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The classification of cardiac-abnormality patterns plays a crucial role in the diagnosis and treatment of 

cardiovascular diseases. With the advent of deep learning techniques, particularly convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), there has been a significant advancement in the 

accuracy and efficiency of cardiovascular disease classification with electrocardiogram (ECG) data. 

However, with the availability of multitudes of freely available multi-source ECG data today, more attempts 

are required to develop new models that can handle and perform ell on these datasets simultaneously. In 

this study, an attempt is made to develop a novel deep learningclassification model with multi-source and 

multi-label ECG dataset for cardiovascular disease classification. Since ECG signals from multiple sources 

are of different lengths, standardization is done using wavelet scattering transform.  Wavelet scattering 

transform provides time-frequency features that are independent of length of an ECG signal. A deep 

learning model is then used to perform cardiovascular disease detection and classification.The model is 

ahybrid synergistic architecture that uses CNNs in time-distributed fashion and RNNs in bidirectional 

many-to-many fashionThe CNNs exploit inter-lead correlations and provide temporally compressed 

features.These temporally compressed featuresare exploited via RNNs to provide a well-generalized model. 

The multi-source ECG dataset used here is composed of 4 popular 12-lead multi-label ECG datasets 

available publicly for research purposes.The proposed hybrid model performed satisfactorily overall  on a 

27-class classification scenario. 

Keywords: Multi-source multi-label  ECG data, cardiovascular disease, wavelet scattering coefficients, 

deep learning. 

 

INTRODUCTION 

Cardiovascular disease classification using ECG data is essential for early detection and diagnosis of various cardiac 

abnormalities. According to the World Health Organization, the classification of cardiovascular disease plays a 

crucial role in the diagnosis and treatment of cardiovascular diseases. The examination of variation in ECG waves 

can be used to detect several cardiovascular abnormalities.An electrocardiogram (ECG) is a visual depiction of the 

electrical signals produced by the heart[1]. It is employed to detect and diagnose a range of cardiac conditions and 

irregularities., An ECG signal consists of P, QRS complex, and T waves as shown in Figure 1[1].  
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Figure 1 A standard ECG signal decomposition and its correlation to heartbeat progress[2]. 

A wide variety of heart conditions can be identified by studying the changes in these waves. The extraction of 

waveforms from the ECG cycle has been the subject of several techniques[1]. Filtering the data, making unique, 

engaging blocks for each peak, and establishing a constant threshold point are all parts of these techniques. The 

classification of cardiac abnormality patterns using ECG data is another important goal for determining the heart's 

health. Authors in [3]notes the need of competency in ECG interpretations and arrythmia management. They 

realized that hospitals’ skilled staff has low competency on ECG interpretation knowledge. Their study 

recommended use of ECG monitors loaded with automatic detection and diagnosis. 

Traditional methods relied on handcrafted features and rule-based algorithms, which were limited in their ability to 

capture complex patterns present in multi-source ECG signals[4]. Deep learning techniques have emerged as 

powerful tools for automated feature extraction and classification, enabling more accurate and robust analysis. 

With the establishment of deep learning techniques, particularly convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), there has been a significant advancement in the accuracy and efficiency of 

cardiovascular disease classification using ECG data[5], [6].  

Several reviews and studies have been reported utilizing Recurrent Neural Networks or more commonly termed as 

RNNs and Convolutional Neural Networks  or CNNs in ECG signal analysis. However, in this study, the review is 

exhaustive and limited to the issue at hand. Thestudy in [5] examines several deep learning methodologies, 

especially RNNs, for the purpose of detecting arrhythmia in ECG signals. The study explores the utilization of RNN 

structures, namely long short-term memory (LSTM) and gated recurrent unit (GRU), for the purpose of sequence 

modelling and classification tasks within the ECG signal analysis domain. The study offers valuable insights into the 

capabilities and constraints of RNN-based models, and identifies intriguing avenues for future research in this 

field.The study in [7] introduces an innovative deep learning framework for classifying ECG arrhythmias. The 

framework combines a 2-D CNNs with an attention mechanism and bidirectional LSTM layers. The attention 

method enables the model to selectively concentrate on significant portions of the input ECG signals, while the 

bidirectional LSTM successfully captures temporal relationships or dependencies. Theirproposed model 

demonstrates a high level of performance in accurately classifying arrhythmias on widely recognized datasets such 

as the MIT-BIH, and the CPSC.The study in [8] investigates the utilization of transfer learning from pre-trained 2-

D CNNs in conjunction with bidirectional LSTM layers for the purpose of classifying ECG arrhythmia patterns. 

