Journal of Information Systems Engineering and Management
2025, 10(22s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Delay Aware Global Information Processing for Offloading
Computation at Core Level Using Nature-Inspired Algorithm

Sarkarsinha Harsinha Rajput! Dr. Manoj Eknath Patil2
Ph.D. Research Scholar, Department of Computer Engineering,
SSBT'’s College of Engineering & Technology,

Jalgaon, Maharashtra 425001, India.

Email: bs.rajput26@gmail.com
Associate Professor, Department of Computer Engineering,
SSBT’s College of Engineering & Technology,

Jalgaon, Maharashtra 425001, India.

Email: mepatil@gmail.com

ARTICLE INFO ABSTRACT

Received: 21 Dec 2024 Introduction: Nowadays, fog computing has emerged as a promising solution for handling
the prompt processing of tasks in Internet of Things (IoT)-based applications. One of the
key advantages of fog computing is that it reduces service completion time by offloading tasks
Accepted: 18 Feb 2025 from IoT devices to the fog server. Therefore, scheduling of tasks becomes vital, where
emergency and non-emergency tasks can be prioritized to offload data to the nearby fog
servers, which improves the Quality of Service (QoS). Due to the dynamic nature of the IoT
environment, traffic load varies over time, making it difficult to select the optimal fog server for
task offloading.
Objectives: This research introduces a novel task offloading for the Fog Cloud scenario using
the improved Coati Optimization Algorithm based on Genetic Operators (ICOA-GO) algorithm.
Methods: Initially, the Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) is
designed to queue incoming tasks into four different priorities. In the DFQM-Fuzz, Highly
urgent (HU) and Urgent (U) tasks are considered as first and second priorities and those tasks
are offloaded through the Fog Server. The Non Urgent (NU) and No Deadline (ND) tasks are
offloaded through the Cloud Server. Furthermore, when there is no resource to offload through
the Fog Server, the task is offloaded through the Cloud Server.
Results: The proposed improved Coati Optimization Algorithm based on Genetic Operators
(ICOA-GO) algorithm optimizes the selection of Cloud and Fog Servers. The analysis based on
Energy Utilization, Task Rejection Ratio, and Makespan yielded values of 93.589, 1, and
1.96073.
Conclusions: By integrating the DFQM-Fuzz and ICOA-GO improves task prioritizing and
offloading efficiency while reducing execution time, energy consumption, and cost.
Keywords: Fog Server, Optimization Algorithm, Task Offloading, Prioritization, Internet Of
Things (Tot), Task Rejection.

Revised: 04 Feb 2025

INTRODUCTION

The recent advancements of information technology have led to the widespread use of mobile devices in daily life.
In recent years, mobile phones, wearable technology, smart devices, industrial gadgets, smart devices, and other
items have been connected to the Internet (Deb et al, 2021). In addition to having limited energy and resources
(CPU, storage, and memory), these devices handle a significant amount of data. The Open Fog Consortium and the
European Telecommunications Standards Institute (ETSI) have given definitions and guidelines for computing
overhead (Jazayeri et al, 2021). The deployment of smart systems such as smart factories, smart grids, smart cities,
smart supply chains and logistics, and smart factories has become impossible without the Internet of Things (IoT)
(Tran-Dang & Kim, 2023). Cloud computing requires sufficient resources to perform activities effectively; it is still a
challenging task. However, due to limited spectrum resources, sporadic network connectivity, and the large
physical distance between IoT devices and faraway cloud servers, cloud computing-based solutions fail to provide
the desired QoS for delay-sensitive applications (Gasmi et al, 2022; Mishra et al, 2023).

