
Journal of Information Systems Engineering and Management
2025, 10(22s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Delay Aware Global Information Processing for Offloading

Computation at Core Level Using Nature-Inspired Algorithm

Sarkarsinha Harsinha Rajput1 Dr. Manoj Eknath Patil2
Ph.D. Research Scholar, Department of Computer Engineering,

SSBT’s College of Engineering & Technology,

Jalgaon, Maharashtra 425001, India.

Email: bs.rajput26@gmail.com

Associate Professor, Department of Computer Engineering,

SSBT’s College of Engineering & Technology,

Jalgaon, Maharashtra 425001, India.

Email: mepatil@gmail.com

ARTICLE INFO ABSTRACT

Received: 21 Dec 2024

Revised: 04 Feb 2025

Accepted: 18 Feb 2025

Introduction: Nowadays, fog computing has emerged as a promising solution for handling

the prompt processing of tasks in Internet of Things (IoT)-based applications. One of the

key advantages of fog computing is that it reduces service completion time by offloading tasks

from IoT devices to the fog server. Therefore, scheduling of tasks becomes vital, where

emergency and non-emergency tasks can be prioritized to offload data to the nearby fog

servers, which improves the Quality of Service (QoS). Due to the dynamic nature of the IoT

environment, traffic load varies over time, making it difficult to select the optimal fog server for

task offloading.
Objectives: This research introduces a novel task offloading for the Fog Cloud scenario using

the improved Coati Optimization Algorithm based on Genetic Operators (ICOA-GO) algorithm.
Methods: Initially, the Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) is

designed to queue incoming tasks into four different priorities. In the DFQM-Fuzz, Highly

urgent (HU) and Urgent (U) tasks are considered as first and second priorities and those tasks

are offloaded through the Fog Server. The Non Urgent (NU) and No Deadline (ND) tasks are

offloaded through the Cloud Server. Furthermore, when there is no resource to offload through

the Fog Server, the task is offloaded through the Cloud Server.

Results: The proposed improved Coati Optimization Algorithm based on Genetic Operators

(ICOA-GO) algorithm optimizes the selection of Cloud and Fog Servers. The analysis based on

Energy Utilization, Task Rejection Ratio, and Makespan yielded values of 93.589, 1, and

1.96073.

Conclusions: By integrating the DFQM-Fuzz and ICOA-GO improves task prioritizing and

offloading efficiency while reducing execution time, energy consumption, and cost.

Keywords: Fog Server, Optimization Algorithm, Task Offloading, Prioritization, Internet Of

Things (Iot), Task Rejection.

INTRODUCTION

The recent advancements of information technology have led to the widespread use of mobile devices in daily life.

In recent years, mobile phones, wearable technology, smart devices, industrial gadgets, smart devices, and other

items have been connected to the Internet (Deb et al, 2021). In addition to having limited energy and resources

(CPU, storage, and memory), these devices handle a significant amount of data. The Open Fog Consortium and the

European Telecommunications Standards Institute (ETSI) have given definitions and guidelines for computing

overhead (Jazayeri et al, 2021). The deployment of smart systems such as smart factories, smart grids, smart cities,

smart supply chains and logistics, and smart factories has become impossible without the Internet of Things (IoT)

(Tran-Dang & Kim, 2023). Cloud computing requires sufficient resources to perform activities effectively; it is still a

challenging task. However, due to limited spectrum resources, sporadic network connectivity, and the large

physical distance between IoT devices and faraway cloud servers, cloud computing-based solutions fail to provide

the desired QoS for delay-sensitive applications (Gasmi et al, 2022; Mishra et al, 2023).

mailto:bs.rajput26@gmail.com
mailto:mepatil@gmail.com

535
J INFORM SYSTEMS ENG, 10(22s)

 Fog computing is used to expand cloud computing resources closer to data generation sources. It enables

services and applications to meet their QoS levels by allowing fog computing devices to handle and offload most

tasks on behalf of cloud servers in a distributed manner (Hussain & Beg, 2021). Fog Computing Systems (FCSs)

consist of interconnected fog computing devices that are required for IoT-based systems to provide low response

latency and uninterrupted services and applications across the things-to-cloud spectrum (Salehnia et al, 2024). For

real-time tasks, it is essential to offload such execution methods to external platforms like Fog for fast processing.

However, these methods only concentrate on selecting a single Fog Node (FN) and completing all tasks there

(Mazumdar et al, 2021; Tran-Dang & Kim, 2021). IoT Sensor Nodes (SNs) use Directed Acyclic Task Graphs

(DATGs) to express interdependent subtasks. Certain operations at the same level in DATG could be executed

concurrently to significantly reduce processing delay (Deng et al, 2021).

