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Air pollution is a critical worldwide issue requiring precise forecasting for the 

deployment of efficient proactive interventions. The current study proposes a hybrid 

deep learning model based on multi-head attention mechanisms, bidirectional 

LSTMs, and dense layers to forecast the overall Air Quality Index (AQI) and identify 

specific thresholds of pollutant severity. The model utilizes deep learning algorithms 

for predictive accuracy to process primary air pollutants such as PM2.5, PM10, NO₂, 

CO, and O₃. Robustness tests were conducted by using different performance 

measures such as the F1-score, the Precision-Recall Curve (PRC), the Receiver 

Operating Characteristic (ROC) Curve, and training loss, accuracy patterns, and a 

confusion matrix. The outcome reveals that the proposed model performs 

exemplary classification with robust precision-recall scores and well-optimized 

ROC curves, thus proving to be effective in discriminating across different levels of 

pollution severity. F1-score analysis reveals tremendous success in the detection of 

cleaner air conditions but shows minor misclassifications in high AQI levels, 

signifying areas for improvement. Reliability of the model for real-world application 

is further established with training loss and accuracy curves revealing a smooth 

learning pattern with limited overfitting. Through attention-driven learning 

paradigms, the model proposes a scalable and adaptive solution for real-time 

monitoring of air quality, enabling efficient decision-making for pollution 

mitigation measures. The paper contributes to the emerging domain of deep 

learning in environmental science through the demonstration of hybrid AI-driven 

models for predictive air quality modeling. Future refinement will involve 

incorporation of other meteorological variables and spatiotemporal inputs to 

enhance the performance of the model. 

Keywords: Air Quality Prediction, Hybrid Deep Learning, Multi-Head Attention, 

Bidirectional LSTM, AQI Classification, Environmental Monitoring, Deep Learning, 

Pollution Forecasting, Machine Learning, Attention Mechanism. 

Introduction 

The health of humans and the integrity of the environment are adversely affected by air pollution, with 

rising concentrations of particulate matter (PM2.5, PM10), nitrogen dioxide (NO₂), carbon monoxide 

(CO), and ozone (O₃) leading to morbidity of the respiratory and cardiovascular systems and 

environmental degradation [14, 17]. The conventional air quality monitoring systems rely on statistical 

prediction models and sensor networks that are adequate for real-time observations but become 

inaccurate for long-term predictions or to capture the intricate interactions between pollutants [13, 15]. 
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The evolution in the availability of machine learning (ML) and deep learning (DL) models has witnessed 

the evolution of next-generation air quality prediction systems that can process large-scale 

environmental data and improve prediction accuracy [2, 4, 6]. 

However, use of many of the existing models in real-time environmental decision-making is hindered 

by their orientation towards single-pollutant predictions or difficulty in classifying Air Quality Indices 

(AQIs) into multiple classes [1, 5, 7]. 

To overcome these limitations, this study suggests a hybrid deep learning model that combines dense 

layers, bidirectional Long Short-Term Memory (LSTM) networks, and multi-head attention 

mechanisms to predict the overall Air Quality Index (AQI) as well as individual pollutant severity levels. 

Although LSTMs can identify the temporal patterns of air quality data, the attention mechanism 

improves feature selection by highlighting important pollutant interactions [9, 10, 12]. The dual-branch 

structure enables high prediction accuracy and robustness, thus being suitable for real-world use in 

pollution control and air quality monitoring [3, 8, 11]. 

The model was verified with a set of performance measures such as the F1-score, Precision-Recall Curve 

(PRC), Receiver Operating Characteristic (ROC) Curve, training loss, accuracy patterns, and confusion 

matrix upon training the model on past air quality data sets. The results reflect significant gains in the 

identification of dangerous air quality levels, with improved classification performance for varied AQI 

classes [19, 21, 22]. The article is an addition to AI-enabled air quality forecasting models as it provides 

a scalable and flexible solution for policy-based environmental management and real-time forecasting 

systems [16, 18, 20]. Future development will mostly involve adding more meteorological measures, 

spatiotemporal interdependencies, and real-time adaptability depending on varied environmental 

conditions. 

1 Literature Review 

1.1 Traditional and Machine Learning Approaches in Air Quality Prediction   

Over the past few years, there has been considerable work towards the shift from statistical models 

to machine learning (ML) models for air quality forecasting. The conventional regression and 

autoregressive integrated moving average (ARIMA) methods were found to be insufficient when it came 

to the effective capture of the non-linear interactions in pollution data. Machine learning models such 

as decision trees, random forests, and neural networks have shown considerable improvements when 

used on large environmental datasets. The performance of these models in handling complex air quality 

datasets, especially when meteorological data is included, has been confirmed by research carried out 

by Unnikrishnan (2023) and Bhushan et al. (2023) [1,2]. Sayeed and Rehman (2023) mentioned that 

these approaches have the tendency to be limited in their capability for generalizability across 

geographical locations, thus further requiring the application of ensemble-based models for the 

enhancement of predictability reliability [3]. Iskandaryan et al. (2023) also presented a detailed 

discussion of machine learning approaches for air quality forecasting in smart cities, with emphasis on 

their application to real-time sensor-based data [4]. 