Their work showcases the efficacy of synergistic use of CNNs and RNNs in utilizing information from extensive 

picture datasets to enhance the accuracy of ECG classification tasks. Their proposed model also demonstrates 

comparable performance on established ECG classification benchmark datasets while requiring less time and 

computer resources for training.The research presented in [9]suggested model that combines a CNNs with a 

transformer to categorize ECG signals. The model utilizes a window function to partition the ECG data into several 

ECG segments. The CNN's feature information retains its temporal information. Their study claimed that the 

integration of the CNN and enhanced transformer ultimately attained an F1 score of 78.6%, on the dataset 

published in [10] in 2018 offering valuable decision support to doctors and cardiologists.The study in [11] 

introduces a new deep neural network,ECGDETR, which is designed to identify arrhythmia in continuous ECG 

segments from a single lead. Their suggested technique achieves comparable performance in heartbeat placement 

and classification when compared to prior efforts. They leveraged inter-heartbeat dependence. Furthermore, their 

model utilizes a more concise inference approach since it does not need explicit segmentation of heartbeats. A 

robust and effective unsupervised anomaly detection model in time series ECG data is presented in [12]. Their 

strategy for detecting anomalies in ECG time series is based on a two-stage sequence prediction method. Their 
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model design consists of an encoder network and a fully-connected decoder network. Their proposed model 

identified abnormalities in human cardiac time series signals, including premature ventricular contractions (PVC), 

supraventricular premature (SP), and other ECG anomalies. Their findings from analysis of the MIT-BIH and the 

ECG5000 Arrhythmia datasets indicated towards the effectiveness of encoder-inspired CNNsin replacing the 

existing method for the purpose of ECG signal analysis and classification. They gained success in establishing that 

their model surpassed the other models in terms of various performance metrics. 

However, recently, multitudes of ECG data are made available for algorithm development and analysis. The 

datasets are available with varied lead-counts and signal lengths.These variations in ECG data characteristics 

makes it difficult for deep learning algorithms to provide high performance over each of these datasets. Also, there 

are presence of multiple heart conditions reflecting on the ECG. In light of these issues, handling multi-source, 

multi-labelECG data is a challenge and developing more sophisticated deep learning models that can perform well 

on such datasets is always beneficial.From the afore-mentioned literature, the following observations are useful in 

development of deep learning models for multi-source and multi-label ECG data. 

• CNNs, RNNs, and Transformer models have been successful in arrythmia detection and classification. 

• Synergistic use of CNNs and RNNs in ECG signal analysis is significant and beneficial. 

• Breaking longer time-length ECG signals into shorter segments helps improve detection and classification 

tasks. 

• More focus is required on the development of generalized models that can handle and perform well on 

multi-source and multi-label ECG data. 

• Features independent of ECG source-type needs to be investigated for development of generalized DNN 

models so they can be applicable to all ECG sources i.e. single lead or multi- lead, sampling frequency. 

Therefore, in this study, hybridDNN modelbased on CNNs and RNNs is proposed, developed and utilized to 

perform cardiovascular disease classification in multi-source, multi-label ECG data. The reason for a hybrid 

architecture is because a simple RNN displays a strong inductive bias towards learning temporally compressed 

representations whereas the upside of a compressed representation of a sequence is that it is beneficial for 

generalization which is desirable.In contrast, the CNNs are good feature extractors. However its use in high-

diemnsional signals increases computational complexity. Also, keeping the temporal informationintcat while 

extrcating features via CNNs is trick. A time-distributed variant of the CNNs can in fact extrcat features from data 

without hampering the timporal information. The temporally compressed feaures can then be exploited by the 

RNN. The RNN is employed in bidirectional, many-to-many fashion to maximize the temporal information 

exploitation.This strategy will help develop efficient approach/model in multi-source ECG data based 

cardiovascular classification. The paper is divided into sections. Section 1 provides premise to the study and 

relevant literature background. Section 2 and its sub-sections incorporates the materials and methods utilized in 

the study. Section 3 provides results obtained and its discussion. Section 4 concludes the study. 