Effective resource allocation strategies are necessary for FCSs to perform task offloading and reap the benefits of

fog computing (Yu-Jie et al, 2022). Some researchers have enhanced their allocation technique by adopting a

centralized approach to resource distribution. However, self-centered IoT users struggle to maximize their personal

Quality Of Experience (QoE). They may fail to execute the procedures required to optimize system performance

(Bai et al, 2021; Meena et al, 2021). To reduce processing time at fog nodes, various application forms' virtual

parallel queues are taken into consideration. However, the system's performance suffers due to the lack of a load-

balancing mechanism. These capable systems' processing and storage capacities determine their QoE (Abdulazeez

& Askar, 2023). As a result, a queueing system offers a comprehensive solution for processing a large number of

requests in accordance with an appropriate scheduling pattern. These queueing models have enough predictive

capacity to forecast behavior and performance in both low- and high-traffic conditions (Razaq et al, 2021). Thus,

this study introduces a novel delay-aware scheduling and server selection method. The objectives of the research

are to introduce Delay-aware computation offloading on Fog system using global information processing and

improved nature-inspired computational intelligence algorithm. It also implements a delay-aware Four Queue

Model With Fuzzy Logic (DFQM-Fuzz) model for scheduling the offloading tasks in Fog level. This study aimed to

present an improved Coati Optimization Algorithm based on Genetic Operators (ICOA-GO), it is employed to

offload the computations in fog and cloud computing environments, and to compare the performance of the

proposed approach with the recently developed approaches for Delay aware computation offloading at the core

level.

 The rapid expansion of the IoT has led to an unprecedented increase in data generation, necessitating

efficient processing and management to derive actionable insights (LEE et al, 2020). Traditional cloud computing

paradigms face significant challenges in handling the latency-sensitive nature of IoT applications due to the

physical distance between data sources and centralized data centers (Angel et al, 2021). Fog computing emerges as

a viable solution by bringing computation closer to the edge, thereby reducing latency and improving real-time data

processing capabilities (Das & Inuwa, 2023). However, efficient offloading of computational tasks in a distributed

environment remains a complex task. To increase performance and guarantee task completion on time, this

research is motivated by the need to optimize computation offloading in IoT-based fog computing systems.

 The integration of IoT with fog computing systems poses significant challenges in terms of delay-aware

computation offloading (Sabireen & Neelanarayanan, 2021). Current methods often struggle with inappropriate

task distribution, resulting in increased latency, inefficient resource consumption, and potential system

bottlenecks. These issues are exacerbated by the heterogeneous and dynamic nature of fog computing

environments, in which devices with various computational capabilities must collaborate to process data effectively.

Traditional optimization techniques fail to adequately address the complexities involved, resulting in poor

performance and user dissatisfaction (Laroui et al, 2021).

 To address these issues, this study proposes developing an enhanced nature-inspired computational

intelligence algorithm and a strong framework that can efficiently handle the dynamic and diverse nature of fog

computing environments by utilizing enhanced nature-inspired computational intelligence algorithms.The

proposed algorithm aims to optimize the offloading decisions by considering factors such as computational delay,

energy consumption, and network latency, and can significantly improve the performance and reliability of core-

level computing systems, ensuring that latency-sensitive applications meet their stringent requirements.

536
J INFORM SYSTEMS ENG, 10(22s)

LITERATURE REVIEW

Sadoon Azizi et al. 2022 developed two semi-greedy-based algorithms named priority-aware semi-greedy (PSG)

and PSG-with multi-start procedure (PSG-M) to map the IoT tasks in FNs efficiently. In order to achieve QoS for

IoT tasks, the task scheduling problem was first developed to reduce the problem of FN's energy consumption

(Azizi et al, 2022). This technique enhances the percentage of IoT tasks that achieve the deadline requirement,

energy consumption, makespan, and deadline violation time. The percentages of tasks meet their deadline

requirements, such as 95.2% for PSG and 96.5 for PSG-M when FNs is 60.

 Naveen Chauhan et al. 2021 developed a multi-class open queueing model that is utilized to maintain the

traffic on various Delay-aware applications offloading (DAAO). This technique enhanced the performance of a

14.30% service rate and reduced the loss rate to 2.0%. The multi-class Brownian model was used to design FN's

architecture, which can serve several customers (Chauhan et al, 2021). This technique was designed as a Weighted-

Fair Queueing (WFQ), non-WFQ and load-balancing algorithm.

 Moreover, Maryam Keshavarznejad et al. 2021 developed a task offloading in the form of a multi-objective

optimization issue to reduce total power consumption and delay in executing tasks. This technique utilizes two

meta-heuristic methods named the Non-Dominated Sorting Genetic Algorithm (NSGA-II) and the Bees algorithm

(Keshavarznejad et al, 2021). This technique reduces the time consumption and delay; the maximum time

consumption is 5000 joules for offloading.

 Similarly, Parmeet Kaur and Shikha Mehta created a QoS-aware task offloading technique based on a novel

nature-inspired optimization algorithm named the Smart Flower Optimization Algorithm (SFOA). This technique is

used to offload delay-sensitive operations in the IoT, lowering execution costs and deadlines (Kaur & Mehta, 2022).

This technique yields a minimum execution time of 75.1 seconds for 300 tasks and 55.6 seconds for 1,000 tasks.

 Sanjaya Kumar Panda et al. 2023 developed a multi-objective task offloading technique named EDP-TO for

load balancing. The multi-objective function is used to select FNs for offloading. This technique divides the tasks

into many sub-tasks and allocates them to the appropriate FNs (Panda et al, 2023). This concept reduces the

overall delay. Here, 60% of FNs were active nodes in all three scenarios, such as 3, 69, and 18. The summary of

related works is presented in Table 1.