1.2 Deep Learning-Based Air Quality Prediction Models   

Owing to their ability to capture both spatial and temporal correlations, deep learning (DL) models have 

become a leading method of air quality prediction. The majority of researchers have employed the 

combination of Long Short-Term Memory networks (LSTMs) and Convolutional Neural Networks 

(CNNs). Nagrecha and Jain (2023) created a hybrid CNN-LSTM model that was intended to forecast 

PM2.5 concentration, where satellite data from remote sensing was employed to improve feature 

extraction [5]. Similarly, Jamei et al. (2023) designed a hybrid deep learning model intended to enhance 

forecasting accuracy in urban areas by using both chemical and meteorological factors [6]. Akinosho 

(2023) employed deep learning models to explore real-time air quality visualization, highlighting the 

requirement of real-time modification in Air Quality Index (AQI) forecasting models [7]. 
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1.3 Attention Mechanisms for Air Quality Prediction   

Attention mechanisms have notably improved the accuracy of air quality forecasting models by allowing 

them to concentrate on the most important features in pollutant data sets. To further boost feature 

selection, Air Quality Index (AQI) forecasting models have incorporated the self-attention mechanism 

originally put forward by Bahdanau et al. (2015) [23]. The Transformer model introduced by Vaswani 

et al. (2017) enhances model scalability and does away with the need for recurrent frameworks [24]. By 

creating an attention-augmented deep multitask spatiotemporal learning framework for air quality 

forecasting in megacities, Khan et al. (2024) have taken this further [9]. Lin et al. (2017) investigated 

structured self-attention mechanisms that adaptively scale feature importance according to real-time 

changes in air pollution [25]. 

1.4 Long Short-Term Memory (LSTM) and BiLSTM Models   

Long-range dependencies in air pollution time-series data have been successfully modeled through 

Long Short-Term Memory networks (LSTMs). The LSTM architecture, first proposed by Hochreiter and 

Schmidhuber (1997), resolved the vanishing gradient problem typically linked with conventional 

recurrent neural networks (RNNs) [26]. Graves et al. (2013) illustrated that bidirectional processing 

improved prediction performance by adding past and future pollution trends, further improving this 

approach in the case of air quality forecasting with Bidirectional LSTM (BiLSTM) models [27]. Through 

the development of Deep-AIR, a convolutional neural network-LSTM hybrid model for urban Air 

Quality Index (AQI) prediction, Han et al. (2021) improved the efficacy of sequential modeling methods 

[12]. 

1.5 Integration of Satellite and Sensor-Based Data in Deep Learning Models   

The accuracy of Air Quality Index (AQI) forecasts has been greatly enhanced by the inclusion of real-

time sensor observations and high-resolution satellite imagery. Von Pohle and Müller (2023) proved 

the efficacy of very high-spatial-resolution satellite imagery to track urban air pollution by using it to 

assess air quality at the meter-scale level [8]. GreenEyes is a WaveNet model that operates on real-time 

sensor observations to conduct air quality assessments, as mentioned in a study by Huang et al. (2022) 

[11]. Li et al. (2022) mentioned the application of sensor fusion techniques, which combine satellite and 

ground observations, to enhance forecasting efficiency in fast-evolving urban cities [31]. 

1.6 Policy and Regulatory Frameworks for Air Quality Standards   

To ensure precise classification and policy applicability, air quality forecasting models must conform to 

the regulation set. AQI prediction models frequently make use of acceptable levels of PM2.5, NO2, and 

other contaminants as per the WHO [14]. Most deep-learning-based prediction framework designs refer 

to the CPCB and U.S. Environmental Protection Agency classification methods of AQI [13,15]. United 

Nations Environment Programme (UNEP) reports highlight economic and health effects of air 

contamination and promote policy uptake of high-fidelity forecasting approaches [17]. 

To enhance model generalizability, forecasting AQI has made use of multi-task learning (MTL) among 

its strategies. Zhang and Yang (2021) offered a detailed overview of MTL strategies, as they highlighted 

how these can better enable feature sharing between heterogeneous prediction tasks [29]. Furthermore, 

transfer learning approaches, wherein domain-specific data for AQI are used for optimizing pre-trained 

neural network models, have come under scrutiny of research. The BERT transfer model, first conceived 

by Devlin et al. (2019), has been a pioneer in air quality research due to its ability to be combined with 

self-supervised learning strategies [30]. 