Copyright © 2024 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons Attribution License which
permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:bs.rajput26@gmail.com
mailto:mepatil@gmail.com

535 J INFORM SYSTEMS ENG, 10(22s)

Fog computing is used to expand cloud computing resources closer to data generation sources. It enables
services and applications to meet their QoS levels by allowing fog computing devices to handle and offload most
tasks on behalf of cloud servers in a distributed manner (Hussain & Beg, 2021). Fog Computing Systems (FCSs)
consist of interconnected fog computing devices that are required for IoT-based systems to provide low response
latency and uninterrupted services and applications across the things-to-cloud spectrum (Salehnia et al, 2024). For
real-time tasks, it is essential to offload such execution methods to external platforms like Fog for fast processing.
However, these methods only concentrate on selecting a single Fog Node (FN) and completing all tasks there
(Mazumdar et al, 2021; Tran-Dang & Kim, 2021). IoT Sensor Nodes (SNs) use Directed Acyclic Task Graphs
(DATGS) to express interdependent subtasks. Certain operations at the same level in DATG could be executed
concurrently to significantly reduce processing delay (Deng et al, 2021).

Effective resource allocation strategies are necessary for FCSs to perform task offloading and reap the benefits of
fog computing (Yu-Jie et al, 2022). Some researchers have enhanced their allocation technique by adopting a
centralized approach to resource distribution. However, self-centered IoT users struggle to maximize their personal
Quality Of Experience (QoE). They may fail to execute the procedures required to optimize system performance
(Bai et al, 2021; Meena et al, 2021). To reduce processing time at fog nodes, various application forms' virtual
parallel queues are taken into consideration. However, the system's performance suffers due to the lack of a load-
balancing mechanism. These capable systems' processing and storage capacities determine their QoE (Abdulazeez
& Askar, 2023). As a result, a queueing system offers a comprehensive solution for processing a large number of
requests in accordance with an appropriate scheduling pattern. These queueing models have enough predictive
capacity to forecast behavior and performance in both low- and high-traffic conditions (Razaq et al, 2021). Thus,
this study introduces a novel delay-aware scheduling and server selection method. The objectives of the research
are to introduce Delay-aware computation offloading on Fog system using global information processing and
improved nature-inspired computational intelligence algorithm. It also implements a delay-aware Four Queue
Model With Fuzzy Logic (DFQM-Fuzz) model for scheduling the offloading tasks in Fog level. This study aimed to
present an improved Coati Optimization Algorithm based on Genetic Operators (ICOA-GO), it is employed to
offload the computations in fog and cloud computing environments, and to compare the performance of the
proposed approach with the recently developed approaches for Delay aware computation offloading at the core
level.

The rapid expansion of the IoT has led to an unprecedented increase in data generation, necessitating
efficient processing and management to derive actionable insights (LEE et al, 2020). Traditional cloud computing
paradigms face significant challenges in handling the latency-sensitive nature of IoT applications due to the
physical distance between data sources and centralized data centers (Angel et al, 2021). Fog computing emerges as
a viable solution by bringing computation closer to the edge, thereby reducing latency and improving real-time data
processing capabilities (Das & Inuwa, 2023). However, efficient offloading of computational tasks in a distributed
environment remains a complex task. To increase performance and guarantee task completion on time, this
research is motivated by the need to optimize computation offloading in IoT-based fog computing systems.

The integration of IoT with fog computing systems poses significant challenges in terms of delay-aware
computation offloading (Sabireen & Neelanarayanan, 2021). Current methods often struggle with inappropriate
task distribution, resulting in increased latency, inefficient resource consumption, and potential system
bottlenecks. These issues are exacerbated by the heterogeneous and dynamic nature of fog computing
environments, in which devices with various computational capabilities must collaborate to process data effectively.
Traditional optimization techniques fail to adequately address the complexities involved, resulting in poor
performance and user dissatisfaction (Laroui et al, 2021).

To address these issues, this study proposes developing an enhanced nature-inspired computational
intelligence algorithm and a strong framework that can efficiently handle the dynamic and diverse nature of fog
computing environments by utilizing enhanced nature-inspired computational intelligence algorithms.The
proposed algorithm aims to optimize the offloading decisions by considering factors such as computational delay,
energy consumption, and network latency, and can significantly improve the performance and reliability of core-
level computing systems, ensuring that latency-sensitive applications meet their stringent requirements.