Table 1. Summary of related works

Author name and

reference

Technique used Performance Limitation

Sadoon Azizi et al. PSG, PSG-M 95.2% for PSG and 96.5 for

PSG-M when FNs are 60

It can execute only one task at a time

in each FN

Naveen Chauhan et

al.

A multi-class open

queueing model

 loss rate as 2.0% It is only utilized for a single

centralized fog server

Maryam

Keshavarznejad et al.

NSGA-II and the

Bees algorithm

Maximum time consumption

is 5000 joule for offloading

This technique does not perform on

clustering fog nodes

Parmeet Kaur and

Shikha Mehta

SFOA 55.6 least execution time for

1000 tasks

The worst solution towards the best

local/global solution occurred by

this technique.

Sanjaya Kumar

panda et al.

EDP-TO for load

balancing

Mean energy consumption

and mean delay

Complex to perform

OBJECTIVES

This research introduces a novel delay-aware scheduling and server selection method. The objectives of the

research are:

➢ To introduce Delay-aware computation offloading on Fog system using global information processing and

improved nature-inspired computational intelligence algorithm.

➢ To implement Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) model for scheduling the

offloading tasks in Fog level.

537
J INFORM SYSTEMS ENG, 10(22s)

➢ To present an improved Coati Optimization Algorithm based on Genetic Operators (ICOA-GO), it is

employed to offload the computations in fog and cloud computing environments.

➢ To compare the performance of the proposed approach with the recently developed approaches for Delay

aware computation offloading at the core level.

METHODOLOGY

Study Design

 The complexity of computation offloading increases with the number of offloading tasks, making it a

nontrivial and NP-hard problem. The existing studies mostly focused on minimizing the overall communication

delay, processing cost, and time. However, a priority during task scheduling in optimal fog server selection for

computation offloading based on their source requirements and deadline constraints is challenging. In this study, a

Global Information Processing model is designed to schedule tasks generated by IoT devices and process them in

the appropriate computing resource to achieve QoS. Global Information Processing (GIP) at the fog-cloud level for

computation offloading entails strategically distributing computational tasks over a layered architecture of fog and

cloud computing. Initially, the Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) is developed, in

which highly urgent and urgent tasks are en-queued in the first and second queues, respectively, for offloading to a

nearby fog server while taking the delay factor into consideration. Non-urgent and no-deadline tasks will be queued

in the third and fourth queues, respectively, for direct cloud offloading due to their low delay factor. Here, factors

such as task size, arrival time, and delay are considered while scheduling the task into four priorities. Fog

computing and cloud computing are combined in the GIP to maximize data processing and management, especially

from IoT devices. This GIP model aims to balance the computational load between local fog nodes and remote

cloud servers at the core level, improving efficiency, reducing latency, and enhancing overall system performance.

 Furthermore, to solve the issue of selecting the best fog server for computation offloading, an improved

Coati Optimization Algorithm based on Genetic Operators (ICOA-GO) is used to offload calculations in fog

computing environments. In rare cases where fog nodes lack adequate resources, offloading computation will take

place in the cloud. An enhanced version of the proposed meta-heuristic method achieves three objectives: 1)

minimizing task execution time, 2) minimizing energy usage for connected devices, and 3) minimizing execution

costs for using server resources. A customized mutation operation is applied to the Coati Optimization Algorithm

(COA), extending the functionality of the Standard COA to improve global search abilities. The system model is

presented in Figure 1.

Cloud Server

Task-1 Task 2 Task 3 Task 4 Task p

Gateway Gateway

DFQM-Fuzz

P
ri

or
it

y

N
U

/N
D

Priority

HU/U

Priority

HU/U

Priority

NU/ND

Priority

NU/ND

ICOA-GO based Server

Selection

ICOA-GO based Server

Selection

ICOA-GO based Server

Selection

Figure 1. System Model

538
J INFORM SYSTEMS ENG, 10(22s)

Delay aware task scheduling using DFQM-Fuzz

 The Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) is used for delay-aware task scheduling.

The incoming tasks are offloaded into four various queues: Highly urgent (HU), Urgent (U), Non-Urgent (NU), and

No Deadline (ND). Here, the DFQM-Fuzz model is used to offload the task into four different queues. Task size,

arrival time, and delay limits are considered while categorizing the task. Let the incoming tasks be denoted as:

 pHHHH ,..., 21=
, wherein

()nH p
symbolizes the

thp
task at the time n . The IoT devices are indicated as

 pQQQQ ,..., 21=
, and the fog nodes distributed in the fog layer are signified as

 qBBBB ,...., 21=
. In order to

schedule the task into four various queues, fuzzy logic is employed by considering task size, arrival time, and delay

as factors.

Task Size: Task size is the computational workload required to complete a task, which is measured in bits. Larger

tasks need more processing time and resources and are considered lower priority unless they are urgent.

Arrival Time: Arrival time is the time when the task is generated or received in the system. Earlier arrival times of

the task are assigned with higher priority.

