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Given the importance of detecting the ferroresonance phenomenon and distinguishing it from other 

transient events in active distribution networks, this paper proposes the use of Long Short-Term Memory 

(LSTM) recurrent neural networks to achieve this goal. In the proposed LSTM network, the optimization of 

learning period parameters, hidden layers, and corresponding weight coefficients is performed using a 

Genetic Algorithm (GA) to enhance the detection accuracy and speed. To create a suitable time-sequence 

database for LSTM training, an active distribution network comprising wind turbines, photovoltaic systems, 

and synchronous diesel generators is modeled in PSCAD software. By simulating various transient events, 

such as phase disconnections, capacitor bank switching, and load switching, the calculated detail and 

approximation coefficients up to six levels of the three-phase voltage waveforms of feeders are used as input 

features during the LSTM network training phase. Subsequently, to validate and confirm the effectiveness of 

the proposed LSTM-GA model, numerical studies are conducted on this active distribution network for the 

identification and distinction of the ferroresonance phenomenon. Simulation results confirm that optimizing 

and tuning the LSTM network parameters with GA significantly improves performance metrics, including 

precision, accuracy (P), recall (R), and others. 

Keywords: Ferroresonance phenomenon, Long Short-Term Memory (LSTM) recurrent neural network, 

learning period and hidden layers, database, active distribution network, Genetic Algorithm. 

 

INTRODUCTION 

One of the primary challenges in power quality, particularly in active distribution networks, is the occurrence of the 

ferroresonance phenomenon. The overvoltage and overcurrent caused by this phenomenon can lead to the 

overheating and failure of measurement and power transformers. The characteristics of ferroresonance, including 

voltage and frequency oscillations, vary depending on initial conditions, excitation voltage and frequency, and circuit 

parameters such as capacitance and the magnetic core's saturation curve. Due to the critical importance of identifying 

and diagnosing ferroresonance, numerous studies have been conducted in this area. For instance, in [1], a multilayer 

perceptron was employed to detect this phenomenon in distribution networks, achieving 93% accuracy in classifying 

transformer switching and load switching signals. In [2], artificial neural networks were used to classify overvoltage 

oscillations caused by ferroresonance in power transformers, achieving an accuracy of 75.98%. In [3], a wavelet-based 

predictive neural network model was proposed to differentiate capacitor switching from ferroresonance, with an 

accuracy of 97%. In [4], the capability of wavelet-based neural networks to detect ferroresonance was analyzed, and 

in [5], this approach achieved 94% accuracy. In [6], ferroresonance classification was performed using a smart 

tracking and suppression system based on fuzzy logic, evaluating eight different events and achieving 100% accuracy. 

In [7], a Kalman filter was proposed for analyzing and detecting voltage waveform and amplitude during chaotic 

ferroresonance. In [8], transformer voltage oscillations were used to identify ferroresonance. In [9], a decentralized 

autoencoder classifier achieved 97% accuracy in ferroresonance detection. Finally, in [10], a study focused on 

electromagnetic transients with ferroresonance characteristics and introduced key parameters influencing its 

occurrence in power systems. 

A review of recent studies reveals that, despite the high capability of Long Short-Term Memory (LSTM) networks in 

predicting sequential events, they have not yet been applied for estimating ferroresonance in active distribution 
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networks. Therefore, this paper aims to address this gap. The remainder of the paper is organized as follows. Section 

2 introduces the wavelet transform as a feature extraction tool, including approximation and detail coefficients at 

various levels, and presents the LSTM recurrent neural network as a supervised classification tool for sequential data. 

Section 3 provides the mathematical formulation of performance evaluation metrics. Section 4 outlines the proposed 

flowchart for combining LSTM with a Genetic Algorithm (GA) to achieve accurate and rapid detection of 

ferroresonance based on input features derived from voltage waveforms. Section 5 presents numerical studies on a 

test active distribution network to validate and confirm the proposed method's performance, with metrics including 

accuracy, precision, recall, and F1 score. Finally, Section 6 discusses the conceptual results obtained from the case 

studies. 

2. WAVELET TRANSFORM AND LSTM RECURRENT NEURAL NETWORK 

2.1 Wavelet Transform 

Today, wavelet transform is considered an advanced tool for time-frequency analysis of signals corresponding to 

various physical phenomena. It allows the decomposition of a signal into different frequencies with varying 

resolutions. Specifically, the wavelet transform provides good temporal resolution and poor frequency resolution at 

high frequencies, while at low frequencies, it offers good frequency resolution and poor temporal resolution. When 

the wavelet transform is applied to a spectral component, the window length varies, which is arguably the most 

important feature of wavelet transform. The continuous wavelet transform is modeled using equations (1) and (2): 
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Here, )(, tba   is the mother wavelet, and a and b are the scale and translation coefficients, respectively. The term 

"wavelet" implies "small wave," where "small" refers to a finite-length window function, and "wave" refers to its 

oscillatory nature. The term "mother" indicates that functions with different functional regions used in the transform 

are derived from a single main or mother function.The term "translation" refers to the shifting of the window along 

the signal, which relates to temporal information in the transform domain. Additionally, "scaling" refers to the 

mathematical transformation that compresses or stretches the signal. Smaller scales correspond to expanded signals, 

while larger scales correspond to compressed signals. In wavelet transform, the scaling parameter is used in the 

denominator, meaning the inverse relationship holds—low scales correspond to high frequencies, and high scales 

correspond to low frequencies. 

There are three main types of wavelet transform: continuous, semi-discrete, and discrete, differing in how scaling 

and shifting are implemented. For signals with limited energy, a suitable wavelet transform can allow reconstruction 

of the original signal without requiring all decomposition values. In such cases, the discrete wavelet transform (DWT) 

is sufficient, rendering continuous analysis unnecessary. 

In the DWT, the scale and translation parameters of the mother wavelet are calculated using equations (3) and (4). 

Here, aaa and bbb are real positive numbers, a>1a > 1a>1, and b>0b > 0b>0, while mmm and nnn are positive 

integers. Consequently, the mother wavelet can be rewritten as in equation (5), and the corresponding DWT relation 

is computed using equation (6). The DWT decomposes a signal into multiple sub-bands, where the bandwidth 

increases linearly with frequency. 