536 J INFORM SYSTEMS ENG, 10(22s)

LITERATURE REVIEW

Sadoon Azizi et al. 2022 developed two semi-greedy-based algorithms named priority-aware semi-greedy (PSG)
and PSG-with multi-start procedure (PSG-M) to map the IoT tasks in FNs efficiently. In order to achieve QoS for
IoT tasks, the task scheduling problem was first developed to reduce the problem of FN's energy consumption
(Azizi et al, 2022). This technique enhances the percentage of IoT tasks that achieve the deadline requirement,
energy consumption, makespan, and deadline violation time. The percentages of tasks meet their deadline
requirements, such as 95.2% for PSG and 96.5 for PSG-M when FNs is 60.

Naveen Chauhan et al. 2021 developed a multi-class open queueing model that is utilized to maintain the
traffic on various Delay-aware applications offloading (DAAO). This technique enhanced the performance of a
14.30% service rate and reduced the loss rate to 2.0%. The multi-class Brownian model was used to design FN's
architecture, which can serve several customers (Chauhan et al, 2021). This technique was designed as a Weighted-
Fair Queueing (WFQ), non-WFQ and load-balancing algorithm.

Moreover, Maryam Keshavarznejad et al. 2021 developed a task offloading in the form of a multi-objective
optimization issue to reduce total power consumption and delay in executing tasks. This technique utilizes two
meta-heuristic methods named the Non-Dominated Sorting Genetic Algorithm (NSGA-II) and the Bees algorithm
(Keshavarznejad et al, 2021). This technique reduces the time consumption and delay; the maximum time
consumption is 5000 joules for offloading.

Similarly, Parmeet Kaur and Shikha Mehta created a QoS-aware task offloading technique based on a novel
nature-inspired optimization algorithm named the Smart Flower Optimization Algorithm (SFOA). This technique is
used to offload delay-sensitive operations in the 10T, lowering execution costs and deadlines (Kaur & Mehta, 2022).
This technique yields a minimum execution time of 75.1 seconds for 300 tasks and 55.6 seconds for 1,000 tasks.

Sanjaya Kumar Panda et al. 2023 developed a multi-objective task offloading technique named EDP-TO for
load balancing. The multi-objective function is used to select FNs for offloading. This technique divides the tasks
into many sub-tasks and allocates them to the appropriate FNs (Panda et al, 2023). This concept reduces the
overall delay. Here, 60% of FNs were active nodes in all three scenarios, such as 3, 69, and 18. The summary of
related works is presented in Table 1.

Table 1. Summary of related works

Author name and | Technique used Performance Limitation
reference
Sadoon Azizi et al. PSG, PSG-M 95.2% for PSG and 96.5 for | It can execute only one task at a time

PSG-M when FNs are 60

in each FN

Naveen Chauhan et
al.

A multi-class open
queueing model

loss rate as 2.0%

It is only utilized for a single
centralized fog server

Maryam
Keshavarznejad et al.

NSGA-II and the
Bees algorithm

Maximum time consumption
is 5000 joule for offloading

This technique does not perform on
clustering fog nodes

Parmeet Kaur and

SFOA

55.6 least execution time for

The worst solution towards the best

Shikha Mehta 1000 tasks local/global solution occurred by
this technique.

Sanjaya Kumar | EDP-TO for load | Mean energy consumption | Complex to perform

panda et al. balancing and mean delay

OBJECTIVES

This research introduces a novel delay-aware scheduling and server selection method. The objectives of the

research are:

» To introduce Delay-aware computation offloading on Fog system using global information processing and
improved nature-inspired computational intelligence algorithm.
» To implement Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) model for scheduling the
offloading tasks in Fog level.

537 J INFORM SYSTEMS ENG, 10(22s)

» To present an improved Coati Optimization Algorithm based on Genetic Operators (ICOA-GO), it is
employed to offload the computations in fog and cloud computing environments.

» To compare the performance of the proposed approach with the recently developed approaches for Delay
aware computation offloading at the core level.