Delay: Delay is the time taken for a task to experience transmission, queuing, and processing lags. Tasks with

higher delays are assigned with higher priority to minimize QoS violations.

 By considering the three factors, fuzzy-based decision-making is employed for prioritizing the task and is

defined in Table 2.

Table 2. Sample Fuzzy rule set

Task Size Arrival Time Delay Priority

Small Early Low Highly Urgent (HU)

Large Late High Urgent (U)

Medium Normal Moderate Non-Urgent (NU)

Small Late High No deadline (ND)

 After categorizing the task into four various queues, the HU and U are offloaded to the Fog Server and the

NU and ND are offloaded through the Cloud Server. The final decision in prioritizing the queues
()nr is defined

as:

()




=
CloudthroughoffloadedistaskNDNU

FogthroughoffloadedistaskUHU
nr

,

,


 (1)

 Furthermore, when there is no resource to offload through the Fog Server, the task is offloaded via the

Cloud Server. The ICOA-GO algorithm is used here to process both cloud and fog-based offloading.

 3.2 Server Selection using ICOA-GO Algorithm

 The proposed ICOA-GO algorithm is used to choose the server that will process the task. In order to

improve the convergence rate, the genetic operator (Sivanandam et al, 2008) and Coati solution (Dehghani et al,

2023) update are integrated into the design of the proposed ICOA-GO algorithm. The algorithm considers energy

consumption, task execution delay, and execution cost as its fitness function when selecting the server.

3.2.1 Multi-objective Fitness Function

 The multi-objective fitness MF for the server selection based on energy consumption EC , task execution

delay TED and execution cost ExC is defined as:

539
J INFORM SYSTEMS ENG, 10(22s)

CExCEDTEMF ++= 
 (2)

 where the weights concerning the normalized value of task execution delay, energy consumption and

execution cost are symbolized as  ,


 and  respectively.

Task execution delay: The delay is determined by the size of the task and the rate at which data is transmitted. A

smaller task execution delay results in higher fitness values and is considered as follows:


=

=
K

k k

k

DT

S
TED

1 (3)

 Where, K signifies the total number of tasks, kS
indicates the size of the

thk task in bits, and kDT

notates the data transmission rate for the
thk task in bits per second. The normalized value of the TED symbolized

as DTE  .

Energy consumption: The energy consumed by each task is proportional to the power required and the time taken

to execute the task. Reducing energy usage is critical for battery-powered devices and is formulated as:


=

=
K

k
kk TEDQEC

1 (4)

where, kQ
symbolizes the energy consumption for executing the

thk task (in joules). The normalized value of

energy consumption is signified as CE  .

Execution cost: Execution cost is associated with the expense of utilizing computational resources in cloud or edge

servers. Lower costs make the system more economically efficient.


=

=
K

k
kExCExC

1 (5)

where, kExC
symbolizes the cost incurred for using server resources to execute the

thk task. The normalized value

is symbolized as CEx  .

3.2.2 Design of ICOA-GO Model

 The proposed ICOA-GO algorithm is designed by integrating conventional coati optimization with genetic

operators such as selection, crossover, and mutation. The ICOA-GO algorithm is initialized as follows:

() glbfEJREaA llllff2,1,,.....2,1,.: ==−+=

 (6)

 Here, the search bounds of the algorithm are notated as
,lJ

 and lE
 respectively, which have the

dimension l and R symbolize the random parameter. The solution estimated by the
thf

Procyonidae search agent

is signified as
fA

and s symbolizes the decision variable. The total population of the Procyonidae search agent is

540
J INFORM SYSTEMS ENG, 10(22s)

denoted asb , and the solution derived by the
thf

Procyonidae search agent is
lfa ,

, wherein its dimension is

signified as l . The population of the Procyonidae search agent is interpreted in matrix form A as:

 gbspsbb

gflfr

sl

gbb

f

aaa

aaa

qaa

A

A

A

A

 























=























=

,,1,

,,1,

,1,11,11















 (7)

Fitness: The feasibility of the solution is evaluated based on the multi-objective fitness function formulated in

equation (2).

Diversification: In the diversification phase, the Procyonidae search agents climb the tree, allowing the algorithm to

explore distinct areas of the search space and avoid premature convergence on local optimums. In this stage, the

Procyonidae search agent uses target-searching using high-dimensional portions of the problem's search space to

identify potential areas. The solution obtained by the Procyonidae search agent during the diversification stage is

modeled as follows:

() 







=−+=

2
.......2,1..: ,

11 b
fforAKNRaaA fllf

i
lf

i
f

 and
 g…2 1,=l

 (8)

Here, the target identified by the Procyonidae search agent is notated as N , and the arbitrary parameter that has

the bounds
 2,1

 is symbolized as K . Here, in order to enhance the convergence rate of the algorithm, genetic

operators like selection, crossover, and mutation are incorporated in the diversification phase of the ICOA-GO

algorithm.

Selection: In the selection phase, the best Procyonidae search agent is chosen based on the fitness to perform the

reproduction.