The implementation of DWT filter banks (Mallat's algorithm) involves sequential filtering of the signal using low-

pass and high-pass filters, followed by subsampling, as shown in Figure 1. The initial signal can be reconstructed, as 

shown in Figure 2, through wavelet series reconstruction according to equation (7). Wavelet coefficients are obtained 

using inner products as per equation (8) [4]-[5]. 
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Figure 1: Mallat's Algorithm for Signal Decomposition Using Wavelet Transform 

 

Figure 2: Mallat Tree Algorithm for Signal Reconstruction 

 

2.2 Long Short-Term Memory (LSTM) 

Recurrent neural networks (RNNs) have many applications but also face challenges. One of their main problems is 

the vanishing gradient issue during learning from data with long temporal sequences, which reduces their learning 

ability. If the number of layers in the neural network increases, the backpropagation process does not function 

correctly, leading to gradient decay. This vanishing also occurs when the number of sequences in RNNs increases. 

LSTM neural networks are a type of RNN that have modified block structures to manage long-term memory and 

eliminate the vanishing or exploding gradient problem. Compared to a simple RNN block, as shown in Figure (3), the 

LSTM block has a different structure. Unlike the simple RNN, which had two inputs (x and h), this structure has three 

inputs: x, h, and ccc, where x is the input at time (sequence) t, and h, like in a simple RNN, is the "hidden state" that 

receives the output from the previous time (previous sequence) as memory. The ccc input is a "cell state" that 

regulates how much information from past long sequences and which parts of it influence the current block [12]. 

For better understanding, the LSTM block can be divided into three main parts. The first part of this block, as shown 

in Figure (4), is called the "forget gate," which decides which part of the long-term information from the previous 

block is useful and which part is not. In this section, the "current input" (x) and "previous hidden state" (h) are 

combined with weights and passed through the sigmoid activation function. The output is then multiplied by the "cell 

state" (c). In this section, learning is done by the weights of a small internal neural network, combining x and h to 

regulate ccc. 

In the second part of this block, as shown in Figure (5), it is decided what new information should be added to the 

"cell state" (c) for future use. This part is called the "input gate," which is formed by combining the "current input" 

(x) and the "previous hidden state" (h) with the weights of small internal neural networks and the output of the forget 

gate. 
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The third part of this block, as shown in Figure (6), is called the "output gate," which determines the outputs based 

on a combination of the updated "cell state" (ccc), the "current input" (x), and the "previous hidden state" (h). In this 

section, an internal neural network is also used for learning, and the outputs h and ccc are used in the next time step 

(t+1), i.e., the next sequence, in the same manner [11]. 

Figure 3: Inside a Long Short-Term Memory (LSTM) block [11] 

 

 

Intuitively, the cell state (c) added in LSTM compared to the simple RNN acts as a "highway," allowing information 

to pass through the network (across sequences) without interference from more complex elements, thus preventing 

the vanishing gradient problem. To express the mathematical relationships in the LSTM neural network, consider 

Figure (7). If xt refers to the current input vector, the indices ct and ct−1 refer to the current and previous cell states, 

and the indices ht  and ht−1 refer to the current and previous outputs, then the relationships are defined by Equations 

(9) to (10). 
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Figure 7: Structure of the LSTM Recurrent Neural Network [11] 

Equation (9) is used for passing xt ht−1 through a sigmoid layer to decide which part of the information should be 

added. Equation (10) provides new information after passing xt and ht−1 through a tanh layer. The indices Wiand bi  

refer to the weight matrices and biases of the input gate, respectively. 

The current information xt and long-term memory ct−1 are combined in ct , as shown in Equation (11), where ft  refers 

to the output of the sigmoid function and tC
~

 refers to the output of the tanh function. 

Decisions about forgetting parts of previous cell states are made using Equation (12). Here, Wf refers to the weight 

matrix, bf refers to the offset, and σ is the sigmoid function. 

The LSTM output gate determines which states should be continued using the inputs xt and ht−1 , as given in Equations 

(13) and (14). The final output is provided by multiplying the decision vector 
tC    with the new information vector 

using a tanh layer. The indices bo refer to the weight matrix and bias of the output gate, respectively. 

3. Common Performance Evaluation Metrics 

The performance of the Long Short-Term Memory (LSTM) recurrent neural network for classifying the status of the 

distribution network—whether it is experiencing the ferroresonance phenomenon or not—can be evaluated using 
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several common metrics. These metrics include the accuracy of the classifier, computational complexity during 

training and classification, sensitivity to noisy data, scalability, and so on. 

To evaluate the performance of the ferroresonance classifier in the distribution network, the following definitions are 

considered: 

• True Positive (TP): Refers to the number of records belonging to class A that are correctly predicted as class 

A. 

• False Positive (FP): Refers to the number of records that do not belong to class A but are incorrectly classified 

as class A. 

• True Negative (TN): Refers to the number of records that do not belong to class AAA and are correctly 

classified outside of class A. 

• False Negative (FN): Refers to the number of records belonging to class A but are incorrectly predicted as not 

belonging to class A. 

These metrics, in addition to evaluating the network status in class A, can also be calculated for network statuses in 

classes B and C from the dataset. 

One of the most common performance evaluation metrics is accuracy, defined as the fraction of all correctly classified 

records out of the total records, as shown in Equation (15). However, using accuracy as a metric is not always 

appropriate in certain cases. In practical real-world classification problems, various types of errors may occur, and 

each type may incur different costs. 

Other common metrics include precision (P) and recall (R), which are calculated using Equations (16) and (17), 

respectively: 

• Precision (P): Indicates the percentage of times a record predicted as class AAA actually belongs to class A. 

• Recall (R): Indicates how well the classifier can correctly identify all records belonging to class A. 

It is important to note that both precision and recall have their own limitations. For example, predicting all records 

as class A would maximize recall but significantly reduce precision. 

To address this issue, another metric called the F1 score is introduced, which combines precision and recall into a 

single metric, as shown in Equation (18). The F1 score balances precision and recall, providing a more comprehensive 

evaluation of the classifier's performance. 
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A key factor affecting model performance is the distribution of classes and the size of the training and testing sets.To 

illustrate the impact of training set size, a learning curve is used. This curve shows how model accuracy changes as 

the training set size increases. To plot this curve, the model is trained on datasets of various sizes. 

