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Introduction: Nowadays, fog computing has emerged as a promising solution for handling 

the prompt processing of tasks in Internet of Things (IoT)-based applications. One of the 

key advantages of fog computing is that it reduces service completion time by offloading tasks 

from IoT devices to the fog server. Therefore, scheduling of tasks becomes vital, where 

emergency and non-emergency tasks can be prioritized to offload data to the nearby fog 

servers, which improves the Quality of Service (QoS). Due to the dynamic nature of the IoT 

environment, traffic load varies over time, making it difficult to select the optimal fog server for 

task offloading.   
Objectives: This research introduces a novel task offloading for the Fog Cloud scenario using 

the improved Coati Optimization Algorithm based on Genetic Operators (ICOA-GO) algorithm. 
Methods: Initially, the Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) is 

designed to queue incoming tasks into four different priorities. In the DFQM-Fuzz,  Highly 

urgent (HU) and Urgent (U) tasks are considered as first and second priorities and those tasks 

are offloaded through the Fog Server. The Non Urgent (NU) and No Deadline (ND) tasks are 

offloaded through the Cloud Server. Furthermore, when there is no resource to offload through 

the Fog Server, the task is offloaded through the Cloud Server. 

Results: The proposed improved Coati Optimization Algorithm based on Genetic Operators 

(ICOA-GO) algorithm optimizes the selection of Cloud and Fog Servers. The analysis based on 

Energy Utilization, Task Rejection Ratio, and Makespan yielded values of 93.589, 1, and 

1.96073. 

Conclusions: By integrating the DFQM-Fuzz and ICOA-GO improves task prioritizing and 

offloading efficiency while reducing execution time, energy consumption, and cost. 

Keywords: Fog Server, Optimization Algorithm, Task Offloading, Prioritization, Internet Of 

Things (Iot), Task Rejection.    
 

INTRODUCTION 

The recent advancements of information technology have led to the widespread use of mobile devices in daily life. 

In recent years, mobile phones, wearable technology, smart devices, industrial gadgets, smart devices, and other 

items have been connected to the Internet (Deb et al, 2021). In addition to having limited energy and resources 

(CPU, storage, and memory), these devices handle a significant amount of data. The Open Fog Consortium and the 

European Telecommunications Standards Institute (ETSI) have given definitions and guidelines for computing 

overhead (Jazayeri et al, 2021). The deployment of smart systems such as smart factories, smart grids, smart cities, 

smart supply chains and logistics, and smart factories has become impossible without the Internet of Things (IoT) 

(Tran-Dang & Kim, 2023). Cloud computing requires sufficient resources to perform activities effectively; it is still a 

challenging task. However, due to limited spectrum resources, sporadic network connectivity, and the large 

physical distance between IoT devices and faraway cloud servers, cloud computing-based solutions fail to provide 

the desired QoS for delay-sensitive applications (Gasmi et al, 2022; Mishra et al, 2023). 
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 Fog computing is used to expand cloud computing resources closer to data generation sources. It enables 

services and applications to meet their QoS levels by allowing fog computing devices to handle and offload most 

tasks on behalf of cloud servers in a distributed manner (Hussain & Beg, 2021). Fog Computing Systems (FCSs) 

consist of interconnected fog computing devices that are required for IoT-based systems to provide low response 

latency and uninterrupted services and applications across the things-to-cloud spectrum (Salehnia et al, 2024). For 

real-time tasks, it is essential to offload such execution methods to external platforms like Fog for fast processing. 

However, these methods only concentrate on selecting a single Fog Node (FN) and completing all tasks there 

(Mazumdar et al, 2021; Tran-Dang & Kim, 2021). IoT Sensor Nodes (SNs) use Directed Acyclic Task Graphs 

(DATGs) to express interdependent subtasks. Certain operations at the same level in DATG could be executed 

concurrently to significantly reduce processing delay (Deng et al, 2021). 