METHODOLOGY

Study Design

The complexity of computation offloading increases with the number of offloading tasks, making it a
nontrivial and NP-hard problem. The existing studies mostly focused on minimizing the overall communication
delay, processing cost, and time. However, a priority during task scheduling in optimal fog server selection for
computation offloading based on their source requirements and deadline constraints is challenging. In this study, a
Global Information Processing model is designed to schedule tasks generated by IoT devices and process them in
the appropriate computing resource to achieve QoS. Global Information Processing (GIP) at the fog-cloud level for
computation offloading entails strategically distributing computational tasks over a layered architecture of fog and
cloud computing. Initially, the Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) is developed, in
which highly urgent and urgent tasks are en-queued in the first and second queues, respectively, for offloading to a
nearby fog server while taking the delay factor into consideration. Non-urgent and no-deadline tasks will be queued
in the third and fourth queues, respectively, for direct cloud offloading due to their low delay factor. Here, factors
such as task size, arrival time, and delay are considered while scheduling the task into four priorities. Fog
computing and cloud computing are combined in the GIP to maximize data processing and management, especially
from IoT devices. This GIP model aims to balance the computational load between local fog nodes and remote
cloud servers at the core level, improving efficiency, reducing latency, and enhancing overall system performance.

Furthermore, to solve the issue of selecting the best fog server for computation offloading, an improved
Coati Optimization Algorithm based on Genetic Operators (ICOA-GO) is used to offload calculations in fog
computing environments. In rare cases where fog nodes lack adequate resources, offloading computation will take
place in the cloud. An enhanced version of the proposed meta-heuristic method achieves three objectives: 1)
minimizing task execution time, 2) minimizing energy usage for connected devices, and 3) minimizing execution
costs for using server resources. A customized mutation operation is applied to the Coati Optimization Algorithm
(COA), extending the functionality of the Standard COA to improve global search abilities. The system model is
presented in Figure 1.

Cloud Server

£+ 1COA-GO based Server
Selection

Priority
NU/ND

ICOA-GO based Server ICOA-GO based Server

Selection Selection

Priority Priority Priority Priority
HU/U NU/ND NU/ND HU/U

Gateway Gateway
T~ DFQM-Fuzz —

& 8 &6 & &

Task-1 Task 2 Task 3 Task 4 Task p

Figure 1. System Model

538 J INFORM SYSTEMS ENG, 10(22s)

Delay aware task scheduling using DFQM-Fuzz

The Delay aware Four Queue model with Fuzzy logic (DFQM-Fuzz) is used for delay-aware task scheduling.
The incoming tasks are offloaded into four various queues: Highly urgent (HU), Urgent (U), Non-Urgent (NU), and
No Deadline (ND). Here, the DFQM-Fuzz model is used to offload the task into four different queues. Task size,
arrival time, and delay limits are considered while categorizing the task. Let the incoming tasks be denoted as:

H ={Hy,Ho,..H Hp(n th
{ 1,712 p} p()symbolizes the P task at the time. The IoT devices are indicated as

o . o B =1By,By....By
, and the fog nodes distributed in the fog layer are signified as . In order to
schedule the task into four various queues, fuzzy logic is employed by considering task size, arrival time, and delay
as factors.

, wherein

Task Size: Task size is the computational workload required to complete a task, which is measured in bits. Larger
tasks need more processing time and resources and are considered lower priority unless they are urgent.

Arrival Time: Arrival time is the time when the task is generated or received in the system. Earlier arrival times of
the task are assigned with higher priority.

Delay: Delay is the time taken for a task to experience transmission, queuing, and processing lags. Tasks with
higher delays are assigned with higher priority to minimize QoS violations.

By considering the three factors, fuzzy-based decision-making is employed for prioritizing the task and is
defined in Table 2.

Table 2. Sample Fuzzy rule set

Task Size | Arrival Time Delay Priority
Small Early Low Highly Urgent (HU)
Large Late High Urgent (U)

Medium | Normal Moderate | Non-Urgent (NU)
Small Late High No deadline (ND)

After categorizing the task into four various queues, the HU and U are offloaded to the Fog Server and the

NU and ND are offloaded through the Cloud Server. The final decision in prioritizing the queues 't (n) is defined
as:

(n) {HU,U task is offloadedthrough Fog
yr\n)=

NU, ND task isoffloadedthroughCloud D

Furthermore, when there is no resource to offload through the Fog Server, the task is offloaded via the

Cloud Server. The ICOA-GO algorithm is used here to process both cloud and fog-based offloading.