Crossover: The offspring are introduced during the crossover phase by combining the parents. The proposed ICOA-

GO algorithm combines the two diverse solutions to create a new offspring solution for more effectively exploring

the search area.

Mutation: The mutation process of the genetic algorithm increases the algorithm's randomness, which helps to

prevent local optimal solution trapping.

 Thus, the solution of the Procyonidae search agents is updated in the diversification phase after performing

the genetic operations is signified as









 11 :
i

lf
i
f

aA
. In the diversification period, another group of Procyonidae

search agents wait below the trees, awaiting prey to fall. This stage represents a group of agents focusing on areas

where high-potential solutions may emerge, prepared to refine them further. The location of the prey in the

diversification stage is formulated as follows:

()glEJRENN lll

Y
l

Y ,....,2,1,.: =−+=
 , (9)

541
J INFORM SYSTEMS ENG, 10(22s)

()
()








−+

−+
=

elseNaRA

FitFitaINRA
aA

Y
llflf

fNlf
Y
clfi

lf
i
f

Y

,..

,,..
:

,,

,,

,
11

 (10)

 For f =

b
bb

,....2
2

,1
2

+







+









and l=1, 2… g (11)

 When a Procyonidae search agent calculates a new position, the algorithm determines whether it improves

the objective function. It prevents coatis from moving to worse positions, which could lead to local optimal

trapping. The solution updation is interpreted as:






 
=

,,

,, 11

elseA

FitFitA
A

f

f
i
f

i
f

f

 (12)

 where the solution derived by the
thf

procyonidae search agent is symbolized as

1i
f

A
and the fitness is

defined as

1i
f

Fit
.

Intensification: Attacking the prey represents the fine-tuning of a solution and is utilized to refine the solution to

find the best possible outcome in a smaller focused region. The intensification step represents exploiting a known

solution to improve it further by intensively searching its identified position in the diversification phase. The

solution evaluated by the Procyonidae search agent is defined as:

max,....2,1, vVwhere

V

J
J

V

E
E lW

l
cW

l
===

 (13)

() ()()W

l
W
l

W
llf

i
lf

i
f

EJRERaaA −+−+= ..21: 22

 (14)

 where, f =1, 2… b, l=1, 2… g

The Procyonidae search agent's solution update during the intensification phase is evaluated to determine if this

position enhances the objective function. It is evaluated based on:






 
=

,,

,, 22

elseA

FitFitA
A

f

f
i
f

i
f

f

 (15)

where the solution derived by the
thf

Procyonidae search agent is symbolized as

2i
f

A
and the fitness is defined as

2i
f

Fit
.

Termination: The acquisition of a global best solution or the attainment of maximal iteration terminates the

algorithm processing. The pseudo-code for the ICOA-GO algorithm is presented in Algorithm 1.

542
J INFORM SYSTEMS ENG, 10(22s)

Table 3. Algorithm 1: Pseudo-code for ICOA-GO algorithm

Pseudo-code for ICOA-GO algorithm

1 Initialize the search agent, dimension, and population.

2 The Procyonidae search agents are located arbitrarily.

3 Estimate the feasibility

4 while v<V

5 {

6 The solution estimation based on diversification is evaluated through

() 







=−+=

2
.......2,1..: ,

11 b
fforAKNRaaA fllf

i
lf

i
f

7

The fitness is evaluated through





 
=

,,

,, 11

elseA

FitFitA
A

f

f
i
f

i
f

f

8 The solution estimation based on intensification is evaluated through

max,....2,1, vVwhere
V

J
J

V

E
E lW

l
cW

l
===

9

The fitness is estimated as





 
=

,,

,, 22

elseA

FitFitA
A

f

f
i
f

i
f

f

10 }

11 The best outcome is returned

12 v=v++

13 Stop

 Here is the solution obtained using the ICOA-GO algorithm; the server selection is used to perform the task

offload.

RESULT AND DISCUSSION

The proposed approach is implemented in iFogSim (java), and its performance is measured by analyzing numerous

metrics and demonstrated by comparing the results to other current methods that are implemented. The proposed

model implements and compares existing methods such as the Whale optimization algorithm (WOA), Bat

optimization algorithm (BAT), Round robin (RR), and random optimization (ROP).

 The makespan signifies the time taken to perform the given work, as depicted in Figure 2. The analysis uses

a variety of VMs to demonstrate the scalability of the proposed work offloading architecture. Here, reducing high-

priority task delays and optimizing virtual machine utilization is made possible by the DFQM-Fuzz model-based

task prioritization based on urgency. Additionally, the GIP model prevents bottlenecks and underutilization of

particular VMs by offloading tasks to the most appropriate VMs in fog or cloud layers. Additionally, the ICOA-GO-

based server selection lowers the makespan and assigns tasks to virtual machines (VMs) with adequate resources.

The detailed analysis based on makespan is presented in Table 4.