Effective resource allocation strategies are necessary for FCSs to perform task offloading and reap the benefits of 

fog computing (Yu-Jie et al, 2022). Some researchers have enhanced their allocation technique by adopting a 

centralized approach to resource distribution. However, self-centered IoT users struggle to maximize their personal 

Quality Of Experience (QoE). They may fail to execute the procedures required to optimize system performance 

(Bai et al, 2021; Meena et al, 2021). To reduce processing time at fog nodes, various application forms' virtual 

parallel queues are taken into consideration. However, the system's performance suffers due to the lack of a load-

balancing mechanism. These capable systems' processing and storage capacities determine their QoE (Abdulazeez 

& Askar, 2023). As a result, a queueing system offers a comprehensive solution for processing a large number of 

requests in accordance with an appropriate scheduling pattern. These queueing models have enough predictive 

capacity to forecast behavior and performance in both low- and high-traffic conditions (Razaq et al, 2021). Thus, 

this study introduces a novel delay-aware scheduling and server selection method. The objectives of the research 

are to introduce Delay-aware computation offloading on Fog system using global information processing and 

improved nature-inspired computational intelligence algorithm. It also implements a delay-aware Four Queue 

Model With Fuzzy Logic (DFQM-Fuzz) model for scheduling the offloading tasks in Fog level. This study aimed to 

present an improved Coati Optimization Algorithm based on Genetic Operators (ICOA-GO), it is employed to 

offload the computations in fog and cloud computing environments, and to compare the performance of the 

proposed approach with the recently developed approaches for Delay aware computation offloading at the core 

level. 

 The rapid expansion of the IoT has led to an unprecedented increase in data generation, necessitating 

efficient processing and management to derive actionable insights (LEE et al, 2020). Traditional cloud computing 

paradigms face significant challenges in handling the latency-sensitive nature of IoT applications due to the 

physical distance between data sources and centralized data centers (Angel et al, 2021). Fog computing emerges as 

a viable solution by bringing computation closer to the edge, thereby reducing latency and improving real-time data 

processing capabilities (Das & Inuwa, 2023). However, efficient offloading of computational tasks in a distributed 

environment remains a complex task. To increase performance and guarantee task completion on time, this 

research is motivated by the need to optimize computation offloading in IoT-based fog computing systems.  

 The integration of IoT with fog computing systems poses significant challenges in terms of delay-aware 

computation offloading (Sabireen & Neelanarayanan, 2021). Current methods often struggle with inappropriate 

task distribution, resulting in increased latency, inefficient resource consumption, and potential system 

bottlenecks. These issues are exacerbated by the heterogeneous and dynamic nature of fog computing 

environments, in which devices with various computational capabilities must collaborate to process data effectively. 

Traditional optimization techniques fail to adequately address the complexities involved, resulting in poor 

performance and user dissatisfaction (Laroui et al, 2021).  

 To address these issues, this study proposes developing an enhanced nature-inspired computational 

intelligence algorithm and a strong framework that can efficiently handle the dynamic and diverse nature of fog 

computing environments by utilizing enhanced nature-inspired computational intelligence algorithms.The 

proposed algorithm aims to optimize the offloading decisions by considering factors such as computational delay, 

energy consumption, and network latency, and can significantly improve the performance and reliability of core-

level computing systems, ensuring that latency-sensitive applications meet their stringent requirements. 
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LITERATURE REVIEW  

Sadoon Azizi et al. 2022 developed two semi-greedy-based algorithms named priority-aware semi-greedy (PSG) 

and PSG-with multi-start procedure (PSG-M) to map the IoT tasks in FNs efficiently. In order to achieve QoS for 

IoT tasks, the task scheduling problem was first developed to reduce the problem of FN's energy consumption 

(Azizi et al, 2022). This technique enhances the percentage of IoT tasks that achieve the deadline requirement, 

energy consumption, makespan, and deadline violation time. The percentages of tasks meet their deadline 

requirements, such as 95.2% for PSG and 96.5 for PSG-M when FNs is 60. 

 Naveen Chauhan et al. 2021 developed a multi-class open queueing model that is utilized to maintain the 

traffic on various Delay-aware applications offloading (DAAO). This technique enhanced the performance of a 

14.30% service rate and reduced the loss rate to 2.0%. The multi-class Brownian model was used to design FN's 

architecture, which can serve several customers (Chauhan et al, 2021). This technique was designed as a Weighted-

Fair Queueing (WFQ), non-WFQ and load-balancing algorithm.  