There are numerous studies that have examined the health effects of air pollution on human health, 

attributing suboptimal air quality with the incidence of respiratory and cardiovascular disease. 

Scientific Reports - Nature Publishing Group (2023) [21] analyzed the increasing trend in air pollution 

and hospitalization for respiratory disease. Regional variation in levels of air pollution and their 

socioeconomic effects was also reported by the European Environment Agency (EEA) [22]. 

Intergovernmental Panel on Climate Change (IPCC) evaluation of the effect of climate variability on 
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pollutant dispersion has highlighted the need for adaptive air quality index (AQI) forecasting models 

[20]. 

1.7 Emerging Hybrid Deep Learning Models for Urban AQI Prediction   

Over the past few years, there has been a growing interest in hybrid deep learning models combining 

Graph Neural Networks (GNNs), BiLSTMs, and Attention Transformers. To improve prediction 

accuracy, Wang et al. (2023) proposed a hybrid deep learning model for urban air quality index (AQI) 

prediction by combining multiple deep learning methods [32]. Hettige et al. (2024) also proposed 

AirPhyNet, a physics-informed neural network that tries to impose real meteorological constraints on 

air quality forecasting models [10]. Hybrid models offer an air pollution modeling framework that is 

not only simpler to interpret but also more universally applicable.   

2 Methodology 

The suggested approach uses a hybrid deep learning model that combines thick layers, bidirectional 

LSTMs, and multi-head attention to forecast both the overall Air Quality Index (AQI) and the severity 

levels of individual pollutants. Key pollutants (PM2.5, PM10, NO₂, CO, and O₃) are processed by the 

system utilizing LSTMs to capture temporal relationships and attention methods to select features [9, 

12]. To ensure interoperability with deep learning frameworks, data pretreatment entails cleaning, 

normalization, and encoding [2, 4]. For a reliable performance evaluation, the model is trained and 

validated using the F1-score, Receiver Operating Characteristic (ROC) Curve, Precision-Recall Curve 

(PRC), and confusion matrices [3, 10]. This method greatly improves classification robustness and 

prediction accuracy, which makes it ideal for policy-driven decision-making and real-time air quality 

monitoring [19, 22]. 

2.1 Dataset 

The dataset known as the Time-Series Air Quality Data of India (2010-2023), containing raw and 

unprocessed pollutant concentration measurements from various Indian cities, was utilized in this 

research. It was sourced from Kaggle. The dataset offers hourly measurements of pollutant levels for 

primary contaminants such as PM2.5, PM10, NO₂, CO, O₃, SO₂, and NH₃, as well as meteorological 

variables such as temperature, humidity, and wind speed. This is a stark contrast to most publicly 

available air quality datasets that are typically offered in daily or monthly averaged Air Quality Index 

(AQI) values. The high level of granularity offered by this dataset ensures that models employed for 

deep learning-based prediction tasks are capable of detecting real-time variations in pollutant levels [5, 

6]. 

The primary advantage of the raw nature of this dataset is its ability to allow the model to detect 

essential patterns and temporal relationships inherent in real-world pollution data without the 

requirement of pre-aggregated AQI metrics. Averaged datasets may lose critical fluctuations in 

pollutant levels, thus failing to detect sudden air quality changes and high pollution episodes [9]. The 

model is considered a robust and reliable tool for real-time air quality prediction and environmental 

monitoring, as it employs multi-head attention mechanisms and Long Short-Term Memory (LSTM) 

networks to precisely classify pollutant severity levels and predict AQI categories when dealing with 

fine-grained data [12]. 

2.2 Dataset Pre-Processing 

Raw data includes hourly concentrations of pollution for various air pollutants, including PM2.5, PM10, 

NO₂, CO, O₃, SO₂, and NH₃, and weather data such as temperature, humidity, and wind speed. While 

this dataset offers the most detailed information on air quality, it is often incomplete with missing 

values, errors, and outliers that can harm how models are trained and how accurate predictions are. 

Pre-processing, such as cleaning data, normalizing data, feature selection, pollutant classification, and 

calculation of AQI, makes data clean, in order, and ready for deep learning models. 
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Missing data is addressed in the first step of pre-processing by removing incomplete rows or, if needed, 

filling missing values. Multi-variable handling methods are needed because pollutants can be measured 

differently by different sensors, leading to partially filled data. A weighted average function is used to 

fill missing data for a pollutant ( 𝑃 ) at time ( 𝑡 ) because pollution concentration changes with time and 

seasons. 