4. PROPOSED FLOWCHART FOR ACCURATE AND FAST DETECTION OF THE RESONANCE 

PHENOMENON IN ACTIVE DISTRIBUTION NETWORKS 

In this section, a workflow is proposed for employing the Genetic Algorithm (GA) to improve the accuracy and speed 

of LSTM performance in the process of classifying and distinguishing between the resonance phenomenon and other 

transient events in active distribution networks such as load changes, capacitor bank switching, etc. 
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As mentioned in the previous sections, one of the important applications of LSTM is classification based on time-

series data. In this research, the detail and approximation coefficients of the DWT of the active distribution network 

voltage wave up to six levels during various transient events are used to produce time-series input features for LSTM 

training. To study various transient events, the test active distribution network, including distributed generation 

sources such as wind turbines, photovoltaics, and diesel generators, is first created in the PSCAD software. Then, to 

form a database of transient events such as single-phase, two-phase, and three-phase outages in the photovoltaic 

feeder, capacitor bank switching in the wind turbine feeder, and three-phase and two-phase load switching, are 

created. During a specific transient event, six detail coefficients for each phase voltage of the distribution network, 

i.e., 18 time-series features, are applied as training inputs to the LSTM. It should be noted that the size of the input 

vectors with time series for forming the training database is often different based on the type and time of the event. 

Here, the maximum number of hidden layers with full connectivity is considered equal to 50, and the factor that 

determines the minimum size of input data packets is considered equal to 1001. The number of learning epochs or, 

in other words, the Epoch factor (one round trip of input in the entire neural network) is completely optional, but it 

should be noted that determining more epochs leads to higher accuracy in the output and increases the learning time. 

On the other hand, if the number of learning epochs is too high, it may be difficult for LSTM to digest, or in other 

words, the network becomes "over-fit", therefore, the maximum number of Epochs is considered to be 15. Moreover, 

it is assumed that the detail coefficients up to the sixth level of the active distribution network voltage wave either 

indicate a resonance event or indicate other probable events such as capacitor bank switching, load switching, etc. 

Considering that the learning rate is set at 0.001, the number of 18 input features for 10 different transient events of 

phase cut, capacitor bank switching, and load during the training phase was used according to the assumed 

parameters, which after a period of 29 seconds during 15 iterations, the LSTM neural network finally reaches an 

accuracy of 85% in classifying transient events in the active distribution network. Since the main goal in this research 

is to use the genetic algorithm to improve the accuracy and speed of classifying the resonance event from other 

transient events in the active distribution network by LSTM, therefore, the fitness function of the genetic algorithm 

is defined according to equation (19). 
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In this regard, the indices Training

AccuracyLSTM   and Training

RunTimeLSTM   are defined for the LSTM accuracy and speed, respectively, and 

the weight coefficients correspond to their importance. Two important and influential parameters, namely the 

number of hidden layers (H) and the maximum number of learning epochs (E), as well as the weight coefficients 

corresponding to the importance of accuracy and speed of the LSTM neural network, are selected as the genes of the 

sample chromosome according to Table (1) for optimization by the genetic algorithm. To execute the optimization 

process, a desired number of initial population (P) of chromosomes is generated for the genes or independent 

variables of the problem. After running the LSTM according to the available database corresponding to 10 transient 

events of the active distribution network and determining the accuracy and time of the training phase based on the 

parameters of the desired chromosome, then its fitness is calculated according to equation (19). The chromosomes 

are sorted in descending order of fitness values to enter the mating pool for performing the crossover process between 

pairs of chromosomes. This step is performed with a probability of Pc for the fittest chromosome pairs of the initial 

population according to Table (2). A number of offspring chromosomes are created from the crossover of parent 

chromosomes. Then, the mutation process is applied with a probability of Pm for a part of the population of offspring 

chromosomes according to Table (3). Table (1): Structure of a sample chromosome for improving the accuracy and 

speed of resonance phenomenon detection in active distribution networks by LSTM. 
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Table 1: structure of a sample chromosome used to improve the accuracy and speed of resonance phenomenon 

detection in active distribution networks using LSTM neural networks. 

nitsnumHiddenU MaxEpoch 
AccW 

rtW 

 

Table 2: crossover process between parent chromosomes in the genetic algorithm. 

nitsnumHiddenU MaxEpoch 
AccW 

rtW 
nits"numHiddenU MaxEpoch" "AccW "rtW 

  

nits"numHiddenU MaxEpoch" AccW 
rtW 

nitsnumHiddenU MaxEpoch "AccW "rtW 
 

Table 3: mutation process for offspring chromosomes. 

nits"numHiddenU "MaxEpoch" AccW 
rtW 

nitsnumHiddenU MaxEpoch "AccW "rtW 

 

By applying the crossover process, a number of (  ) popPC   ( ) child chromosomes are added to the parent 

chromosomes. Subsequently, by employing the mutation process, an additional number of   ) popPm   (chromosomes 

are appended to the existing chromosomes. Next, based on fitness values, 100 chromosomes are selected from the 

current population of   ) )()( oldmoldCold popPpopPpop ++  (chromosomes for the next iteration of the algorithm. The 

previous steps are then repeated until the algorithm converges, meaning it reaches the maximum number of 

iterations. Finally, the numerical values from the last iteration of the genetic algorithm for the weight coefficients 

corresponding to the importance of LSTM’s accuracy and speed, as well as its tuning parameters—including the 

number of hidden layers and the maximum number of learning epochs—are identified as the optimal solution to the 

problem[13]. 

The proposed flowchart for improving the speed and accuracy of LSTM performance by utilizing a genetic algorithm 

for detecting the sub-resonance phenomenon in active distribution networks is presented in Figure 8. 

Figure 8: Proposed Flowchart for Enhancing the Speed and Accuracy of the LSTM Neural Network in Identifying 

and Detecting the Sub-Resonance Phenomenon in Active Distribution Networks Using a Genetic Algorithm. 
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5.NUMERICAL STUDIES AND SIMULATION RESULTS 

To validate and confirm the efficiency of the proposed algorithm in detecting the sub-resonance phenomenon, 

numerical studies are conducted on an active distribution network that includes distributed generation sources such 

as Photovoltaics (PVs), Wind Turbines (WTs), and standard Synchronous Diesel Generators (DGs). Various voltage 

wave signals are generated as a database for training the LSTM neural network by simulating normal operating 

conditions and the occurrence of transient events. These transient events include single-phase (a), two-phase (ab), 

and three-phase (abc) interruptions, capacitor bank switching, and load switching in the feeder connected to the 

Photovoltaic (PV) source, as well as capacitor bank switching in the feeder connected to the Synchronous Diesel 

Generator (DG). All simulations are performed using PSCAD software. 