 Moreover, Maryam Keshavarznejad et al. 2021 developed a task offloading in the form of a multi-objective 

optimization issue to reduce total power consumption and delay in executing tasks. This technique utilizes two 

meta-heuristic methods named the Non-Dominated Sorting Genetic Algorithm (NSGA-II) and the Bees algorithm 

(Keshavarznejad et al, 2021). This technique reduces the time consumption and delay; the maximum time 

consumption is 5000 joules for offloading.  

 Similarly, Parmeet Kaur and Shikha Mehta created a QoS-aware task offloading technique based on a novel 

nature-inspired optimization algorithm named the Smart Flower Optimization Algorithm (SFOA). This technique is 

used to offload delay-sensitive operations in the IoT, lowering execution costs and deadlines (Kaur & Mehta, 2022). 

This technique yields a minimum execution time of 75.1 seconds for 300 tasks and 55.6 seconds for 1,000 tasks. 

 Sanjaya Kumar Panda et al. 2023 developed a multi-objective task offloading technique named EDP-TO for 

load balancing. The multi-objective function is used to select FNs for offloading. This technique divides the tasks 

into many sub-tasks and allocates them to the appropriate FNs (Panda et al, 2023). This concept reduces the 

overall delay. Here, 60% of FNs were active nodes in all three scenarios, such as 3, 69, and 18. The summary of 

related works is presented in Table 1. 

Table 1. Summary of related works 

Author name and 

reference 

Technique used Performance Limitation 

Sadoon Azizi et al.  PSG, PSG-M 95.2% for PSG and 96.5 for 

PSG-M when FNs are 60 

It can execute only one task at a time 

in each FN 

Naveen Chauhan et 

al.  

A multi-class open 

queueing model 

 loss rate as 2.0% It is only utilized for a single 

centralized fog server 

Maryam 

Keshavarznejad et al.  

NSGA-II and the 

Bees algorithm 

Maximum time consumption 

is 5000 joule for offloading 

This technique does not perform on 

clustering fog nodes 

Parmeet Kaur and 

Shikha Mehta 

SFOA 55.6 least execution time for 

1000 tasks 

The worst solution towards the best 

local/global solution occurred by 

this technique. 

Sanjaya Kumar 

panda et al. 

EDP-TO for load 

balancing 

Mean energy consumption 

and mean delay 

Complex to perform 

 

OBJECTIVES 

This research introduces a novel delay-aware scheduling and server selection method. The objectives of the 

research are: 

➢ To introduce Delay-aware computation offloading on Fog system using global information processing and 

improved nature-inspired computational intelligence algorithm. 

➢ To implement Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) model for scheduling the 

offloading tasks in Fog level.  
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➢ To present an improved Coati Optimization Algorithm based on Genetic Operators (ICOA-GO), it is 

employed to offload the computations in fog and cloud computing environments. 

➢ To compare the performance of the proposed approach with the recently developed approaches for Delay 

aware computation offloading at the core level. 

METHODOLOGY   

Study Design 

 The complexity of computation offloading increases with the number of offloading tasks, making it a 

nontrivial and NP-hard problem. The existing studies mostly focused on minimizing the overall communication 

delay, processing cost, and time. However, a priority during task scheduling in optimal fog server selection for 

computation offloading based on their source requirements and deadline constraints is challenging. In this study, a 

Global Information Processing model is designed to schedule tasks generated by IoT devices and process them in 

the appropriate computing resource to achieve QoS. Global Information Processing (GIP) at the fog-cloud level for 

computation offloading entails strategically distributing computational tasks over a layered architecture of fog and 

cloud computing. Initially, the Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) is developed, in 

which highly urgent and urgent tasks are en-queued in the first and second queues, respectively, for offloading to a 

nearby fog server while taking the delay factor into consideration. Non-urgent and no-deadline tasks will be queued 

in the third and fourth queues, respectively, for direct cloud offloading due to their low delay factor. Here, factors 

such as task size, arrival time, and delay are considered while scheduling the task into four priorities. Fog 

computing and cloud computing are combined in the GIP to maximize data processing and management, especially 

from IoT devices. This GIP model aims to balance the computational load between local fog nodes and remote 

cloud servers at the core level, improving efficiency, reducing latency, and enhancing overall system performance. 