MATERIALS AND METHODS 

2.1 Dataset: Description and Preparation: The 12-Lead multi-source multi-label ECG Database, Statistics, and 

Preprocessing 

Overall, the 12-Lead multi-source multi-label ECG database considered here for study is composed of 4 different 

databases. These are 

1. The PTB and PTB-XL database  

2. Georgia 12-Lead ECG Challenge Database 

3. The St. Petersburg database i.e. INCART database  

4. The China Physiological Signal (CPS) database  

 

Table 1 provides a summary of the individual databases. The multi-source ECG data includes a total of 27 cardiac 

abnormalities, which are detailed with their abbreviations in Table 2. The sample proportions for these 

abnormalities in the combined dataset are illustrated in Figure 2. It is clear from Figure2, the 'Sinus Rhythm' (SNR) 

heart condition accounts for the highest number of samples, while the 'Premature Ventricular Contractions' (PVC) 
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heart condition has the lowest count. Table 2 fatherprovides a more detailed breakdown of sample proportions for 

each individual database. 

Table 1 Properties of the different sources of 12-lead ECG database to be used in the study. 

Database 

Attribute 

PTB and PTB-XL  Georgia  CPS  INCART  

Subjects 290, 18885 15742 9458 32 

Records (length in seconds) 516, 21,837 (NA) 20,678 (10) 13,256 (6-60) 74 (NA) 

Sampling rate (Hz) 1000 (PTB), 500 (PTB-XL) 500 500 256 

Mean Age  56.3, 59.8 60.5 61.1 56 

Male, n (%) 211 (73), 10197 (54) 8500(54) 5013 (53.1) 17(54) 

Leads, n 12 12 12 12 

Classes 9, 71 24 23 10 

 

 

Figure 2 Bar chart showing the class-wise distribution of data samples. 

 

Table 2 Summary of ECG data diagnosis sample proportions in individual database. 

Diagnosis 
Abbreviation 

(Total samples) 

Sample proportions 

Complete right bundle CRBBB (701) 28 0 542 113 0 18 
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branch block  

Atrial utter  AFL (423) 186 1 73 54 0 109 

Left anterior fascicular 

block  
LAnFB (1916) 180 0 1626 0 0 110 

Prolonged PR interval  LPR (340) 0 0 340 0 0 0 

Premature ventricular 

contractions  
PVC (188) 0 0 0 188 0 0 

Supraventricular 

premature beats  
SVPB (215) 1 0 157 53 4 0 

Right axis deviation  RAD (465) 83 0 343 10 0 38 

Nonspecific 

intraventricular 

conduction disorder  

NSIVCB (1093) 203 0 789 4 1 96 

Ventricular premature 

beats  
VPB (543) 357 0 0 8 0 178 

Left bundle branch 

block  
LBBB (1197) 231 0 536 274 0 156 

Low QRS voltages  LQRSV (748) 374 0 182 0 0 192 

Bradycardia  Brady (289) 6 0 0 271 11 1 

Pacing rhythm  PR (301) 0 0 296 30 0 2 

Q wave abnormal  QAb (1252) 464 0 548 1 0 239 

Sinus arrhythmia  SA (1476) 455 0 772 11 2 236 

Left axis deviation  LAD (6564) 940 0 5146 0 0 478 

Premature atrial 

contraction  
PAC (2188) 639 0 398 689 3 459 

T wave inversion  TInv (1550) 812 0 294 5 1 438 

Incomplete right bundle 

branch block  
IRBBB (1871) 407 0 1118 86 0 206 

Sinus tachycardia  STach (3050) 1261 1 826 303 11 648 

Prolonged QT interval  LQT (2253) 1391 0 118 4 0 740 

Right bundle branch 

block  
RBBB (3051) 542 0 0 1858 2 649 

Atrial defibrillation  AF (4026) 571 14 1514 1274 2 552 

1st degree AV block  IAVB (2946) 769 0 797 828 0 552 

Sinus bradycardia  SB (3219) 1677 0 637 45 0 860 

T wave abnormal  TAb (5792) 2306 0 2345 22 0 1119 

Sinus rhythm  SNR (21944) 1752 78 18092 922 0 1100 

Dataset 
Georgia 

(10344) 

PTB 

(490) 

PTB-XL 

(21837) 

CPSC 

(10330) 

INCART 

(74) 

Validation 

(6630) 
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2.2 Data Preparation 

The inherent noise in the recordings and the imbalance in cardiac-abnormality sample proportion are the issues 

that need attention and are addressed in this section. 