The single-line diagram of the studied active distribution network, created in the software, is shown in Figure 9. The 

upstream high-voltage network is connected to the medium-voltage distribution PCC bus through a 100 MVA 

transformer with a voltage ratio of 20 kV/63 kV. The primary and secondary connections of the transformer are 

configured in delta and star configurations, respectively. Figure 10 illustrates the schematic connection of the 

upstream network to the three main feeders (1, 2, and 3) of the distribution network. Measurement equipment is 

installed at the inputs of the main feeders to measure voltage magnitudes as well as the active and reactive power 

exchanges of the various existing distributed generation sources with the upstream grid. 

Main Feeder Details: 

• Feeder 1: Connected along the bus to a Wind Turbine (WT) with a nominal capacity of 10 MVA. It is linked 

to the distributed generation source via two 2.2-kilometer-long cable lines. 

NO 
YES 

Modeling a Wide-Area Distribution Network under Various Scenarios Using PSCAD Software 

Identify and simulate different scenarios in the wide-area distribution network, including single-phase faults, three-phase faults, load switching, and 

other events. 

Data Collection 

• Record voltage and current data for all buses and network nodes. 

• Decompose the data into 5 levels using the Discrete Wavelet Transform (DWT) method to reduce network 

dimensions and extract features. 

- 

Formation of the initial population of chromosomes for the genetic algorithm based on Table (1) with the aim of optimizing the parameters of 

the Long Short-Term Memory (LSTM) neural network 

Training the Long Short-Term Memory (LSTM) neural network based on the available database, considering the tuning 

parameters corresponding to each chromosome, and calculating the genetic algorithm fitness according to Equation (19). 

Applying the crossover and mutation processes respectively according to Tables 

(2) and (3). 

Satisfying the 

condition for 

the number of 

iterations? 

Applying the detail coefficients of network voltage wave during 

transient events to the LSTM neural network with optimized 

parameters for identifying and distinguishing ferro resonance 

phenomena from other transient events in the active distribution 

network 
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• Feeder 2: Connected along the bus to a Synchronous Diesel Generator (DG) with a nominal capacity of 0.3 

MVA. It is connected to the distributed generation source through two 5-kilometer-long cable lines. 

• Feeder 3: Connected along the bus to a Wind Turbine (WT) with a nominal capacity of 0.2 MVA. It is 

connected to the distributed generation source via two 2.2-kilometer-long cable lines. 

The load demand along the three feeders is presented in Table 4. 

Figure 5: Schematic of the Upstream Network and the Three Main Feeders of the Studied Distribution Network 

 

 

Table 4: Load Demand Along the Three Main Feeders of the Studied Active Distribution Network 

Load(Bus2) Load(Bus1) Main Feeders 

ph)j0.5(MVar/+2(MW/ph)  /ph)j0.25(MVar+1(MW/ph)  Feeder 1 (WT) 

r/ph)j0.005(MVa+0.1(MW/ph)  r/ph)j0.005(MVa+)0.01(MW/ph  Feeder 2 (DG) 

r/ph)j0.005(MVa+)0.05(MW/ph  r/ph)j0.005(MVa+)0.05(MW/ph  Feeder 3 (PV) 

 

In Main Feeder 2, the DG distributed generation source supplies the equivalent local load of 

r/ph)j0.005(MVa+1(MW/ph) . The WT source is connected to the end of Main Feeder 1 through a 20 MVA 

transformer with a voltage ratio of 6 kV / 20 kV and a star/star connection. The DG source is connected to the end of 

Main Feeder 2 through a 0.3 MVA transformer with a voltage ratio of 13.8 kV / 20 kV and a delta/star connection, 

while the PV source is connected to the end of Main Feeder 3 through a 0.2 MVA transformer with a voltage ratio of 

0.6 kV / 20 kV and a delta/star connection. The average wind speed and solar irradiance in the area are 8 meters per 

second and 1400 watts per square meter, respectively. 

The WT distributed generation source features three blades and a 50-meter-high tower and utilizes an induction 

generator with a squirrel cage winding to convert wind energy into electricity. The DG distributed generation source 

is equipped with a governor system and an Automatic Voltage Regulator (AVR). The PV distributed generation source 

consists of 22 series-connected modules in each array and 800 parallel modules in each array, with each module 

containing 36 series-connected solar cells. The output power of this source is injected into the feeder at a voltage level 

of 600 volts through an inverter using a boost converter. 

A capacitor bank with a capacity of 10 microfarads is installed at the output of the PV distributed generation source's 

inverter under normal operating conditions on Main Feeder 3. Additionally, there are two switched capacitor banks 

in the network: one with a capacitance of 10 microfarads is placed in parallel with the active capacitor bank on Feeder 

3, and another with a capacitance of 4 microfarads is located at the DG output. Three breakers are installed to 

disconnect the output phases of the PV source on Main Feeder 3. Furthermore, a switched load with active and 

reactive demands of [value missing] is located at Bus 1 of Main Feeder 3. 
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Since the primary objective of this research is to improve the speed and accuracy of detecting and identifying the sub-

resonance phenomenon in the active distribution network using the hybrid LSTM-GA algorithm, numerical studies 

and simulations are conducted on the active distribution network built in PSCAD software under various normal and 

transient conditions as outlined below. This is done to create a temporally appropriate database and train the Long 

Short-Term Memory (LSTM) neural network for detecting the sub-resonance phenomenon and distinguishing it 

from other transient events. 

Case Studies and Simulations 

1. Case Study 1: Simulation of normal operating conditions of the active distribution network for a duration of 

10 seconds. 

2. Case Study 2: Simulation of a transient event involving the interruption of phase a for 6 seconds on Main 

Feeder 3. 

3. Case Study 3: Simulation of a transient event involving the interruption of two phases, a and b, for 6 

seconds on Main Feeder 3. 

4. Case Study 4: Simulation of a transient event involving the interruption of three phases for 6 seconds on 

Main Feeder 3. 