 Furthermore, to solve the issue of selecting the best fog server for computation offloading, an improved 

Coati Optimization Algorithm based on Genetic Operators (ICOA-GO) is used to offload calculations in fog 

computing environments. In rare cases where fog nodes lack adequate resources, offloading computation will take 

place in the cloud. An enhanced version of the proposed meta-heuristic method achieves three objectives: 1) 

minimizing task execution time, 2) minimizing energy usage for connected devices, and 3) minimizing execution 

costs for using server resources. A customized mutation operation is applied to the Coati Optimization Algorithm 

(COA), extending the functionality of the Standard COA to improve global search abilities. The system model is 

presented in Figure 1. 
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Figure 1. System Model 
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Delay aware task scheduling using DFQM-Fuzz 

 The Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) is used for delay-aware task scheduling. 

The incoming tasks are offloaded into four various queues: Highly urgent (HU), Urgent (U), Non-Urgent (NU), and 

No Deadline (ND). Here, the DFQM-Fuzz model is used to offload the task into four different queues. Task size, 

arrival time, and delay limits are considered while categorizing the task. Let the incoming tasks be denoted as: 

 pHHHH ,..., 21=
, wherein 

( )nH p
symbolizes the 

thp
task at the time n . The IoT devices are indicated as 

 pQQQQ ,..., 21=
, and the fog nodes distributed in the fog layer are signified as

 qBBBB ,...., 21=
. In order to 

schedule the task into four various queues, fuzzy logic is employed by considering task size, arrival time, and delay 

as factors. 

Task Size: Task size is the computational workload required to complete a task, which is measured in bits. Larger 

tasks need more processing time and resources and are considered lower priority unless they are urgent.  

Arrival Time: Arrival time is the time when the task is generated or received in the system. Earlier arrival times of 

the task are assigned with higher priority. 

Delay: Delay is the time taken for a task to experience transmission, queuing, and processing lags. Tasks with 

higher delays are assigned with higher priority to minimize QoS violations. 

 By considering the three factors, fuzzy-based decision-making is employed for prioritizing the task and is 

defined in Table 2. 

Table 2. Sample Fuzzy rule set 

Task Size Arrival Time Delay Priority 

Small Early Low Highly Urgent (HU) 

Large Late High Urgent (U) 

Medium Normal Moderate Non-Urgent (NU) 

Small Late High No deadline (ND) 

 

 After categorizing the task into four various queues, the HU and U are offloaded to the Fog Server and the 

NU and ND are offloaded through the Cloud Server. The final decision in prioritizing the queues 
( )nr  is defined 

as: 

( )




=
CloudthroughoffloadedistaskNDNU

FogthroughoffloadedistaskUHU
nr

,

,


   (1) 

 Furthermore, when there is no resource to offload through the Fog Server, the task is offloaded via the 

Cloud Server. The ICOA-GO algorithm is used here to process both cloud and fog-based offloading. 

 3.2 Server Selection using ICOA-GO Algorithm 

 The proposed ICOA-GO algorithm is used to choose the server that will process the task. In order to 

improve the convergence rate, the genetic operator (Sivanandam et al, 2008) and Coati solution (Dehghani et al, 

2023) update are integrated into the design of the proposed ICOA-GO algorithm. The algorithm considers energy 

consumption, task execution delay, and execution cost as its fitness function when selecting the server.  

3.2.1 Multi-objective Fitness Function 

 The multi-objective fitness MF  for the server selection based on energy consumption EC , task execution 

delay TED  and execution cost ExC  is defined as: 
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CExCEDTEMF ++= 
    (2) 

 where the weights concerning the normalized value of task execution delay, energy consumption and 

execution cost are symbolized as  ,


 and  respectively.  