Signal Denoising and Filtering  

ECG signals often suffer from various types of noise, including baseline wander (BW), power-line interference 

(PLI), motion artifacts, and physiological artifacts. Among these, BW and PLI are the most significant contributors 

to signal degradation, affecting both visual interpretation and automated diagnostics. Additionally, the frequency 

characteristics of ECG signals change over time, making noise removal essential for accurate analysis. To address 

this, preprocessing techniques are applied to eliminate artifacts and noise, ensuring the ECG data is suitable for 

reliable interpretation.[13], [14], [15], [16], [17]. 

In this study, a denoised ECG signal is produced by addressing various types of noise, including electrode contact 

noise, power-line interference, muscle contractions, motion artefacts, baseline wander, and random noise[16].A 

step-by-step noise reduction process is applied to clean the raw ECG signals.Figure 3(a) illustrates a sample ECG 

signal affected by these noises. The noise reduction process begins with a Butterworth low-pass filter to eliminate 

frequency components above 50 Hz. Next, a LOESS smoother is used to minimize the effects of baseline wander. 

Finally, a non-local mean algorithm is applied to handle remaining noise. The resulting denoised ECG signal after 

preprocessing is shown in Figure 3(b). 

 

(a)      (b) 

Figure 3 (a) Raw observed ECG signal, and (b) Filtered and denoised signal. 

Imbalanced data 

A significant challenge with multi-source databases is the imbalance in sample proportions, which can negatively 

impact the performance of machine learning algorithms [18]. The imbalance in the multi-source ECG dataset 

considered here cab be observed from Figure2. To address this, an empirical sample-weight allocation strategy is 

implemented. We calculate a weight for each of the 27 diagnoses to balance the data, ensuring that the algorithm 

learns effectively from all labels. The weight values for each diagnosis are provided in Table 3. This balanced and 

filtered dataset is then used for algorithm development in this study. 

Table 3 ECG diagnosis label weight values. 

Class Weight value Class Weight value 

5 21.27 19 11.93 

8 59.04 22 19.38 

9 38.76 23 100.23 

10 9.00 24 21.62 

11 12.46 25 13.38 

6 4.61 20 50.47 

7 63.38 21 8.97 

0 72.08 14 74.83 

1 14.24 15 1.03 

2 6.20 16 8.97 
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3 68.63 17 114.63 

4 20.70 18 17.38 

12 3.54 26 31.55 

13 9.14  

 

2.3 Wavelet Scattering Transforms and Wavelet Coefficients 

The Wavelet Scattering Transform is a versatile method used in signal processing and machine learning to extract 

meaningful features from signals and images. It is designed to handle transformations like shifts (translations) and 

remain stable under small changes (deformations). Authors in [19] reported the use of wavelet scattering features 

in emotion recognition with ECG signals. They established the importance of wavelet scattering features as time-

frequency features for efficient classification of emotions in humans. By blending the strengths of wavelet 

transforms and principles inspired by deep learning, it generates reliable representations that are especially 

effective for tasks such as classification, pattern recognition, and feature extraction. 

Wavelet Transform 

• Wavelet transforms are a mathematical technique used to break down signals into various frequency 

components, offering insights into both time and frequency simultaneously.   

• Unlike the Fourier Transform, which focuses solely on frequency, wavelets can track how the frequency 

content of a signal changes over time.   

• This approach relies on wavelet functions, which are designed to be localized in both time and frequency 

domains. 

Scattering Transform 

• The scattering transform, developed by Stéphane Mallat and his team[20], provides a hierarchical and 

multi-scale way to represent signals.   

• It works by applying a sequence of wavelet transforms, followed by non-linear modulus operations and 

smoothing through averaging.   

• This method resembles the functionality of convolutional neural networks (CNNs) but uses predefined 

wavelet filters instead of filters learned from data.   

Wavelet Scattering Transform Process 

Wavelet Decomposition: 

• The signal or image is broken down using multiple wavelet transforms across various scales and 

orientations. 

• This step generates coefficients that capture local changes at different scales and directions. 

Non-linear Modulus Operation 

• A non-linear modulus operation is applied to these coefficients after each wavelet transform. 

• This operation keeps the magnitude of variations while discarding phase information, making the 

representation more resilient to small deformations. 

Averaging  

• The modulus coefficients are averaged over local regions to enhance stability and reduce sensitivity to noise 

and minor deformations. 

• This step is key to creating representations that are both translation-invariant and deformation-stable. 
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(a)      (b) 

Figure 4 (a) First (top) and second (bottom) filter banks for proposed scattering transform and, (b)Scaling 

function. 