𝑃𝑡 =
∑𝑛

𝑖=−𝑛 𝑤𝑖𝑃𝑡+𝑖

∑𝑛
𝑖=−𝑛 𝑤𝑖

 

where weights based on the temporal closeness of the data points are represented as (𝑤𝑖). The approach 

guarantees data integrity without over-interpolation-induced bias. 

Due to contaminants having varying measurement units, normalization is a necessary step. Carbon 

monoxide (CO), for example, is in mg/m³, nitrogen dioxide (NO₂) and sulfur dioxide (SO₂) in parts per 

billion (ppb), while particulate matter PM2.5 and PM10 are in micrograms per cubic meter (µg/m³). 

Without normalization, the contaminants with larger numerical values would end up contributing 

unequally to the model's training. To counter this, all the values are normalized to fall in the range [0,1] 

using a min-max normalization function: 

𝑃′ =
𝑃 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
 

In the processing here,(𝑃′) is the standardized value of the pollutant, and (𝑃𝑚𝑖𝑛)and (𝑃𝑚𝑎𝑥)are the 

minimum and maximum values of the pollutant in the data. This normalization gives equal weight to 

all features. 

Each of the pollutants is mapped to one of five severity classes—Good, Moderate, Unhealthy, Very 

Unhealthy, and Hazardous—using pre-defined AQI thresholds borrowed from reliable organizations 

like the EPA, WHO, and the Central Pollution Control Board (CPCB). A threshold-based mapping 

function is used in the classification process: 

𝑆(𝑃) = 𝐺𝑜𝑜𝑑 ⋅ 1(𝑃 ≤ 𝑃𝐺) + 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 ⋅ 1(𝑃𝐺 < 𝑃 ≤ 𝑃𝑀) + 𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦 ⋅ 1(𝑃𝑀 < 𝑃 ≤ 𝑃𝑈)

+ 𝑉𝑒𝑟𝑦 𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦 ⋅ 1(𝑃𝑈 < 𝑃 ≤ 𝑃𝑉𝑈) + 𝐻𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠 ⋅ 1(𝑃 > 𝑃𝑉𝑈) 

In the Acceptable Air Quality.txt file, the values of some of the pollutants are represented as 

(𝑃𝐺 , 𝑃𝑀, 𝑃𝑈, )𝑎𝑛𝑑(𝑃𝑉𝑈). Such classification enables training the deep learning model to differentiate 

between patterns in severity, not pollutant concentration in isolation. 

A part of the pre-processing process is the computation of the composite Air Quality Index (AQI) score, 

which aggregates multiple concentrations of pollutants to a single index value. Calculation of AQI 

involves weighted summation of pollutant concentration levels due to the fact that polluters 

complement each other and add to poor air quality through interaction with other polluters: 

𝐴𝑄𝐼 = (
𝑃𝑖

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑖
× 100)  

For a particular AQI category, the threshold value is denoted by (𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑖),and the measured 

concentration of the pollutant is denoted by (𝑃𝑖). This approach not only provides end users with a more 

understandable measure but also adheres to international air quality standards. 

The pre-processing pipeline is run within the Dataset, utilizing multi-threading techniques to process 

large amounts of air quality data effectively. A severity mapping function is applied to map each of the 

pollutant columns, mapping a general AQI category to each time step. After processing, the processed 

data is saved in two CSV files: 

1. individual_pollutant_severity.csv – containing severity levels for each pollutant.   

2. overall_air_quality_severity.csv – containing AQI scores and categorized air quality levels.   
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The model can both learn about pollutant behavior at the individual level and overall air quality trends 

by structuring the dataset in this manner, significantly enhancing prediction accuracy and 

generalization ability. By ensuring that the hybrid deep learning model is trained on clean, well-

structured, and domain-optimized data, such pre-processing enhances air quality fluctuation 

predictions and enhances the accuracy of environmental monitoring. 

2.3 Model Implementation 

In order to predict the general AQI category and classify individual pollutant severity levels, the 

proposed hybrid deep model integrates dense layers, bidirectional LSTMs, and multi-head attention. 

The model architecture consists of data input processing, feature extraction, attention-based encoding, 

sequential modeling, and classification. 

Every sample is encoded as a vector in the multi-dimensional feature space with the input data: 

𝑋 = [𝑃1, 𝑃2, … , 𝑃𝑛] ∈ 𝑅𝑛 

where (𝑃𝑖) denotes the normalized pollutant concentration. 

 

2.3.1 Feature Extraction & Encoding   

Each pollutant undergoes independent nonlinear transformation via dense layers: 

𝐹𝑖 = 𝜎(𝑊𝑖𝑃𝑖 + 𝑏𝑖) 

where (𝑊𝑖)is the weight matrix,(𝑏𝑖) is the bias term, and ( 𝜎) is a ReLU activation function. 