Task execution delay: The delay is determined by the size of the task and the rate at which data is transmitted. A 

smaller task execution delay results in higher fitness values and is considered as follows: 


=

=
K

k k

k

DT

S
TED

1      (3) 

 Where, K  signifies the total number of tasks, kS
indicates the size of the 

thk task in bits, and  kDT

notates the data transmission rate for the 
thk task in bits per second. The normalized value of the TED symbolized 

as DTE  . 

Energy consumption: The energy consumed by each task is proportional to the power required and the time taken 

to execute the task. Reducing energy usage is critical for battery-powered devices and is formulated as: 


=

=
K

k
kk TEDQEC

1      (4) 

where, kQ
symbolizes the energy consumption for executing the 

thk task (in joules). The normalized value of 

energy consumption is signified as CE  . 

Execution cost: Execution cost is associated with the expense of utilizing computational resources in cloud or edge 

servers. Lower costs make the system more economically efficient. 


=

=
K

k
kExCExC

1       (5) 

where, kExC
symbolizes the cost incurred for using server resources to execute the 

thk task. The normalized value 

is symbolized as CEx  . 

3.2.2 Design of ICOA-GO Model 

 The proposed ICOA-GO algorithm is designed by integrating conventional coati optimization with genetic 

operators such as selection, crossover, and mutation. The ICOA-GO algorithm is initialized as follows: 

               
( ) glbfEJREaA llllff .....2,1,,.....2,1,.: ==−+=

                        (6)  

  Here, the search bounds of the algorithm are notated as
,lJ

 and lE
 respectively, which have the 

dimension l and R  symbolize the random parameter. The solution estimated by the 
thf

Procyonidae search agent 

is signified as
fA

and s symbolizes the decision variable. The total population of the Procyonidae search agent is 
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denoted asb , and the solution derived by the 
thf

Procyonidae search agent is
lfa ,

, wherein its dimension is 

signified as l . The population of the Procyonidae search agent is interpreted in matrix form A as: 

                              gbspsbb

gflfr

sl

gbb

f

aaa

aaa

qaa

A

A

A

A

 























=























=

,,1,

,,1,

,1,11,11















                                (7)   

Fitness: The feasibility of the solution is evaluated based on the multi-objective fitness function formulated in 

equation (2). 

Diversification: In the diversification phase, the Procyonidae search agents climb the tree, allowing the algorithm to 

explore distinct areas of the search space and avoid premature convergence on local optimums. In this stage, the 

Procyonidae search agent uses target-searching using high-dimensional portions of the problem's search space to 

identify potential areas. The solution obtained by the Procyonidae search agent during the diversification stage is 

modeled as follows: 

        

( ) 







=−+=

2
.......2,1..: ,

11 b
fforAKNRaaA fllf

i
lf

i
f

 and 
    g…2 1,=l

  (8) 

Here, the target identified by the Procyonidae search agent is notated as N  , and the arbitrary parameter that has 

the bounds
 2,1

 is symbolized as K . Here, in order to enhance the convergence rate of the algorithm, genetic 

operators like selection, crossover, and mutation are incorporated in the diversification phase of the ICOA-GO 

algorithm.  

Selection: In the selection phase, the best Procyonidae search agent is chosen based on the fitness to perform the 

reproduction. 

Crossover: The offspring are introduced during the crossover phase by combining the parents. The proposed ICOA-

GO algorithm combines the two diverse solutions to create a new offspring solution for more effectively exploring 

the search area.  

Mutation: The mutation process of the genetic algorithm increases the algorithm's randomness, which helps to 

prevent local optimal solution trapping.  

 Thus, the solution of the Procyonidae search agents is updated in the diversification phase after performing 

the genetic operations is signified as 









 11 :
i

lf
i
f

aA
. In the diversification period, another group of Procyonidae 

search agents wait below the trees, awaiting prey to fall. This stage represents a group of agents focusing on areas 

where high-potential solutions may emerge, prepared to refine them further. The location of the prey in the 

diversification stage is formulated as follows: 

               
( )glEJRENN lll

Y
l

Y ,....,2,1,.: =−+=
 ,    (9) 
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( )
( )








−+

−+
=

elseNaRA

FitFitaINRA
aA

Y
llflf

fNlf
Y
clfi

lf
i
f

Y

,..