5. Case Study 5: Simulation of a transient event involving the switching of a 10 microfarad capacitor bank for 

6.5 seconds on Main Feeder 3. 

6. Case Study 6: Simulation of a transient event involving the switching of a 4 microfarad capacitor bank for 

6.5 seconds on Main Feeder 2. 

7. Case Study 7: Simulation of a transient event involving load switching starting at 6.75 seconds on Main 

Feeder 3. 

8. Case Study 8: Simulation of a transient event involving a single-phase short circuit (phase A to ground) 

from 6.85 seconds to 10 seconds on Main Feeder 2. 

9. Case Study 9: Simulation of a transient event involving a two-phase short circuit (phases A and B) to each 

other from 6.90 seconds to 10 seconds on Main Feeder 2. 

10. Case Study 10: Simulation of a transient event involving a three-phase short circuit (phases A, B, and C) to 

each other and to the ground from 6.95 seconds to 10 seconds on Main Feeder 3. 

After executing the simulations for these 10 case studies, the wavelet transform block is utilized to calculate the detail 

and approximation coefficients of the three-phase feeder voltage waveform at six levels under the transient events. 

The detail coefficients are then used as time-sequenced input features for the LSTM training phase. 

Optimization with Genetic Algorithm 

Since the speed and accuracy of sub-resonance detection and classification in the studied active distribution network 

by this neural network type are highly dependent on the number of hidden layers, the maximum number of learning 

epochs, and their corresponding weight coefficients, the determination and adjustment of the optimal values of these 

parameters are handled by the genetic algorithm, according to the proposed flowchart in Figure 8. 

• Crossover Probability: 0.7 

• Mutation Probability: 0.3 

• Initial Population Size: 100 chromosomes 

• Number of Iterations: 15 (as the convergence criterion) 

The codes for the proposed LSTM-GA model are written in .m-file format in MATLAB. This software is installed on 

an ASUS laptop equipped with a 5-core 2 GHz processor and 2-terabyte secondary memory. 

Subsequently, the simulation results for the case studies are presented sequentially. The LSTM neural network is 

trained twice: once with default parameters and once with the optimal parameters adjusted by the genetic algorithm. 
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The results obtained from these two methods are then tested and compared for detecting sub-resonance in the active 

distribution network against new transient events. 

Case Study 1 

A simulation of the normal operating conditions of the studied active distribution network was conducted for a 

duration of 10 seconds using PSCAD software. The simulation results for the power generated by the distributed 

generation sources—PV, WT, and DG—in the active distribution network under normal operating conditions are 

shown in Figure 11. It should be noted that the values displayed for the active and reactive power injected into Main 

Feeder 2 by the DG are after it has supplied its local load. The simulation results for the active and reactive power 

exchange between the upstream grid and the three main feeders (1, 2, and 3) are presented in Figure 12. The 

simulation results for the voltage levels of Main Feeders 1, 2, and 3 are shown in Figure 13. The simulation results 

indicate that the control systems of the DG and PV sources in Main Feeders 2 and 3, respectively, effectively regulate 

and maintain the terminal voltages at their set values. Additionally, the WT source transitions from motoring to 

generating mode within 4.5 seconds after startup, adjusts to the phase voltage, and maintains its level during normal 

operation over time. 

Figure 6: Simulation Results for Power Generation by PV, WT, and DG Sources 

  

 

Figure 7: Active and Reactive Power Exchange of the Upstream Grid with Main Feeders 1, 2, and 3 of the Studied 

Active Distribution Network 

   

Figure 8: Voltage Levels at the Primary Side of the 0.2 MVA Transformer (0.6 kV/20 kV Delta/Star Connection) in 

Main Feeders 1, 2, and 3 of the Studied Active Distribution Network 

 



660   J INFORM SYSTEMS ENG, 10(21s) 

 

 

After applying the wavelet transform to the three-phase voltage waveforms of Main Feeders 1, 2, and 3, the feature 

extraction process for the training phase of the Long Short-Term Memory (LSTM) neural network follows. For 

example, the simulation results for the approximation coefficients and detail coefficients calculated for phases A, B, 

and C of the voltage waveform of Main Feeder 3 using the Discrete Wavelet Transform (DWT) over the time period 

from 0 to 0.2 seconds are presented in Figures 14 and 15. 

Now, by applying wavelet transform to the three-phase voltage waveforms of the three main feeders 1, 2, and 3, the 

feature extraction process for the training phase of the Long Short-Term Memory (LSTM) neural network is followed. 

For example, the simulation results for the approximation coefficients (A) and detail coefficients (D) calculated for 

phases A, B, and C of the voltage waveform of main feeder 3 using Discrete Wavelet Transform (DWT) over the time 

period of 0 to 0.2 seconds are shown in Figures 9 and 10." 

Figure 9: Approximation Coefficient for the Voltage Waveform of Main Feeder 3 under Normal Operating 

Conditions of the Distribution Network 

 

Figure 10: Detail Coefficients for the Three-Phase Voltage Waveform of Main Feeder 3 under Normal Operating 

Conditions of the Studied Distribution Network
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Case Study 2 

A transient event simulation involving the interruption of phase a from 6 seconds to 10 seconds on Main Feeder 3 of 

the studied active distribution network was conducted using PSCAD software. The simulation results for the three-

phase voltage waveform are shown in Figure 16. The simulation results indicate that the interruption of phase A in 

Main Feeder 3 disrupts the reactive power balance between the capacitive capacity of the lines, capacitor banks, and 

the linear and nonlinear inductances present in the network (such as line inductors and transformers with saturable 

cores). This imbalance leads to the sub-resonance phenomenon in the studied active distribution network. An 

overvoltage of up to three times the nominal value is caused by this phenomenon. 

The approximation coefficients and detail coefficients calculated for phases A, B, and C of the voltage waveform of 

Main Feeder 3 using the Discrete Wavelet Transform (DWT) for use in the training phase of the LSTM network are 

presented in Figures 11 and 13. 