2.3.2 Attention-Based Representation Learning   

A multi-head attention mechanism is applied to model interdependencies between pollutants: 

𝐴ℎ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄ℎ𝐾ℎ

𝑇

√𝑑𝑘

) 𝑉ℎ 

where (𝑄ℎ, 𝐾ℎ, 𝑉ℎ) are the query, key, and value matrices for head ( ℎ ), and (𝑑𝑘) is the feature dimension. 

The final attention output is: 

𝐴 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴1, 𝐴2, … , 𝐴𝐻)𝑊𝑂 

where (𝑊𝑂) is the output transformation matrix. 

2.3.3 Temporal Dependency Modeling   

The sequential pollutant data is processed through a Bidirectional LSTM (BiLSTM): 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑋𝑡 , ℎ𝑡−1) 

which encodes forward and backward dependencies, ensuring that historical pollutant trends are 

captured effectively [9]. 

2.3.4 AQI Classification & Output Layer   

The hybrid feature representation is passed through fully connected layers: 

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜ℎ + 𝑏𝑜) 

The final weight matrix is denoted as (𝑊𝑜), the integrated feature representation as ( ℎ ), and the bias 

as (𝑏𝑜). The model emits a probability distribution over the classes of Air Quality Index (AQI). 

The method has a high classification rate in air quality prediction with feature extraction, interaction 

modeling, and sequential trend learning ensured [10]. 
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2.3.5 Input Processing & Feature Transformation   

A high-dimensional feature vector of the concentration of every individual pollutant is utilized to 

represent each sample. The following formulation is a mathematical representation for the 

input characterization: 

𝑋𝑖𝑛𝑑 = [𝑃𝑃𝑀2.5, 𝑃𝑃𝑀10, 𝑃𝑁𝑂 , 𝑃𝑁𝑂2, 𝑃𝑁𝐻3, 𝑃𝑆𝑂2, 𝑃𝐶𝑂 , 𝑃𝑂𝑧𝑜𝑛𝑒] ∈ 𝑅8 

These features undergo a fully connected transformation via a dense layer: 

𝐹 = 𝜎(𝑊𝑖𝑛𝑑𝑋𝑖𝑛𝑑 + 𝑏𝑖𝑛𝑑) 

Here, (𝑏𝑖𝑛𝑑) is the bias term, (𝜎(𝑥)) is a ReLU activation function, and (𝑊𝑖𝑛𝑑 ∈ 𝑅256×8) is the weight 

matrix. Prior to the attention and sequential modeling steps, the transformed output is organized into 

a sequence representation. 

2.3.6 Attention-Based Representation Learning   

To capture complex interdependencies between contaminants, a multi-head 

attention method is employed. The mathematical formulation of multi-head attention is: 

𝐴ℎ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄ℎ𝐾ℎ

𝑇

√𝑑𝑘

) 𝑉ℎ 

where (𝑑𝑘) is the feature dimensionality, and (𝑄ℎ, 𝐾ℎ, 𝑉ℎ)are the query, key, and value matrices for 

attention head ( ℎ ). The attention outputs of each head are concatenated and projected back to the input 

space: 

𝐴 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴1, 𝐴2, … , 𝐴𝐻)𝑊𝑂 

The weighted feature representations are also fine-tuned by a learnt transformation 

matrix, (𝑊𝑂). At the same time with this, there is an independent attention layer: 

𝐴′ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑖𝑛𝑑 , 𝑋𝑖𝑛𝑑) 

Before temporal modeling, this secondary attention process boosts representation learning 

by making key pollutant interactions stand out. 

2.3.7 Temporal Dependency Modeling via BiLSTM   

To model sequential dependencies in pollutant fluctuations, the attention-enhanced features are passed 

through a Bidirectional LSTM: 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑋𝑡 , ℎ𝑡−1) 

which encodes both forward and backward dependencies. The model is able to learn past and future 

trends in air quality successfully because due to bidirectional encoding. The hidden states of the forward 

and backward LSTM layers are combined: 

𝐻𝑡 = [\𝑜𝑣𝑒𝑟𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤ℎ𝑡 ,\𝑜𝑣𝑒𝑟𝑙𝑒𝑓𝑡𝑎𝑟𝑟𝑜𝑤ℎ𝑡] 

where the forward and backward hidden states are represented by ( \𝑜𝑣𝑒𝑟𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤ℎ𝑡)𝑎𝑛𝑑( \

𝑜𝑣𝑒𝑟𝑙𝑒𝑓𝑡𝑎𝑟𝑟𝑜𝑤ℎ𝑡), respectively. As such, the patterns of the pollutants over time are well encoded. 