543
J INFORM SYSTEMS ENG, 10(22s)

Figure 2. Makespan based on VM

Table 4. Makespan based on VM

Total VMs/Methods 10 20 30 40 50

Proposed 48.832 49.832 50.8327 51.8327 52.8327

WOA 15.8964 28.0399 43.4596 60.9015 81.1608

BAT 25.592 46.2988 67.2951 88.7953 112.048

RR 32.8925 65.7818 101.79 133.102 165.248

ROP 43.2971 85.3937 129.719 174.257 215.348

 The makespan analysis based on various tasks is portrayed in Figure 3, and its detailed analysis is

presented in Table 5. In this case, the DFQM-Fuzz model-based task queuing model helps minimize queuing delays

for high-priority tasks by prioritizing tasks based on urgency. Then, the urgent tasks with HU and U are processed

in nearby fog nodes to reduce transmission time and low-priority tasks are offloaded to the cloud for efficient

handling. Thus, the minimal makespan is evaluated by the proposed model compared to the existing techniques for

various tasks.

544
J INFORM SYSTEMS ENG, 10(22s)

Figure 3. Makespan based on Task

Table 5. Makespan based on Task

Total tasks/methods 100 300 500 700 900

Proposed 1.96073 1.96073 1.96073 1.96073 1.96073

WOA 3.36915 8.41556 13.0753 17.7084 22.3496

BAT 4.86923 10.7064 16.5526 22.3535 28.2007

RR 9.35894 18.0012 26.7764 35.3507 44.2151

ROP 15.3327 26.0155 36.6461 47.4334 58.1581

 The task rejection ratio based on VM indicates the percentage of tasks that cannot be processed due to

insufficient resources on VMs and is presented in Figure 4. In this, the ICOA-GO algorithm selects the optimal

server to schedule the task with sufficient computational capacity. As a result, the suggested model minimizes the

task rejection ratio in comparison to traditional approaches. Furthermore, by adding a genetic operator to the

traditional coati algorithm, the local optimal trapping problems are resolved, and the best solution for the global is

obtained. The optimal server selection for offloading assists in minimizing the task rejection ratio, and the detailed

analysis is portrayed in Table 6.

545
J INFORM SYSTEMS ENG, 10(22s)

Figure 4. Task Rejection Ratio based on Task

Table 6. Task Rejection Ratio based on Task

Total Tasks/Methods 100 300 500 700 900

Proposed 2 4 8 13 13

WOA 10 15 15 28 85

BAT 15 16 23 24 57

RR 26 29 33 46 80

ROP 39 42 44 51 93

 The task rejection ratio by varying the number of VMs is portrayed in Figure 5, and a detailed analysis of it

is presented in Table 7. In this case, the DFQM-Fuzz model helps to minimize rejections and delays by en-queuing

the task according to priority. In addition, by combining fog and cloud resources, the GIP model ensures that large

resource-intensive tasks are accommodated. Also, the inclusion of cloud resources as a fall-back minimizes the

rejection of non-urgent and no-deadline tasks. Thus, superior performance is acquired by the proposed model.

546
J INFORM SYSTEMS ENG, 10(22s)

Figure 5. Task Rejection Ratio based on VM

Table 7. Task Rejection Ratio based on VM

Total VMs/Methods 10 20 30 40 50

Proposed 1 5 6 17 34

WOA 11 12 13 15 68

BAT 15 17 22 35 87

RR 24 26 31 44 99

ROP 39 41 45 45 72

 The energy used to process individual tasks is measured by the energy utilization analysis shown in Figure

6. As a result, the GIP model helps to reduce transmission and processing energy by offloading tasks to nearby fog

nodes whenever feasible. Furthermore, the ICOA-GO-based server offloading considers energy usage to be one of

the fitness factors that aid in the efficient use of energy. The detailed energy utilization analysis based on various

tasks is presented in Table 8.

Figure 6. Energy Utilization based on Task

547
J INFORM SYSTEMS ENG, 10(22s)

Table 8. Energy Utilization based on Task

Total tasks/Methods 100 300 500 700

Proposed 93.589 293.589 793.589 793.589

WOA 222.523 433.477 921.477 969.477

BAT 577.97 1001.97 1065.97 1113.97

RR 866.955 1290.95 1354.95 1402.95

ROP 1733.91 2189.91 2221.91 2269.91

 Figure 7 demonstrates the latency analysis of the proposed model based on offloading and non-offloading

mechanisms. The analysis shows that the suggested offloading model minimizes latency because of the optimal

server selection and delay-aware queuing design.

Figure 7. Analysis based on Latency

 The ablation study of the proposed method is presented in Figure 8. The analysis demonstrates the

superiority of the proposed model with a minimal task rejection ratio. Let the analysis with 900 tasks; the proposed

DFQM- Fuzz + ICOA - GO method acquired the task rejection ratio of 69. Still, the proposed method with criteria 1

accomplished the task rejection ratio of 144. Criteria 1 indicates that the proposed model offloads HU and U tasks

only via fog and NU and ND tasks only via the cloud. The DFQM – Fuzz + COA yielded a task rejection ratio of 154,

and the genetic operators are not included in the proposed task offloading model. Thus, the incorporation of genetic

operators into the COA aids the proposed technique in minimizing task rejection rates by selecting the optimal

server without local optimal trapping. Furthermore, ICOA-GO (proposed model without fuzzy-based task

prioritization) yielded a task rejection ratio of 167. Thus, the ablation analysis demonstrates the superiority of the

proposed model with fuzzy-based priority scheduling and optimal server selection.

