99936 0.99933 0.00001 

max_accl_at_seat Support Vector Regression -0.03072 -0.07521 0.00042 

max_accl_at_seat XGBoost 0.93635 0.93360 0.00010 

max_head_disp Linear Regression 0.99764 0.99754 0.00000 

max_head_disp Random Forest 0.99671 0.99657 0.00000 

max_head_disp Gradient Boosting 0.99949 0.99947 0.00000 

max_head_disp Support Vector Regression -0.01549 -0.05932 0.00000 

max_head_disp XGBoost -0.01817 -0.06212 0.00000 

max_lower_torso_disp Linear Regression 0.99768 0.99758 0.00000 

max_lower_torso_disp Random Forest 0.99675 0.99660 0.00000 

max_lower_torso_disp Gradient Boosting 0.99953 0.99951 0.00000 

max_lower_torso_disp Support Vector Regression -0.01445 -0.05824 0.00000 

max_lower_torso_disp XGBoost -0.01810 -0.06205 0.00000 

max_seat_disp Linear Regression 0.99760 0.99750 0.00000 

max_seat_disp Random Forest 0.99654 0.99639 0.00000 

max_seat_disp Gradient Boosting 0.99954 0.99952 0.00000 

max_seat_disp Support Vector Regression -0.00636 -0.04980 0.00000 
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max_seat_disp XGBoost -0.01742 -0.06134 0.00000 

max_upper_torso_disp Linear Regression 0.99765 0.99755 0.00000 

max_upper_torso_disp Random Forest 0.99670 0.99656 0.00000 

max_upper_torso_disp Gradient Boosting 0.99941 0.99938 0.00000 

max_upper_torso_disp Support Vector Regression -0.01526 -0.05909 0.00000 

max_upper_torso_disp XGBoost -0.01816 -0.06210 0.00000 

Best Model 

 

Output Variable Regressor 
R² 

Score 

Adjusted 

R² 
RMSE 

max_accl_at_head Gradient Boosting 0.99914 0.99911 0.00001 

max_accl_at_lower_torso Gradient Boosting 0.99905 0.99901 0.00002 

max_accl_at_seat Gradient Boosting 0.99936 0.99933 0.00001 

max_accl_at_upper_torso Gradient Boosting 0.99905 0.99901 0.00002 

max_accl_at_viscera Gradient Boosting 0.99926 0.99922 0.00001 

max_head_disp Gradient Boosting 0.99949 0.99947 0.00000 

max_lower_torso_disp Gradient Boosting 0.99953 0.99951 0.00000 

max_seat_disp Gradient Boosting 0.99954 0.99952 0.00000 

max_upper_torso_disp Gradient Boosting 0.99941 0.99938 0.00000 

 

CONCLUSION 

The regression analysis conducted on the simulation outputs demonstrates that ensemble methods, particularly 

Gradient Boosting and Random Forest, deliver exceptionally high predictive performance. With R² scores 

consistently approaching 0.999 and extremely low RMSE values, these models capture the underlying relationships 

in the data with near-perfect accuracy. Linear Regression also shows solid performance, albeit slightly lower than the 

ensemble methods, indicating its adequacy for simpler predictive tasks. 

In contrast, Support Vector Regression (SVR) and XGBoost, as configured in this study, exhibit negative R² and 

Adjusted R² values for several output variables, which suggests that these models fail to outperform a naïve mean-

based predictor without further hyperparameter tuning or methodological adjustments. Overall, the findings suggest 

that ensemble methods are the most robust choice for modelling the experimental outcomes in this context, while 
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simpler linear models provide a viable, interpretable alternative. The suboptimal performance of SVR and XGBoost 

indicates a need for further optimization if these approaches are to be considered for future predictive applications. 
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