Wavelet Scattering feature computation 

The main parameters to configure in a wavelet time scattering network include the time-invariant scale, the 

number of wavelet transforms, and the number of wavelets per octave within each wavelet filter bank as listed in 

Table 4. The specific settings for these parameters are also detailed in the Table 4. Figure 4(a) shows the filter banks 

from the transform used here whereas the scaling function is shown in Figure 4(b).  

Table 4 Summary of parameter settings for the wavelet scattering transform used in the study 

Parameter Setting 

Total number of samples, T 5000 

Invariance scale in samples, 2𝑗 256 

Number of wavelets per octave 8 

• The input signal is processed using a scattering transform to break it into various frequency components.   

• This transform operates across multiple scales, allowing it to capture frequency details at different 

resolutions.   

• The modulus outputs from the first-order scattering are further processed with a second wavelet transform, 

breaking down the magnitude coefficients to capture higher-order statistical information.   

• The resulting scattering coefficients serve as feature representations of the signal, which can then be used 

in standard machine learning models for classification tasks.   

The filters are defined for a certain support size T. In turn, T or the support size corresponds to the size of the input 

signal. It is important to note here that T is employed under a constraint that itapproximates toa power of 2. In this 

study, T is set to 219 (4864).Two layers of filter banks are considered here. The number of wavelets per octave in 

these first-and second-order filter banks are controlled by a parameter Q. In general, the number of non-negligible 

oscillations in time is proportional to Q.The smaller the value of Q, the broader these filters in the frequency 

domain are and the narrower they are in the time domain. For ECG signals, a large value for 𝑄1(between 4 and 16) 

is often beneficial.Also, the ECG signals are often periodic andare better localized in the frequency domain than 

they are in time domain. The parameter J specifies the maximum scale of the low-pass filters as a power of 2. In 

other words, the largest filter will be concentrated in a time interval of size 2𝑗.The time-length selected for 

employing the scattering transform is 1-second. A total of 19 such segments are made. A total of 234 scattering 

coefficients (truncated) to represent each segment. Figure 5 show scattering coefficients obtained post transform. 

Figure 5(a) show sample signals for ‘AF’, ‘CRBBB’, and ‘SNR’ classes whereas Figure 5(b) shows corresponding 

zeroth-order, first-order, and second-order coefficients respectively from top to bottom. 
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Table 5Summary of scattering coefficients for sample records. 

Parameter Value 

Sample id 10000 10500 20000 

Channel id 10 5 1 

label ‘AF’ ‘CRBBB’ ‘SNR’ 

T 4864 (~5000) 4864 4864 

J 8 8 8 

Q 8 8 8 

Resulting time steps 4864/256 = 19 4864/256 = 

19 

4864/256 = 

19 

Scattering coefficients 234 234 234 

 

 

(a) 

 

(b) 

Figure 5 (a) Original signal; left: ‘AF’, middle: ‘CRBBB’, right: ‘SNR’, (b) Average amplitude, first-order scattering 

coefficients, and second-order coefficients (top to bottom) for left: ‘AF’, middle: ‘CRBBB’, and right: ‘SNR’. 

2.4 Hybrid CNN-RNN model for ECG Signal classification 

The study presents a hybrid convolution-recurrent network for cardiovascular disease detection. The convolutional 

layers exploiting the scattering coefficients is employed in a time-distributed fashion. The recurrent layer in cascade 

with the convolutional layer extracts the temporal information form the data.CNNs are known for their ability to 

capture contextual dependencies in data, making them suitable for tasks where extracting patterns are important 

such as the case in hand in this study. CNNs excel in tasks such as ECG signal analysis, where interpreting context 

is critical for performance. However, since CNNs limit to extract temporal dependencies due to no-memory 

architecture.Meanwhile, RNNs, particularly LSTMs and GRUs, are suitable for capturing temporal dependencies in 

ECG data. 

To understand how the hybrid CNN-RNN model acts on the input data, it is important to interpret the input data. 

Figure 6 sow the architecture of the hybrid model along with transformation of the input data structure. According 

to Figure 6, the input is a three-dimensional tensor. The first dimension is the time dimension. The entire signal is 

broken into 19 segments of equal time-length. The second dimension represents number of channels. Since the 

Averaged-Amplitude 

Log-frequency 

Log-frequency 
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ECG signals are recorded via 12 leads across the human body. Therefore, this dimension encapsulates a 12-

dimensional vector. Finally, the last dimension of the 3D tensor represents the number of scattering coefficients. 