The outputs from multi-head attention, secondary attention, and BiLSTM layers are then concatenated 

to form a joint representation: 

𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐴, 𝐴′, 𝐻) 

2.3.8 Fusion with Overall AQI Prediction   

The overall AQI score is modeled separately through a dense layer: 

𝑌𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜎(𝑊𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑄𝐼 + 𝑏𝑜𝑣𝑒𝑟𝑎𝑙𝑙) 
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This representation is flattened and merged with the pollutant feature representations: 

𝑀 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑍, 𝑌𝑜𝑣𝑒𝑟𝑎𝑙𝑙) 

( 𝑀 ) denotes the joint feature where 

space for both individual pollutant 

and overall AQI prediction. A 

completely linked layer is used 

to refine the combined 

representation: 

𝐻 = 𝜎(𝑊𝐻𝑀 + 𝑏𝐻) 

(𝑊𝐻) is the weight matrix, and where 

(𝑏𝐻) is the bias. 

2.3.9 Final 

Classification Layer   

The final AQI category is predicted 

via softmax activation: 

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜𝐻 + 𝑏𝑜) 

which outputs probabilities over AQI severity levels, ensuring that the classification is interpretable and 

robust. 

2.3.10 Training Optimization & Regularization   

Dropout regularization is applied throughout the network with a dropout probability of 0.3: 

𝐻𝑑𝑟𝑜𝑝 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝐻, 𝑝 = 0.3) 

Batch normalization stabilizes training by normalizing feature distributions: 

𝐻𝑛𝑜𝑟𝑚 =
𝐻 − 𝜇

𝜎
 

In the present environment, batch mean and standard deviation are represented as ( 𝜇) and ( 𝜎). The 

Adam optimizer with a learning rate of 0.0005 is employed to optimize the model's performance with 

fast convergence and stable weight updates. 

For accurate and precise AQI forecasting, the model incorporates feature extraction, attention-based 

learning, sequential modeling, and fusion mechanisms. Real-time forecasting and monitoring of air 

quality can leverage this model architecture because it enables continuous high-classification accuracy 

as well as correct generalization towards new air quality observations. 

2.4 Model Architecture 

The hybrid deep learning model for AQI classification is mathematically structured as follows:   

- (𝐷) represents Dropout. 

- (𝐶) represents Concatenation. 

- (Ⅎ𝑐{𝑀}(𝑄, 𝐾, 𝑉)\) represents MultiHeadAttn(Q, K, V). 

- (𝐴(𝑋𝑖𝑛𝑑 , 𝑋𝑖𝑛𝑑)) represents Attention Mechanism. 

- (𝐵(𝑋𝑖𝑛𝑑)) represents BiLSTM Processing. 

- (𝐺)represents Global Average Pooling. 

- Parentheses and indentation ensure proper readability while maintaining the original nested 

structure. 
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The architecture represented in Figure~1 and Table~1, consists of multiple interconnected processing 

units. A single dense transformation is first applied, followed by attention-based feature extraction on 

the input vector of pollutant concentration data. Use of a multi-head attention mechanism allows the 

model to attend to important interdependencies between pollutants by computing weighted feature 

representations. Scaled dot-product attention is used by each attention head to scan transformed 

feature embeddings, which are then combined using global average pooling to minimize dimensioal 

complexity. Through concatenation of both forward and backward hidden states simultaneously, a 

Bidirectional LSTM (BiLSTM) preserves information about past and future pollution trends while 

encapsulating temporal dependencies related to pollutant variations. The AQI score, after going 

through a standalone dense transformation, is concatenated with processed features obtained through 

attention mechanisms and the BiLSTM. 

 

Figure 1. Model Architecture 

To enhance training stability, the final combined feature representation is passed through a fully 

connected layer with batch normalization and dropout regularization. Prior to the application of the 

final softmax activation function, which produces a probability distribution over different AQI severity 

levels, a non-linear activation function allows effective learning of features. To allow for better 

convergence, the weight matrices are optimized using the Adam optimizer with a learning rate of 

0.0005, following sparse categorical cross-entropy loss training of the model. The entire architecture 

shows high efficacy in the provision of real-time and accurate air quality predictions, as it combines 
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non-linear feature interactions, pollutant interdependencies, and sequential interdependencies 

between pollutants. 

Table 1. Model Implementation  

Layer Type Input Shape Output Shape Description 

Input Layer (8,) (8,) 

Takes pollutant concentration values 

as input. 

Dense Layer 1 (8,) (256,) 

Applies a fully connected 

transformation with ReLU activation. 