3.2 Server Selection using ICOA-GO Algorithm

The proposed ICOA-GO algorithm is used to choose the server that will process the task. In order to
improve the convergence rate, the genetic operator (Sivanandam et al, 2008) and Coati solution (Dehghani et al,
2023) update are integrated into the design of the proposed ICOA-GO algorithm. The algorithm considers energy
consumption, task execution delay, and execution cost as its fitness function when selecting the server.

3.2.1 Multi-objective Fitness Function
The multi-objective fitness MF for the server selection based on energy consumption EC , task execution

delay TED and execution cost EXC is defined as:

539 J INFORM SYSTEMS ENG, 10(22s)

MF =« -TED'+ -EC'+ 6 - EXC’ (2)

where the weights concerning the normalized value of task execution delay, energy consumption and
execution cost are symbolized as & , B and 0 respectively.

Task execution delay: The delay is determined by the size of the task and the rate at which data is transmitted. A
smaller task execution delay results in higher fitness values and is considered as follows:

K Sk
ZD—
k=1 (3)

th
Where, K signifies the total number of tasks, Sk indicates the size of the k task in bits, and DT

th
notates the data transmission rate for the K task in bits per second. The normalized value of the TED symbolized

asTED'

Energy consumption: The energy consumed by each task is proportional to the power required and the time taken
to execute the task. Reducing energy usage is critical for battery-powered devices and is formulated as:

K
EC =) Qg -TEDg
k=1 4)
Qx

’
energy consumption is signified as EC",

th
where, symbolizes the energy consumption for executing the K™ task (in joules). The normalized value of

Execution cost: Execution cost is associated with the expense of utilizing computational resources in cloud or edge
servers. Lower costs make the system more economically efficient.

K
ExC =) ExCy
k=1 ®)
th
where, Ck symbolizes the cost incurred for using server resources to execute the K™ task. The normalized value
is symbolized as ExC’,

3.2.2 Design of ICOA-GO Model
The proposed ICOA-GO algorithm is designed by integrating conventional coati optimization with genetic
operators such as selection, crossover, and mutation. The ICOA-GO algorithm is initialized as follows:

A :af| =E +R(J)-F) f=12..b1=12..9 ©

JI’ andEI

Here, the search bounds of the algorithm are notated as respectively, which have the

th

dimension | and R symbolize the random parameter. The solution estimated by the f Procyonidae search agent

A
is signified as f and S symbolizes the decision variable. The total population of the Procyonidae search agent is

540 J INFORM SYSTEMS ENG, 10(22s)

fth ar |

denoted asb , and the solution derived by the Procyonidae search agent is , wherein its dimension is

signified as | The population of the Procyonidae search agent is interpreted in matrix form A as:

AL a1 8- s

A= Ag =lary - af) - afg

_Ab 1p ab,l abys... apls
Xg - -bxg (7)

Fitness: The feasibility of the solution is evaluated based on the multi-objective fitness function formulated in
equation (2).

Diversification: In the diversification phase, the Procyonidae search agents climb the tree, allowing the algorithm to
explore distinct areas of the search space and avoid premature convergence on local optimums. In this stage, the
Procyonidae search agent uses target-searching using high-dimensional portions of the problem's search space to
identify potential areas. The solution obtained by the Procyonidae search agent during the diversification stage is
modeled as follows:

- - b
AL:all —ap | +R(Nj—K.Af)for f=12... H
fraf)=afl l f , _
2] ,q'=12..9 8

N

Here, the target identified by the Procyonidae search agent is notated as

1,2

the bounds{ ' } is symbolized as K . Here, in order to enhance the convergence rate of the algorithm, genetic
operators like selection, crossover, and mutation are incorporated in the diversification phase of the ICOA-GO
algorithm.

, and the arbitrary parameter that has

Selection: In the selection phase, the best Procyonidae search agent is chosen based on the fitness to perform the
reproduction.

Crossover: The offspring are introduced during the crossover phase by combining the parents. The proposed ICOA-
GO algorithm combines the two diverse solutions to create a new offspring solution for more effectively exploring
the search area.