Figure 11: Three-Phase Voltage Waveform During the Interruption of Phase a from 6 Seconds to 10 

Seconds on Main Feeder 3 of the Studied Active Distribution Network 
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Figure 12: Simulation Results of the Approximation Coefficients for the Voltage Waveform Under 

Phase a Interruption Conditions from 6 Seconds to 10 Seconds on Main Feeder 3 of the Studied Active Distribution 

Network 

 

Figure 13: Simulation Results of the Detail Coefficients for the Voltage Waveform Under Phase a Interruption 

Conditions from 6 Seconds to 10 Seconds on Main Feeder 3 of the Studied Active Distribution Network 

 

 

Case Study 3 

A transient event simulation involving the interruption of phases a and b from 6 seconds to 10 seconds on Main 

Feeder 3 of the studied active distribution network was conducted using PSCAD software. The simulation results for 

the three-phase voltage waveform are shown in Figure 19. As seen in Figure 19, the interruption of phases a and b on 

Main Feeder 3 of the studied active distribution network from 6 seconds results in the occurrence of the sub-

resonance phenomenon after the simulation is executed. This phenomenon causes an overvoltage imposed on 

phases a and b ranging from 4 to 5 times the normal value. The approximation coefficients and detail coefficients 

calculated for phases A, B, and C of the voltage waveform of Main Feeder 3 using the Discrete Wavelet Transform 

(DWT) are presented in Figures 14 and 16 for use in the training phase of the LSTM network. 

Figure 14: Three-Phase Voltage Waveform During the Interruption of Phases a and b from 6 Seconds to 10 

Seconds on Main Feeder 3 of the Studied Active Distribution Network 
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Figure 15: Simulation Results of the Approximation Coefficients for the Voltage Waveform Under Conditions of 

Phases a and b Interruption from 6 Seconds to 10 Seconds on Main Feeder 3 of the Studied Active Distribution 

Network 

 

Figure 16: Simulation Results of the Detail Coefficients for the Voltage Waveform Under Conditions of 

Phases a and b Interruption from 6 Seconds to 10 Seconds on Main Feeder 3 of the Studied Active Distribution 

Network 

 

 

 Case Study 4: A three-phase a, b, and c fault event is simulated from 6 to 10 seconds on the main feeder 3 of 

the active distribution network in PSCAD software. The simulation results for the three-phase voltage waveform are 

shown in Figure 22. As can be seen from the figure, the three-phase fault in the main feeder 3 does not result in a 

resonance phenomenon, and only a slight overvoltage is observed. The simulation results for the approximation 

coefficient (A) and detail coefficients (D) calculated for phases A, B, and C of the voltage waveform of main feeder 3 

using Discrete Wavelet Transform (DWT) over the time period of 0 to 0.2 seconds are shown in Figures 17 and 19. 

Figure 17: Three-phase voltage waveform during the three-phase a, b, and c fault event from 6 to 10 seconds on the 

main feeder 3 of the studied active distribution network. 
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Figure 18: Simulation results of the approximation coefficient of the voltage waveform under the three-phase a, b, 

and c fault condition from 6 to 10 seconds on the main feeder 3 of the studied active distribution network. 

 

Figure 19: Simulation results of the detail coefficients of the voltage waveform under the three-phase a, b, and c 

fault condition from 6 to 10 seconds on the main feeder 3 of the studied active distribution network. 

 

 

Case Study 5: A simulation of a 10 microfarad capacitor bank switching event at 6.5 seconds was conducted on main 

feeder 3 of the active distribution network using PSCAD software. The simulation results for the three-phase voltage 

waveform under the new conditions are shown in Figure 20. The results indicate that the switching of a 10-microfarad 

capacitor bank at 6.5 seconds on main feeder 3 of the studied active distribution network did not cause a significant 

change in voltage level and did not lead to the occurrence of resonance. The approximation coefficients (A) and detail 

coefficients (D) calculated for phases A, B, and C of the voltage waveform of main feeder 3 using Discrete Wavelet 

Transform (DWT) are shown in Figures 21 and 22. 

Figure 20: Three-phase voltage waveform during the 10-microfarad capacitor bank switching event at 6.5 seconds 

on main feeder 3 of the studied active distribution network. 
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Figure 21: Simulation results of the approximation coefficient of the voltage waveform under the 10-microfarad 

capacitor bank switching condition at 6.5 seconds on main feeder 3 of the studied active distribution network. The 

lack of change in the approximation coefficients of phases A, B, and C in the above figures indicates that capacitor 

switching does not create conditions for the occurrence of resonance in the distribution network. 

 

Figure 22: Simulation results of the detail coefficients of the voltage waveform under the 10-microfarad capacitor 

bank switching condition at 6.5 seconds on main feeder 3 of the studied active distribution network. 

 

 

Case Study 6: A simulation of a 4-microfarad capacitor bank switching event, lasting for 0.25 seconds from 6.5 

seconds, was conducted on main feeder 2 of the active distribution network using PSCAD software. The simulation 

results for the three-phase voltage waveform under these conditions are shown in Figure 28. The switching of the 4-

microfarad capacitor bank at 6.5 seconds for 0.25 seconds on main feeder 2 of the studied active distribution network 

caused voltage fluctuations and a return to the initial value, but did not result in any significant overvoltage or 

resonance. The approximation coefficients (A) and detail coefficients (D) calculated for phases A, B, and C of the 

voltage waveform of main feeder 2 using Discrete Wavelet Transform (DWT) are shown in Figures 23 and 25. 

Figure 23: Three-phase voltage waveform during the 4-microfarad capacitor bank switching event for 0.25 seconds 

starting at 6.5 seconds on main feeder 2 of the studied active distribution network. 
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Figure 24: Simulation results for the approximation coefficient of the voltage waveform under the 4-microfarad 

capacitor bank switching condition at 6.5 seconds on main feeder 2 of the studied active distribution network. 

 

Figure 25: Simulation results of the detail coefficients of the voltage waveform under the 4-microfarad capacitor 

bank switching condition at 6.5 seconds on main feeder 2 of the studied active distribution network. 

  

 

Case Study 7:A simulation of a load switching event at bus 1 of main feeder 3 from 6.75 seconds to 10 seconds was 

conducted on the active distribution network using PSCAD software. The simulation results for the three-phase 

voltage waveform under these new conditions are shown in Figure 31. Simulation results under the new load 

switching conditions at bus 1 of main feeder 3 from 6.75 seconds to 10 seconds were calculated. The approximation 

coefficient (A) and detail coefficients (D) calculated for phases A, B, and C of the voltage waveform using Discrete 

Wavelet Transform (DWT) are shown in Figures 26 and 28. 