548
J INFORM SYSTEMS ENG, 10(22s)

Figure 8. Ablation Study

Comparative Discussion

 The comparative discussion based on the best case is portrayed in Table 9. Here, the minimal energy

utilized by the proposed method is 93.589, which is 57.94%, 83.81%, 89.20%, and 94.60% compared to

conventional WOA, BAT, RR, and ROP methods. Here, the minimal Task Rejection Ratio by the proposed method

is 1, which is 90.91%, 93.33%, 95.83%, and 97.44% compared to conventional WOA, BAT, RR, and ROP methods.

Here, the minimal makespan by the proposed method is 1.96073, which is 41.80%, 59.73%, 79.05%, and 87.21%

compared to conventional WOA, BAT, RR, and ROP methods.

Table 9. Comparative Discussion

Metrics/ Methods WOA BAT RR ROP Proposed

Energy Utilization 222.523 577.97 866.955 1733.91 93.589

Task Rejection Ratio 11 15 24 39 1

Makespan 3.36915 4.86923 9.35894 15.3327 1.96073

 Here, the analysis indicates the superiority of the proposed method compared to the existing methods.

CONCLUSION

 This paper introduced a novel task offloading model for the GIP system using delay-aware prioritization

and optimal server selection. In this case, the DFQM-Fuzz model is used to prioritize the incoming task offloading.

The parameters like task size, arrival time, and delay are considered by the fuzzy model to prioritize the incoming

task. Here, prioritization assists the model in eliminating task rejection by crossing the deadline. For efficient task

offloading, the optimal server selection is employed using the ICOA-GO algorithm. The proposed ICOA-GO

algorithm incorporates the genetic operators to acquire the best global solution. The optimal best server selection is

employed using the ICOA-GO by considering energy consumption, task execution cost, and task execution delay as

its fitness for efficient task offloading. The analysis based on Energy Utilization, Task Rejection Ratio, and

Makespan acquired the values of 93.589, 1, and 1.96073, respectively.

LIMITATIONS AND FUTURE RESEARCH

Integrating the DFQM-Fuzz and ICOA-GO improves task prioritizing and offloading efficiency while reducing

execution time, energy consumption, and cost. The reliance on fog servers with limited resources poses challenges

when high task density is considered, which leads to computational bottlenecks. Future enhancements should be

549
J INFORM SYSTEMS ENG, 10(22s)

made to the GIP model by integrating advanced AI techniques for dynamic task scheduling, supporting real-time

adaptability and scalability.

AUTHORS BIOGRAPHIES

1Mr. Sarkarsinha H. Rajput, completed his B.E. from D. N. Patel College of Engineering, Shahada Dist: Nandurbar

(M.S.) and M.E. from SSBT’s College of Engineering and Technology, Bambhori, Jalgaon (M.S.). He has been

working as Assistant Professor in SSBT’s College of Engineering and Technology since 2009. He is pursuing a Ph.D.

in Computer Science & Engineering from Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

(M.S.). His areas of interest are Fog Computing, Cloud Computing, and Machine Learning.

2Dr. Manoj Eknath Patil has completed PhD degree in Computer Science & Engineering from Jodhpur National

University, Jodhpur, Rajasthan. Currently, he is working as an Associate Professor & Head, at the Department of

Computer Engineering, SSBT’s College of Engineering & Technology, Jalgaon (M.S.) and recognized PhD Guide in

Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon (M.S.). He has 39 research papers in

reputed peer-reviewed journals in addition to 20 papers in International Conferences to his credit. He is a Life

Member of ISTE. His research interests are Wireless Sensor Networks, Web Security, Cloud Computing, Fog

Computing.

REFRENCES

[1] Abdulazeez, D. H. & Askar, S. K. (2023) Offloading mechanisms based on reinforcement learning and deep

learning algorithms in the fog computing environment. Ieee Access, 11, 12555-12586.

[2] Angel, N. A., Ravindran, D., Vincent, P. D. R., Srinivasan, K. & Hu, Y.-C. (2021) Recent advances in evolving

computing paradigms: Cloud, edge, and fog technologies. Sensors, 22(1), 196.

[3] Azizi, S., Shojafar, M., Abawajy, J. & Buyya, R. (2022) Deadline-aware and energy-efficient IoT task

scheduling in fog computing systems: A semi-greedy approach. Journal of network and computer

applications, 201, 103333.

[4] Bai, W., Ma, Z., Han, Y., Wu, M., Zhao, Z., Li, M. & Wang, C. (2021) Joint optimization of computation

offloading, data compression, energy harvesting, and application scenarios in fog computing. IEEE Access, 9,

45462-45473.

[5] Chauhan, N., Banka, H. & Agrawal, R. (2021) Delay-aware application offloading in fog environment using

multi-class Brownian model. Wireless Networks, 27(7), 4479-4495.

[6] Das, R. & Inuwa, M. M. (2023) A review on fog computing: issues, characteristics, challenges, and potential

applications. Telematics and Informatics Reports, 10, 100049.