Mutation: The mutation process of the genetic algorithm increases the algorithm's randomness, which helps to
prevent local optimal solution trapping.

Thus, the solution of the Procyonidae search agents is updated in the diversification phase after performing
!

2

the genetic operations is signified as . In the diversification period, another group of Procyonidae

search agents wait below the trees, awaiting prey to fall. This stage represents a group of agents focusing on areas

where high-potential solutions may emerge, prepared to refine them further. The location of the prey in the

diversification stage is formulated as follows:

NY NS =B +R(3 -, 1=12,...9) o

541 J INFORM SYSTEMS ENG, 10(22s)

MJ+R$@—|MJ), Fit, v <Fitr,

Af’|+R.(af,|—N|Y). . else 10)
10

FJ +1, FJ +2,...b
Forf= 2 2 andl=1,2..g (11)

When a Procyonidae search agent calculates a new position, the algorithm determines whether it improves
the objective function. It prevents coatis from moving to worse positions, which could lead to local optimal
trapping. The solution updation is interpreted as:

AL, Fit} <Fitg,

Af = P
A, else,
(12)
th Ai];L
where the solution derived by the procyonidae search agent is symbolized as and the fitness is
Fit}
defined as .

Intensification: Attacking the prey represents the fine-tuning of a solution and is utilized to refine the solution to
find the best possible outcome in a smaller focused region. The intensification step represents exploiting a known
solution to improve it further by intensively searching its identified position in the diversification phase. The
solution evaluated by the Procyonidae search agent is defined as:

E}N _Ec J}N I ywhere v =12,...Vmax
% \ (13)
A2 a2 = a-2r)EV +R (W —EW)
{ .af I af| + \E + K. | |

(14)
where, f=1,2...b,1=1,2... g

The Procyonidae search agent's solution update during the intensification phase is evaluated to determine if this
position enhances the objective function. It is evaluated based on:

A2, Fit2 <Fitg
As =

A, else,
(15)

th Ai2
where the solution derived by the Procyonidae search agent is symbolized as f

"y
F|tf .

and the fitness is defined as

Termination: The acquisition of a global best solution or the attainment of maximal iteration terminates the
algorithm processing. The pseudo-code for the ICOA-GO algorithm is presented in Algorithm 1.

542 J INFORM SYSTEMS ENG, 10(22s)

Table 3. Algorithm 1: Pseudo-code for ICOA-GO algorithm

Pseudo-code for ICOA-GO algorithm
1 Initialize the search agent, dimension, and population.
2 The Procyonidae search agents are located arbitrarily.
3 Estimate the feasibility
4 while v<V
5 {
6 The solution estimation based on diversification is evaluated through
- - b
AL:a' =ap | +R(Nj—K.Af)for f=12..]2
f fl ' 2
7 i i .
A}, Fit} <Fitg,
As =
A, else,
The fitness is evaluated through
8 The solution estimation based on intensification is evaluated through
E J
E}N =—C J}N =L where v =1,2,...Vmax
Vv Vv
9 i i .
A, Fit? <Fite,
As =
A, else,
The fitness is estimated as
10 }
11 The best outcome is returned
12 V=V++
13 Stop

Here is the solution obtained using the ICOA-GO algorithm; the server selection is used to perform the task
offload.
RESULT AND DISCUSSION

The proposed approach is implemented in iFogSim (java), and its performance is measured by analyzing numerous
metrics and demonstrated by comparing the results to other current methods that are implemented. The proposed
model implements and compares existing methods such as the Whale optimization algorithm (WOA), Bat
optimization algorithm (BAT), Round robin (RR), and random optimization (ROP).

The makespan signifies the time taken to perform the given work, as depicted in Figure 2. The analysis uses
a variety of VMs to demonstrate the scalability of the proposed work offloading architecture. Here, reducing high-
priority task delays and optimizing virtual machine utilization is made possible by the DFQM-Fuzz model-based
task prioritization based on urgency. Additionally, the GIP model prevents bottlenecks and underutilization of
particular VMs by offloading tasks to the most appropriate VMs in fog or cloud layers. Additionally, the ICOA-GO-
based server selection lowers the makespan and assigns tasks to virtual machines (VMs) with adequate resources.
The detailed analysis based on makespan is presented in Table 4.