,,..
:

,,

,,

,
11

            (10) 

                                For f =

b
bb

,....2
2

,1
2

+







+









and l=1, 2… g                                    (11) 

 When a Procyonidae search agent calculates a new position, the algorithm determines whether it improves 

the objective function. It prevents coatis from moving to worse positions, which could lead to local optimal 

trapping. The solution updation is interpreted as: 

                                      





 
=

,,

,, 11

elseA

FitFitA
A

f

f
i
f

i
f

f

                                                          (12)  

 where the solution derived by the 
thf

procyonidae search agent is symbolized as 

1i
f

A
and the fitness is 

defined as

1i
f

Fit
. 

Intensification: Attacking the prey represents the fine-tuning of a solution and is utilized to refine the solution to 

find the best possible outcome in a smaller focused region. The intensification step represents exploiting a known 

solution to improve it further by intensively searching its identified position in the diversification phase. The 

solution evaluated by the Procyonidae search agent is defined as: 

                
max,....2,1, vVwhere

V

J
J

V

E
E lW

l
cW

l
===

                                     (13) 

                
( ) ( )( )W

l
W
l

W
llf

i
lf

i
f

EJRERaaA −+−+= ..21: 22

                      (14)   

                           where, f =1, 2… b, l=1, 2… g 

The Procyonidae search agent's solution update during the intensification phase is evaluated to determine if this 

position enhances the objective function. It is evaluated based on: 






 
=

,,

,, 22

elseA

FitFitA
A

f

f
i
f

i
f

f

                                                          (15) 

where the solution derived by the 
thf

Procyonidae search agent is symbolized as 

2i
f

A
and the fitness is defined as

2i
f

Fit
. 

Termination: The acquisition of a global best solution or the attainment of maximal iteration terminates the 

algorithm processing. The pseudo-code for the ICOA-GO algorithm is presented in Algorithm 1. 
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Table 3. Algorithm 1: Pseudo-code for ICOA-GO algorithm 

Pseudo-code for ICOA-GO algorithm 

1 Initialize the search agent, dimension, and population. 

2 The Procyonidae search agents are located arbitrarily. 

3 Estimate the feasibility  

4 while  v<V 

5 { 

6 The solution estimation based on diversification is evaluated through 

( ) 







=−+=

2
.......2,1..: ,

11 b
fforAKNRaaA fllf

i
lf

i
f

 
7 

The fitness is evaluated through 





 
=

,,

,, 11

elseA

FitFitA
A

f

f
i
f

i
f

f

 

8 The solution estimation based on intensification is evaluated through 

max,....2,1, vVwhere
V

J
J

V

E
E lW

l
cW

l
===

 
9 

The fitness is estimated as





 
=

,,

,, 22

elseA

FitFitA
A

f

f
i
f

i
f

f

 

10 } 

11 The best outcome is returned 

12 v=v++ 

13 Stop 

 

 Here is the solution obtained using the ICOA-GO algorithm; the server selection is used to perform the task 

offload. 

RESULT AND DISCUSSION 

The proposed approach is implemented in iFogSim (java), and its performance is measured by analyzing numerous 

metrics and demonstrated by comparing the results to other current methods that are implemented. The proposed 

model implements and compares existing methods such as the Whale optimization algorithm (WOA), Bat 

optimization algorithm (BAT), Round robin (RR), and random optimization (ROP). 

 The makespan signifies the time taken to perform the given work, as depicted in Figure 2. The analysis uses 

a variety of VMs to demonstrate the scalability of the proposed work offloading architecture. Here, reducing high-

priority task delays and optimizing virtual machine utilization is made possible by the DFQM-Fuzz model-based 

task prioritization based on urgency. Additionally, the GIP model prevents bottlenecks and underutilization of 

particular VMs by offloading tasks to the most appropriate VMs in fog or cloud layers. Additionally, the ICOA-GO-

based server selection lowers the makespan and assigns tasks to virtual machines (VMs) with adequate resources. 