Figure 26: Three-phase voltage waveform during a load switching event at bus 1 of main feeder 3 from 6.75 seconds 

to 10 seconds on the studied active distribution network. 
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Figure 27: Simulation results of the approximation coefficient of the voltage waveform under load switching 

conditions at bus 1 of main feeder 3 from 6.75 seconds to 10 seconds for the studied active distribution network. 

 

Figure 28: Simulation results of the detail coefficients of the voltage waveform under load switching conditions at 

bus 1 of main feeder 3 from 6.75 seconds to 10 seconds for the studied active distribution network. 

  

 

 

The simulation results indicate that the load switching on main feeder 3 did not induce any overvoltage in the network 

and did not cause a resonance phenomenon. 

Case Study 8: A simulation of a single-phase A-to-ground fault from 6.85 to 10 seconds on main feeder 2 of the active 

distribution network was conducted in PSCAD software. The simulation results for the feeder 2 voltage are shown in 

Figure 35. The approximation coefficients (A) and detail coefficients (D) calculated for phases A, B, and C of the 

voltage waveform using Discrete Wavelet Transform (DWT) during the single-phase A-to-ground fault on main 

feeder 2 are shown in Figures 29 and 31. 

Figure 29: Simulation results for the voltage level during a single-phase A-to-ground fault from 6.85 to 10 seconds 

on main feeder 2 of the studied active distribution network 

 

 

 

 

 



668   J INFORM SYSTEMS ENG, 10(21s) 

Figure 30: Simulation results of the approximation coefficient of the voltage waveform under a single-phase A-to-

ground fault condition from 6.85 to 10 seconds on main feeder 2 of the studied active distribution network. 

 

Figure 31: Simulation results of the detail coefficients of the voltage waveform under a single-phase A-to-ground 

fault condition from 6.85 to 10 seconds on main feeder 2 of the studied active distribution network. 

  

 

 

Case Study 9: A simulation of a two-phase A and B fault from 6.90 to 10 seconds on main feeder 3 of the studied 

active distribution network was conducted in PSCAD software. The simulation results for the feeder 3 voltage level 

are shown in Figure 38. The approximation coefficients (A) and detail coefficients (D) calculated for phases A, B, and 

C of the voltage waveform on feeder 3 using Discrete Wavelet Transform (DWT) are shown in Figures 32 and 34. 

Figure 32: Simulation results for the voltage level during a two-phase A and B fault from 6.90 to 10 seconds on 

main feeder 3 of the studied active distribution network. 

 

Figure 33: Simulation results of the approximation coefficient of the voltage waveform under a two-phase A and B 

fault condition from 6.90 to 10 seconds on main feeder 3 of the studied active distribution network. 
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Figure 34: Simulation results of the detail coefficients of the voltage waveform under a two-phase A and B fault 

condition from 6.90 to 10 seconds on main feeder 3 of the studied active distribution network. 

  

 

Case Study 10 

A transient event simulation involving a three-phase short circuit to ground of phases A, B, and C from 6.95 

seconds to 10 seconds on Main Feeder 3 of the studied active distribution network was conducted using PSCAD 

software. The simulation results under these conditions for the voltage level are shown in Figure 35. 

Figure 35: Simulation Results of the Approximation Coefficient for the Voltage Waveform Under Three-Phase Short 

Circuit to Ground Conditions of Phases A, B, and C from 6.95 seconds to 10 seconds on Main Feeder 3 of the 

Studied Active Distribution Network 

 

The approximation coefficients and detail coefficients calculated for phases A, B, and C of the voltage waveform using 

the Discrete Wavelet Transform (DWT) under three-phase short circuit to ground conditions are presented in Figures 

36 and 37. 

Figure 36: Simulation Results of the Approximation Coefficient for the Voltage Waveform Under Three-Phase Short 

Circuit to Ground Conditions of Phases A, B, and C from 6.95 seconds to 10 seconds on Main Feeder 3 of the 

Studied Active Distribution Network 
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Figure 37: Simulation Results of the Detail Coefficients for the Voltage Waveform Under Three-Phase Short Circuit 

to Ground Conditions of Phases A, B, and C from 6.95 seconds to 10 seconds on Main Feeder 3 of the Studied Active 

Distribution Network 

  

 

The simulation results indicate that the occurrence of a single-phase short circuit on Feeder 2 and two-phase and 

three-phase short circuits to ground on Main Feeder 3 of the studied active distribution network do not lead to the 

occurrence of the sub-resonance phenomenon in the network. 

Next, by calculating the detail coefficients and analyzing the outcomes of each transient event in the case studies 

according to Table 5, we proceed to train the LSTM neural network in two scenarios: with default parameters and 

with parameters optimized by the genetic algorithm. This aims to prepare the neural network for estimating and 

identifying the sub-resonance phenomenon based on the voltage waveform information received from the feeders. 

Table 5: Transient Events in the Studied Active Distribution Network and the Network's Condition Afterwards 

Case Study Transient Event in the Studied Active Distribution Network Post-Event Network Condition 

Case Study 

1 

Normal Operation of the Active Distribution Network Non-Sub-Resonant 

Case Study 

2 

Phase a Interruption on Main Feeder 3 from 6 seconds Sub-Resonant 

Case Study 

3 

Interruption of Phases a and b on Main Feeder 3 from 6 seconds Sub-Resonant 

Case Study 

4 

Three-Phase Interruption on Main Feeder 3 from 6 seconds Non-Sub-Resonant 

Case Study 

5 

Switching of a 10 Mirofarad Capacitor Bank on Main Feeder 3 

from 6.5 seconds 

Non-Sub-Resonant 

Case Study 

6 

Switching of a 4 Mirofarad Capacitor Bank on Main Feeder 2 

from 6.5 seconds 

Non-Sub-Resonant 

Case Study 

7 

Transient Switching of Load on Main Feeder 3 from 6.75 seconds Non-Sub-Resonant 

Case Study 

8 

Single-Phase A to Ground Short Circuit on Main Feeder 2 

from 6.85 seconds 

Non-Sub-Resonant 
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Case Study 