[7] Deb, P. K., Misra, S. & Mukherjee, A. (2021) Latency-aware horizontal computation offloading for parallel

processing in fog-enabled IoT. IEEE Systems Journal, 16(2), 2537-2544.

[8] Dehghani, M., Montazeri, Z., Trojovská, E. & Trojovský, P. (2023) Coati Optimization Algorithm: A new bio-

inspired metaheuristic algorithm for solving optimization problems. Knowledge-Based Systems, 259, 110011.

550
J INFORM SYSTEMS ENG, 10(22s)

[9] Deng, X., Yin, J., Guan, P., Xiong, N. N., Zhang, L. & Mumtaz, S. (2021) Intelligent delay-aware partial

computing task offloading for multiuser industrial Internet of Things through edge computing. IEEE Internet

of Things Journal, 10(4), 2954-2966.

[10] Gasmi, K., Dilek, S., Tosun, S. & Ozdemir, S. (2022) A survey on computation offloading and service

placement in fog computing-based IoT. the Journal of Supercomputing, 78(2), 1983-2014.

[11] Hussain, M. M. & Beg, M. S. (2021) CODE-V: Multi-hop computation offloading in Vehicular Fog Computing.

Future Generation Computer Systems, 116, 86-102.

[12] Jazayeri, F., Shahidinejad, A. & Ghobaei-Arani, M. (2021) A latency-aware and energy-efficient computation

offloading in mobile fog computing: a hidden Markov model-based approach. The Journal of

Supercomputing, 77, 4887-4916.

[13] Kaur, P. & Mehta, S. (2022) Improvement of Task Offloading for Latency Sensitive Tasks in Fog Environment.

Energy Conservation Solutions for Fog-Edge Computing Paradigms, 49-63.

[14] Keshavarznejad, M., Rezvani, M. H. & Adabi, S. (2021) Delay-aware optimization of energy consumption for

task offloading in fog environments using metaheuristic algorithms. Cluster Computing, 1-29.

[15] Laroui, M., Nour, B., Moungla, H., Cherif, M. A., Afifi, H. & Guizani, M. (2021) Edge and fog computing for

IoT: A survey on current research activities & future directions. Computer Communications, 180, 210-231.

[16] LEE, H. S., SIA, B. K., CHONG, S. C. & LOW, C. W. (2020) Investment in Research & Development or Size

Expansion? The Case of Internet of Things Companies, 2020 IEEE 8th Conference on Systems, Process and

Control (ICSPC). IEEE.

[17] Mazumdar, N., Nag, A. & Singh, J. P. (2021) Trust-based load-offloading protocol to reduce service delays in

fog-computing-empowered IoT. Computers & Electrical Engineering, 93, 107223.

[18] Meena, V., Gorripatti, M. & Suriya Praba, T. (2021) Trust enforced computational offloading for health care

applications in fog computing. Wireless Personal Communications, 119(2), 1369-1386.

[19] Mishra, K., Rajareddy, G. N., Ghugar, U., Chhabra, G. S. & Gandomi, A. H. (2023) A collaborative

computation and offloading for compute-intensive and latency-sensitive dependency-aware tasks in dew-

enabled vehicular fog computing: A federated deep Q-learning approach. IEEE Transactions on Network and

Service Management, 20(4), 4600-4614.

[20] Panda, S. K., Pounjula, T., Ravirala, B. & Taniar, D. (2023) An Energy, Delay and Priority-Aware Task

Offloading Algorithm for Fog Computing.

[21] Razaq, M. M., Tak, B., Peng, L. & Guizani, M. (2021) Privacy-aware collaborative task offloading in fog

computing. IEEE Transactions on Computational Social Systems, 9(1), 88-96.

[22] Sabireen, H. & Neelanarayanan, V. (2021) A review on fog computing: Architecture, fog with IoT, algorithms

and research challenges. Ict Express, 7(2), 162-176.

[23] Salehnia, T., Seyfollahi, A., Raziani, S., Noori, A., Ghaffari, A., Alsoud, A. R. & Abualigah, L. (2024) An optimal

task scheduling method in IoT-Fog-Cloud network using multi-objective moth-flame algorithm. Multimedia

Tools and Applications, 83(12), 34351-34372.

[24] Sivanandam, S., Deepa, S., Sivanandam, S. & Deepa, S. (2008) Genetic algorithm optimization problems.

Introduction to genetic algorithms, 165-209.

[25] Tran-Dang, H. & Kim, D.-S. (2021) FRATO: Fog resource based adaptive task offloading for delay-minimizing

IoT service provisioning. IEEE Transactions on Parallel and Distributed Systems, 32(10), 2491-2508.

[26] Tran-Dang, H. & Kim, D.-S. (2023) Dynamic collaborative task offloading for delay minimization in the

heterogeneous fog computing systems. Journal of Communications and Networks, 25(2), 244-252.

[27] Yu-Jie, S., Hui, W. & Cheng-Xiang, Z. (2022) Balanced computing offloading for selfish IoT devices in fog

computing. IEEE Access, 10, 30890-30898.