The detailed analysis based on makespan is presented in Table 4. 
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Figure 2. Makespan based on VM 

Table 4. Makespan based on VM 

Total VMs/Methods 10 20 30 40 50 

Proposed 48.832 49.832 50.8327 51.8327 52.8327 

WOA 15.8964 28.0399 43.4596 60.9015 81.1608 

BAT 25.592 46.2988 67.2951 88.7953 112.048 

RR 32.8925 65.7818 101.79 133.102 165.248 

ROP 43.2971 85.3937 129.719 174.257 215.348 

 

 The makespan analysis based on various tasks is portrayed in Figure 3, and its detailed analysis is 

presented in Table 5. In this case, the DFQM-Fuzz model-based task queuing model helps minimize queuing delays 

for high-priority tasks by prioritizing tasks based on urgency. Then, the urgent tasks with HU and U are processed 

in nearby fog nodes to reduce transmission time and low-priority tasks are offloaded to the cloud for efficient 

handling. Thus, the minimal makespan is evaluated by the proposed model compared to the existing techniques for 

various tasks.  
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Figure 3. Makespan based on Task 

Table 5. Makespan based on Task 

Total tasks/methods 100 300 500 700 900 

Proposed 1.96073 1.96073 1.96073 1.96073 1.96073 

WOA 3.36915 8.41556 13.0753 17.7084 22.3496 

BAT 4.86923 10.7064 16.5526 22.3535 28.2007 

RR 9.35894 18.0012 26.7764 35.3507 44.2151 

ROP 15.3327 26.0155 36.6461 47.4334 58.1581 

 

 The task rejection ratio based on VM indicates the percentage of tasks that cannot be processed due to 

insufficient resources on VMs and is presented in Figure 4. In this, the ICOA-GO algorithm selects the optimal 

server to schedule the task with sufficient computational capacity. As a result, the suggested model minimizes the 

task rejection ratio in comparison to traditional approaches. Furthermore, by adding a genetic operator to the 

traditional coati algorithm, the local optimal trapping problems are resolved, and the best solution for the global is 

obtained. The optimal server selection for offloading assists in minimizing the task rejection ratio, and the detailed 

analysis is portrayed in Table 6. 
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Figure 4. Task Rejection Ratio based on Task 

Table 6. Task Rejection Ratio based on Task 

Total Tasks/Methods 100 300 500 700 900 

Proposed 2 4 8 13 13 

WOA 10 15 15 28 85 

BAT 15 16 23 24 57 

RR 26 29 33 46 80 

ROP 39 42 44 51 93 

 

 The task rejection ratio by varying the number of VMs is portrayed in Figure 5, and a detailed analysis of it 

is presented in Table 7. In this case, the DFQM-Fuzz model helps to minimize rejections and delays by en-queuing 

the task according to priority. In addition, by combining fog and cloud resources, the GIP model ensures that large 

resource-intensive tasks are accommodated. Also, the inclusion of cloud resources as a fall-back minimizes the 

rejection of non-urgent and no-deadline tasks. Thus, superior performance is acquired by the proposed model. 
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Figure 5. Task Rejection Ratio based on VM 

Table 7. Task Rejection Ratio based on VM 

Total VMs/Methods 10 20 30 40 50 

Proposed 1 5 6 17 34 

WOA 11 12 13 15 68 

BAT 15 17 22 35 87 

RR 24 26 31 44 99 

ROP 39 41 45 45 72 

 

 The energy used to process individual tasks is measured by the energy utilization analysis shown in Figure 

6. As a result, the GIP model helps to reduce transmission and processing energy by offloading tasks to nearby fog 

nodes whenever feasible. Furthermore, the ICOA-GO-based server offloading considers energy usage to be one of 

the fitness factors that aid in the efficient use of energy. The detailed energy utilization analysis based on various 

tasks is presented in Table 8. 