9 

Two-Phase A and B Short Circuit on Main Feeder 2 from 6.90 

seconds 

Non-Sub-Resonant 

Case Study 

10 

Three-Phase A, B, and C to Ground Short Circuit on Main Feeder 

3 from 6.95 seconds 

Non-Sub-Resonant 

Initially, the LSTM neural network is trained using the detail coefficients of the voltage waveforms from feeders 

undergoing transient events as input data and the resulting resonant or non-resonant condition of the studied active 

distribution network due to these events as the known output. This training is performed with 5 hidden processing 

layers and a maximum learning epoch of 15, based on the assumed parameters. During the training process, the data 

are sorted according to the number of time sequence elements and then tested to determine the neural network's 

accuracy in estimating the network's sub-resonant condition. Figures 44 and 45 illustrate, respectively, the sorting of 

data based on the input time sequence elements and the convergence trend to an appropriate accuracy for predicting 

the sub-resonance phenomenon. As seen in Figure 45, with the assumed parameters, the training time is 37 seconds, 

while the LSTM neural network ultimately achieves an 85% accuracy in estimating the sub-resonance phenomenon 

in the studied active distribution network. Subsequently, the neural network is retrained using a genetic algorithm 

with optimized parameters for the hidden processing layers and the learning epoch. The results for the optimized 

parameters of the LSTM neural network are presented in Table 6. The simulation results for the convergence of the 

genetic algorithm and the LSTM neural network during the training phase to the final accuracy for estimating sub-

resonance in the studied active distribution network are shown in Figures 38 and 39, respectively. 

Figure 38: Sorting of Data Based on Input Time Sequence Elements 

 

Figure 39: Convergence Trend to Suitable Accuracy for Predicting the Sub-Resonance Phenomenon 

 

Table 6: Optimized Parameters for the LSTM Neural Network 

nitsnumHiddenU MaxEpoch 
AccW 

rtW 

41 20 0.7 0.3 
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Figure 46: Simulation Results for the 

Convergence of the Genetic Algorithm in the 

LSTM Training Phase to Achieve Final 

Accuracy in Estimating Sub-Resonance in the 

Active Distribution Network 

 

Figure 47: Simulation Results for the Convergence of the 

LSTM-GA Neural Network in the Training Phase to Final 

Accuracy for Estimating Sub-Resonance in the Active 

Distribution Network 

As can be seen from the figure, after 16 iterations in the training phase, 100% accuracy is achieved, and the time taken 

to reach this accuracy is 28 seconds. After completing the training and testing phase, the LSTM neural network with 

parameters optimized by the genetic algorithm is ready to predict the resonance phenomenon in the studied 

distribution network. 

A total of 55 different transient events, including various types of short circuits (single-phase to ground, phase-to-

phase, phase-to-phase to ground, and three-phase, totaling 10 events) at bus 1 of the three main feeders, phase 

outages (single-phase, two-phase, and three-phase on line 1 of the three main feeders, totaling 21 events), capacitor 

bank switching (at bus 2 of the three main feeders, totaling 3 events), and load switching (at bus 1 of the three main 

feeders, totaling 21 events) were arranged to evaluate and compare the performance of the LSTM and LSTM-GA 

neural network estimators. 

When using the LSTM neural network estimator with default parameters, the true positive (TP) index is 5, the false 

positive (FP) index is 3, the true negative (TN) index is 42, and the false negative (FN) index is 3. However, when 

using the LSTM neural network estimator with parameters optimized by the genetic algorithm (GA), the true positive 

(TP) index is 7, the false positive (FP) index is 2, the true negative (TN) index is 43, and the false negative (FN) index 

is 1. The results are presented in terms of accuracy, precision, recall, and F1-score in Table 7. 

Table 7 compares the performance indices for the LSTM and LSTM-GA neural networks for resonance phenomenon 

estimation. The simulation results in the table show that by optimizing the parameters of the number of hidden layers 

and the maximum learning epoch of the LSTM neural network using the genetic algorithm (GA), the performance 

indices, including accuracy by 10.4%, precision and recall by 15.2% and 25%, respectively, and F1-score by 19.8%, are 

improved. 

Table 7: Comparison of Performance Indices for LSTM and LSTM-GA Neural Networks in Predicting the Sub-

Resonance Phenomenon 

1F R P Accuracy 
Performance Index 

 63% 63% 63% 86% LSTM 
82% 88% 78% 91% LSTM-GA 

The simulation results in the above table indicate that by optimizing the parameters of the number of hidden layers 

and the maximum learning epoch of the LSTM neural network, the performance indices increased by 10.4% in 

accuracy, 15.2% in precision, 25% in recall, and 19.8% in the F1 score. 

6. Conclusion 

In this article, the Genetic Algorithm (GA) is employed as a complementary method for optimizing the functional 

parameters of the Long Short-Term Memory (LSTM) neural network with the aim of improving classification 

accuracy and speed. The proposed hybrid framework is based on extracting feature information from the 

approximation coefficients and detail coefficients collected from the distribution network voltage waveforms. 
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To validate and confirm the effectiveness of the proposed model, numerical studies were conducted on an active 

distribution network that includes Distributed Generation sources such as Photovoltaics (PVs), Wind Turbines 

(WTs), and Distributed Generators (DGs). The studied active distribution network was constructed in 

the PSCAD software with assumed technical specifications, and a total of 10 case studies were utilized, including 

short-circuit events, capacitor bank switching, and load switching. 

By employing the Discrete Wavelet Transform (DWT), the detail coefficients of the feeder voltage waveform during 

transient events were extracted and provided as input to the LSTM neural network for the training phase. 

Subsequently, the Genetic Algorithm was used to optimize the parameters of the number of hidden layers, the 

learning epoch of the algorithm, and their corresponding weight coefficients. 

After completing the training and testing phases, the performance indices of the LSTM and LSTM-GA neural 

networks were compared. The simulation results confirm that by optimizing the parameters of the number of hidden 

layers and the maximum learning epoch of the LSTM neural network using the Genetic Algorithm (GA), the 

performance indices improved as follows: 

• Accuracy: Increased by 10.4% 

• Precision (P): Increased by 15.2% 

• Recall (R): Increased by 25% 

• F1 Score: Increased by 19.8% 

These improvements highlight the effectiveness of the Genetic Algorithm in enhancing the predictive capabilities of 

the LSTM neural network for estimating the sub-resonance phenomenon in the studied active distribution network. 
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