Batch 

Normalization (256,) (256,) 

Normalizes features to stabilize 

training. 

Dropout (p=0.3) (256,) (256,) 

Reduces overfitting by randomly 

deactivating neurons. 

Reshape (256,) (seq,dmodel) 

Prepares data for attention 

mechanisms. 

Multi-Head 

Attention (seq,dmodel) (seq,dmodel) 

Captures relationships between 

pollutants via multiple attention 

heads. 

Self-Attention (seq,dmodel) (seq,dmodel) 

Secondary attention layer for feature 

refinement. 

BiLSTM (seq,dmodel) (seq,dhidden) 

Processes temporal dependencies in 

air pollution data. 

Concatenation 

(seq,dmodel), 

(seq,dhidden) (seq,dconcat) 

Merges attention and sequential 

representations. 

Global Average 

Pooling (seq,dconcat) (dconcat,) 

Reduces dimensionality while 

retaining key features. 

Dense Layer 2 (dconcat,) (128,) 

Further transforms the extracted 

features. 

Dropout (p=0.3) (128,) (128,) 

Prevents overfitting before 

classification. 

Dense Layer 3 (128,) (8,) 

Extracts high-level pollutant 

features. 

AQI Dense Layer (1,) (64,) Processes overall AQI separately. 

Flatten (64,) (64,) 

Converts AQI representation into a 

vector. 

Final 

Concatenation (8,), (64,) (72,) 

Merges pollutant-based and AQI-

based representations. 

Dense Layer 4 (72,) (128,) Refines final feature space. 

Dropout (p=0.3) (128,) (128,) Regularization to prevent overfitting. 

Output Layer 

(Softmax) (128,) (5,) 

Outputs probability distribution over 

AQI categories. 
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3 Result Analysis 

3.1 Confusion Matrix Analysis 

 

Figure 2. Confusion Matrix 

A measure of the model's accuracy in classifying different classes of air quality is given by the confusion 

matrix Figure~2. The model is perfectly accurate, at 100%, in classifying the "Good" category, meaning 

that there are no misclassifications for this specific class. Conversely, while 74.84% of "Moderate" 

instances were correctly classified, a significant 19.46% of patients classified as Moderate were 

misclassified as Unhealthy, and 1.30% as Very Unhealthy, indicating the presence of misclassification. 

For the "Unhealthy" (99.89%) and "Very Unhealthy" (99.13%) classes, the model is highly accurate, a 

reflection of its strong predictive power in discriminating between lower air quality levels. However, 

there is significant misclassification in the "Hazardous" class; only 48.21% of these instances are 

correctly classified as "Hazardous," while 51.79% are misclassified as "Very Unhealthy." This challenge 

of differentiation of extreme air quality conditions may be due to overlapping distributions of features 

in pollutant concentrations, as indicated by the above misclassifications. 

3.2 F1-Score Per Class 

 

Figure 3. F1-Score Classification Plot 
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The results from the confusion matrix are also supplemented by the F1-score analysis Figure~3. The 

"Good" class is almost flawless in classification performance, as can be seen from its high F1-score. The 

"Very Un-healthy" and "Hazardous" classes, however, show comparatively lower scores, which suggest 

some degree of misclassification; however, the Moderate and Unhealthy groups show good F1-scores. 

The difficulty in differentiating extreme levels of pollution can be seen from the low F1-score for 

hazardous air quality, as shown by the results from the confusion matrix. 

3.3 Precision-Recall Curve (PRC) Analysis 

 

Figure 4. PRC Curve 

The precision-recall curve (PRC) Figure~4, is used to check the ability of the model to handle class 

imbalances. In all classes except the Hazardous category, the curve is always high in precision for the 

majority of the classes. This implies that the algorithm performs well in predicting hazardous air quality 

but is having an issue with recall, leading to some extreme pollution to be labeled as Very Unhealthy. 

The model's predictions are trustworthy based on the overall high precision exhibited across classes, 

implying a decrease in false positives. 

3.4 Receiver Operating Characteristic (ROC) Curve Analysis 

 

Figure 5. ROC Curve 
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The model's ability to discriminate between different classes at different thresholds is measured using 

the ROC curve Figure~5. For every class, the area under the curve (AUC) is approaching 1.0, which 

shows an extremely high model discrimination ability. A slight shortfall from ideal classification is 

observed in the Hazardous category, as reported in other research that puts forward the limitation in 

perfect identification of cases of extreme air pollution. The strength of the model in discriminating 

between healthy and hazardous air quality conditions is corroborated by the extremely high AUC values 

for all other classes. 