 

Figure 6. Energy Utilization based on Task 
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Table 8. Energy Utilization based on Task 

Total tasks/Methods 100 300 500 700 

Proposed 93.589 293.589 793.589 793.589 

WOA 222.523 433.477 921.477 969.477 

BAT 577.97 1001.97 1065.97 1113.97 

RR 866.955 1290.95 1354.95 1402.95 

ROP 1733.91 2189.91 2221.91 2269.91 

 

 Figure 7 demonstrates the latency analysis of the proposed model based on offloading and non-offloading 

mechanisms. The analysis shows that the suggested offloading model minimizes latency because of the optimal 

server selection and delay-aware queuing design.   

 

Figure 7. Analysis based on Latency 

 The ablation study of the proposed method is presented in Figure 8. The analysis demonstrates the 

superiority of the proposed model with a minimal task rejection ratio. Let the analysis with 900 tasks; the proposed 

DFQM- Fuzz + ICOA - GO method acquired the task rejection ratio of 69. Still, the proposed method with criteria 1 

accomplished the task rejection ratio of 144. Criteria 1 indicates that the proposed model offloads HU and U tasks 

only via fog and NU and ND tasks only via the cloud. The DFQM – Fuzz + COA yielded a task rejection ratio of 154, 

and the genetic operators are not included in the proposed task offloading model. Thus, the incorporation of genetic 

operators into the COA aids the proposed technique in minimizing task rejection rates by selecting the optimal 

server without local optimal trapping. Furthermore, ICOA-GO (proposed model without fuzzy-based task 

prioritization) yielded a task rejection ratio of 167. Thus, the ablation analysis demonstrates the superiority of the 

proposed model with fuzzy-based priority scheduling and optimal server selection. 
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Figure 8. Ablation Study 

Comparative Discussion 

  The comparative discussion based on the best case is portrayed in Table 9. Here, the minimal energy 

utilized by the proposed method is 93.589, which is 57.94%, 83.81%, 89.20%, and 94.60% compared to 

conventional WOA, BAT, RR, and ROP methods. Here, the minimal Task Rejection Ratio by the proposed method 

is 1, which is 90.91%, 93.33%, 95.83%, and 97.44% compared to conventional WOA, BAT, RR, and ROP methods. 

Here, the minimal makespan by the proposed method is 1.96073, which is 41.80%, 59.73%, 79.05%, and 87.21% 

compared to conventional WOA, BAT, RR, and ROP methods. 

Table 9. Comparative Discussion 

Metrics/ Methods WOA BAT RR ROP Proposed 

Energy Utilization 222.523 577.97 866.955 1733.91 93.589 

Task Rejection Ratio 11 15 24 39 1 

Makespan 3.36915 4.86923 9.35894 15.3327 1.96073 

 

 Here, the analysis indicates the superiority of the proposed method compared to the existing methods. 

CONCLUSION 

 This paper introduced a novel task offloading model for the GIP system using delay-aware prioritization 

and optimal server selection. In this case, the DFQM-Fuzz model is used to prioritize the incoming task offloading. 

The parameters like task size, arrival time, and delay are considered by the fuzzy model to prioritize the incoming 

task. Here, prioritization assists the model in eliminating task rejection by crossing the deadline. For efficient task 

offloading, the optimal server selection is employed using the ICOA-GO algorithm. The proposed ICOA-GO 

algorithm incorporates the genetic operators to acquire the best global solution. The optimal best server selection is 

employed using the ICOA-GO by considering energy consumption, task execution cost, and task execution delay as 

its fitness for efficient task offloading. The analysis based on Energy Utilization, Task Rejection Ratio, and 

Makespan acquired the values of 93.589, 1, and 1.96073, respectively.  

 

LIMITATIONS AND FUTURE RESEARCH 

Integrating the DFQM-Fuzz and ICOA-GO improves task prioritizing and offloading efficiency while reducing 

execution time, energy consumption, and cost. The reliance on fog servers with limited resources poses challenges 

when high task density is considered, which leads to computational bottlenecks. Future enhancements should be 
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made to the GIP model by integrating advanced AI techniques for dynamic task scheduling, supporting real-time 

adaptability and scalability. 
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