Here, 234 coefficients are used to represent one ECG-lead signal.Therefore, thelast dimension is a 234-dimensional 

vector.A one-dimensional convolution is firstly applied to extract the high-level features from each segmented 

scattering coefficients-laced  signal. This means that one-dimensional convolutions are applied to leaddimension. 

Note here that each lead signal is already representedvia234 scattering coefficients.The convolution window ofthe 

first 1D convolutional layer is 3. The structure of the output from this layer is governed by equation 1. 

𝑛𝑜𝑢𝑡 =  [
𝑛𝑖𝑛 + 2𝑝 − 𝑘

𝑠
] + 1 (1) 

Where, 𝑛𝑖𝑛 is number of input features, 𝑛𝑜𝑢𝑡 is number of output features, 𝑘 is convolution kernel window size, 𝑝 is 

convolution padding size and, 𝑠 is convolution stride size.The 1D convolution is applied to the lead dimension 

which is 12D vector. Both padding and the stride size is set to 0. Therefore, accordingto equation 1, the outputs after 

the first and the second 1D convolutional layer is 9 and 6 respectively.   Since all convolutional layers are in time-

distributed fashion, the time dimension remains intact. To extract the time information, first, the last tow 

dimensions are merged to form a feature dimension. An LSTM-based recurrent layer is employed to extract the 

temporal information. This recurrent layer has two characteristics. One, use of bidirectional flow of activation and 

two, many-to-many strategy.The bidirectional flow of activation allows to compute the features in both, past-to-

future and future-to-past dependence scenarios. Since, this study addresses a detection task in anon real-

timescenario, features are allowed to be computed in both directions. The many-input to many-output strategy 

allows to take output from any time-stamp of the recurrent layer. This also helps find out which time-stamp is most 

relent for efficient detection. Features extracted post the recurrent layer are fed into a fully-connected layer for 

scaling and dimensionality reduction. Finally, a classification layer with Sigmoid activation is employed. This layer 

provides likelihood of 27 classes. 

 

 

Figure 6 Figure showing the hybrid architecture of proposed hybridCNN-RNN model. 

EXPERIMENT SETUP, RESULTS, AND DISCUSSION 

2.5 Setup and Model Training 

Acardiovascular disease classification model is built. The model architecture summary and hyperparameter settings 

are listed in Table 6. A total of 7 layers are used. Since the dataset has multi-label ECG records present, a binary 

cross-entropy is used as loss estimator and Adam as optimizer. A 3-fold cross-validation strategy is also employed 

to counter bias during training. The sample distribution between model training and model testing is provided in 

Table 7. With these model training settings, the model is trained for 50 epochs and corresponding training progress 

is shown in Figure 7. 
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2.6 Model Performance: results, and Discussion 

It is evident from Figure 7 that both training and validation accuracies are around 96% and converging. However, 

there is a constant bias between the training and the validation accuracy. This could indicate the saturated 

performance of the proposed model. A quantitative assessment of the model performance on validation and testing 

samples is listed in Table 8. There is a 3% decline in classification accuracy from validation set to testing set. This 

could be due to the diverse class sample distribution in the multi-source dataset with 27 classes (refer Figure 1) that 

are overlapping. A different scoring mechanism would be more appropriate to reflect on the performance of the 

proposed model. The next section covers such an assessment scenario. 

Table 6 The proposed model architecture and hyperparameter settings. 

ECG signal classification model with DNN  

Number of layers 7 

Feedforward network dropout size 0.2 

Number of classes 27 

Epochs 50 

Learning rate 1e-4 

Weight decay rate 1e-4 

Cross-validation folds  3 

loss Binary Cross-Entropy 

Optimizer Adam 

Performance metric Accuracy 

 

Table 7 Summary of the multi-source multi-label dataset sample distribution.  

Set Number of Samples 

Training and validation 30000 

Testing 13000 

 

Figure 7Training progress curve for the proposed model. 

Table 8 Model performance on validation set of the multi-source multi-label dataset.  