3.5 Training and Validation Loss & Accuracy 

 

Figure 6. Training, Validation Loss and Accuracy 

The model showed rapid convergence, as seen from the training and validation plots, where the loss 

values showed a sharp drop across the epochs Figure~6. Overfitting is prevented when the validation 

loss plateaus at low values. The accuracy plot shows good generalization as the validation accuracy was 

high and stable, reaching 99% after a few epochs. The possibility of fine-tuning, enabling further 

stability gain, is shown by minor fluctuations in validation accuracy in the later epochs. 

3.6 Comparative Analysis  

The model's efficacy of classification for various classes of air quality is also described in the next 

Table~2. The "Good" class demonstrates perfect classification with the best F1-score of 0.98 and a 

perfect accuracy of 100%. In contrast, the "Moderate" class, with a slightly lower F1-score of 0.85, 

demonstrates some degree of misclassification and an accuracy of 74.84%. The "Unhealthy" and "Very 

Unhealthy" classes demonstrate strong predictive performance with high accuracies of 99.89% and 

99.13%, respectively, and F1-scores of more than 0.79. In contrast, the "Hazardous" class is marked 

with the poorest performance, with an accuracy of merely 48.21%, demonstrating strong difficulty in 

classification, as evidenced by its lower F1-score of 0.65 and recall of 0.61. All classes demonstrate high 

AUC scores, near 1.00, demonstrating the overall exceptional classification ability of the model. The 

AUC score of 0.89 for the Hazardous class, however, demonstrates lower precision in relation to other 

classes. This observation demonstrates the model's ability to classify common and moderately 

hazardous air conditions but demonstrates weakness in classifying cases of extreme air pollution, which 

indicates the need for further optimization in such cases. 

Table 2. Model Performance 

Category Accuracy (%) F1-Score Precision Recall AUC Score 

Good 100 0.98 0.99 0.97 1 

Moderate 74.84 0.85 0.87 0.83 0.98 
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Unhealthy 99.89 0.92 0.9 0.94 0.99 

Very Unhealthy 99.13 0.79 0.76 0.82 0.97 

Hazardous 48.21 0.65 0.68 0.61 0.89 

4 Conclusion 

The suggested hybrid deep learning model in this study accurately classifies air quality levels through 

the integration of bidirectional LSTMs, fully connected layers, and multi-head attention mechanisms. 

The performance translates into excellent performance in the evaluation of the severity of pollution, 

with high accuracy in classification for moderate and unhealthy air quality levels. With almost perfect 

classification statistics, the model performs well in differentiation between Good, Moderate, and 

Unhealthy air quality classes. However, as evident from the misclassification rates presented in the 

confusion matrix, there is still difficulty in differentiation between the Very Unhealthy and Hazardous 

classes. The deficiency reflects overlap in feature distributions for extreme levels of pollution, making 

it difficult to differentiate with accuracy. In spite of this, overall AUC scores for most classes near 1.00 

reflect the model's high discrimination ability, thus ensuring its high generalization in different 

pollution contexts. 

Through the use of attention mechanisms and sequential modeling practices to produce credible 

predictions, the model is capable of capturing spatiotemporal dependencies inherent in pollution data. 

The integration of real-time sensor feeds, meteorological data, and air quality indicators increases its 

accuracy in forecasting. The occurrence of sporadic misclassification within the Hazardous class, 

specifically at critically high pollutant levels, reflects the need for further improvements. This study 

demonstrates the potential of deep learning models to successfully substitute traditional AQI prediction 

practices, with improved adaptability to actual changes in pollution. The integration of recurrent 

architectures and attention-based learning allows the treatment of sequential air quality data, thus 

ensuring real-time prediction accuracy. 

Future enhancements should focus on enhancing hazardous-level classification with finer-resolution 

contaminant data and other environmental variables, though the model is very good at AQI category 

prediction. Another avenue is the incorporation of wavelength-based spectrum analysis of 

contaminants to identify even more subtle pollution signatures. The ability of the model to differentiate 

between cases of extreme pollution can be improved by using raw spectrum wavelengths and 

hyperspectral photography to derive more information on pollutant composition. Moreover, adaptive 

thresholding algorithms can minimize misclassifications by dynamically varying categorization 

thresholds based on pollutant distributions. 

Moreover, generalization ability can be enhanced by enriching the dataset with multi-platform real-

time inputs, such as satellite monitoring, industrial emissions data, and real-time vehicle emission 

monitoring. To enable models to learn across multiple decentralized pollution monitoring stations 

without compromising data privacy, federated learning strategies may be explored in the future. This 

would allow a more robust model with excellent classification performance to learn about regional air 

quality dynamics. To enable policymakers to understand model decisions in favor of data-driven 

pollution control policies, future work can also focus on interpretable AI methods. 
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