Attribute 
Overall loss Overall accuracy    

Validation Testing Validation Testing 

Value 0.14 0.18 95.8% 93.8% 

 



565   J INFORM SYSTEMS ENG, 10(21s) 

A normalized confusion matrix is reported here. This matrix elements are normalized over the number of total 

recordings.This is because each recording in the multi-label ECG data could have multiple labels and consequently 

the proposed model can produce multiple outputs for a single recording. The contribution of each recording is 

normalized in the scoring metric. This is achieved by  dividing by the number of output classes with positive value. 

For each recording k = {1, 2, ...n} in the dataset, let xk be the set of positive labels i.e. ground truth or actual label 

and yk be the set of positive classifier outputs. Therefore, thenormalized confusion matrix is calculated as per 

equation 2. 

 

(2) 

Where, 

 

The quantity   is the number of distinct classes with a positive label and/or classier output for recording k. 

The normalized confusion matrix obtained for the proposed model is shown in Figure 8.The proposed model is able 

to classify the ‘PR’ with highest score of 0.80. It is also evident from the matrix is that the normal sinus rhythm or 

‘SNR’, t-wave abnormal or ‘TAb’, and left axis deviation or ‘LAD’ classesare mixing with other classes. This is may 

be due to the large proportion of ‘SNR’ (21944), ‘LAD’ (6564) and ‘Tab’ (5792) samplesin the whole dataset (42,000 

approx. (post filtering)) and even after weight allocation, the number of samples are still able to bias the model’s 

performance.This issue could be a scope for further investigation where more optimized nature of weight allocation 

strategy could be explored or sample imputation can be executed. It seems as if the model is giving a lot of false 

negatives as well i.e. a cardiovascular disease is present in the signal but the model is identifying the signal as 

normal. For example, the ‘SA’ cardiovascular disease is identified as ‘SNR’ with a significantly high score of 0.42 

whereas the score for it being correctly identified is only 0.01. In summary, the model is able to perform satisfactory 

classification over 27 classes however there is scope for improvements. To compare the performance of the 

proposed model, the one-dimensional FCN  (fully connected network) and one-dimensional Resnet-1D (Residual 

network) that has been used for ECG signal classification [5], [21] are considered here. Figure 9 and Figure 10 show 

scoring matrix for FCN and Resnet-1D respectively. Moreover, for Resnet-1D and the proposed model, thereare 5 

classes with scores less than or equal to 0.05namely ‘QAb’, ‘SA’, ‘RAD’, ‘TInv’, and ‘NSIVCB. For FCN, there are 7 

classes with scores less than 0.05 namely namely ‘QAb’, ‘PAC’, ‘SA’, ‘RAD’, ‘TInv’, ‘SVPB’, and ‘NSIVCB’ [22], [23].  

Although the Resnet-1D and the proposed model are showing equivalent performance, however, in context to false 

negatives, the proposed model is performing better than Resnet-1D. The average false negative (others to SNR) for 

Resnet-1D is 0.18 whereas it is 0.14 for the proposed model.These inferences indicate to the bias nature of FCN 

model towards classes with high sample proportions. The proposed model is better in terms of 

generalizationhowever Resnet-1D performs equivalently. Therefore, the superiority of the proposed model for 

multi-source multi-label ECG data of is inclusive [24]. 
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Figure 8 Proposed model performance score matrix. 

 

Figure 9Performance score matrix for FCN model. 
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Figure 10 Performance score matrix for Resnet-1D model. 

CONCLUSION 

In this study, a scattering transform feature extraction approach is utilized which enabled extraction of features 

based on time-frequency characteristics of ECG observation signals.Scattering coefficients and scalograms features 

have been identified as potential ECG signal representations. Further, the extracted features are exploited using a 

hybrid CNN-RNNdeep learning model. The model is composed of one–dimensional time-distributed convolutions 

and bidirectional recurrent layers for multi-label ECG classification. The time-distributed one-dimensional 

convolutions along the lead dimension captured the inter-lead correlations whereas the bidirectional many-to-

many recurrent layer extracts temporal information. The model is trained multi-source ECG data with 27 classes 

present in it. The model achieved 96% overall classification accuracy on the test set. Since each ECG record may 

have more thanone class present.Therefore, a scoring metric is used to evaluate the model performance that reflect 

a satisfactory performance of the proposed model.However popular models such as Resnet-1D showed comparable 

performance on the same dataset. A key takeaway from the study is the need for improved strategy for training 

sample proportion distribution. Especially this study reveals that in a larger class-set (27-classes) classification 

scenario compounded by overlapping characteristics of classes (cardiovascular diseases), the class-sample 

distribution plays crucial role. 
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