543 J INFORM SYSTEMS ENG, 10(22s)
225
200
175
E 150
H
B 125
==
E. 100
]
g 75
50
0
10 20 30 40 50
Total VMs
= Proposed m WOA = BAT RR =ROP
Figure 2. Makespan based on VM
Table 4. Makespan based on VM
Total VMs/Methods 10 20 30 40 50
Proposed 48.832 49.832 50.8327 51.8327 52.8327
WOA 15.8964 28.0399 43.4596 60.9015 81.1608
BAT 25.592 46.2088 67.2051 88.7953 112.048
RR 32.8925 65.7818 101.79 133.102 165.248
ROP 43.2971 85.3937 129.719 174.257 215.348

The makespan analysis based on various tasks is portrayed in Figure 3, and its detailed analysis is

presented in Table 5. In this case, the DFQM-Fuzz model-based task queuing model helps minimize queuing delays
for high-priority tasks by prioritizing tasks based on urgency. Then, the urgent tasks with HU and U are processed

in nearby fog nodes to reduce transmission time and low-priority tasks are offloaded to the cloud for efficient

handling. Thus, the minimal makespan is evaluated by the proposed model compared to the existing techniques for

various tasks.

544 J INFORM SYSTEMS ENG, 10(22s)

Malkespan Time(min)
= (=) [%] 171
i = i = n

[u}
=

10 20 30 40 50
Total Task
u Proposed m WOA n BAT RR mROP

Figure 3. Makespan based on Task

Table 5. Makespan based on Task

Total tasks/methods 100 300 500 700 900

Proposed 1.96073 1.96073 1.96073 1.96073 1.96073
WOA 3.36915 8.41556 13.0753 17.7084 22.3496
BAT 4.86923 10.7064 16.5526 22.3535 28.2007
RR 9.35894 18.0012 26.7764 35.3507 44.2151
ROP 15.3327 26.0155 36.6461 47.4334 58.1581

The task rejection ratio based on VM indicates the percentage of tasks that cannot be processed due to
insufficient resources on VMs and is presented in Figure 4. In this, the ICOA-GO algorithm selects the optimal
server to schedule the task with sufficient computational capacity. As a result, the suggested model minimizes the
task rejection ratio in comparison to traditional approaches. Furthermore, by adding a genetic operator to the
traditional coati algorithm, the local optimal trapping problems are resolved, and the best solution for the global is
obtained. The optimal server selection for offloading assists in minimizing the task rejection ratio, and the detailed
analysis is portrayed in Table 6.

J INFORM SYSTEMS ENG, 10(22s)

545
20
80
g 0
_O
€ 60
=
250
§
o 40
p
- 30
H
20
. ALKl
i} -l
100 300 500 700 900
Total Tasks
= Proposed @ WOA = BAT RR = ROP
Figure 4. Task Rejection Ratio based on Task
Table 6. Task Rejection Ratio based on Task
Total Tasks/Methods 100 300 500 700 900
Proposed 2 4 8 13 13
WOA 10 15 15 28 85
BAT 15 16 23 24 57
RR 26 29 33 46 80
ROP 39 42 44 51 93

The task rejection ratio by varying the number of VMs is portrayed in Figure 5, and a detailed analysis of it
is presented in Table 7. In this case, the DFQM-Fuzz model helps to minimize rejections and delays by en-queuing
the task according to priority. In addition, by combining fog and cloud resources, the GIP model ensures that large
resource-intensive tasks are accommodated. Also, the inclusion of cloud resources as a fall-back minimizes the
rejection of non-urgent and no-deadline tasks. Thus, superior performance is acquired by the proposed model.

J INFORM SYSTEMS ENG, 10(22s)

546
150
140
130
~ 120
£ 110
=]
€ 100
& 90
_5 80
_§ 70
E 60
]
-}
40
30
20
N A
0
10 20 30 40 50
Total VMs
= Proposed @ WOA = BAT RR = ROP
Figure 5. Task Rejection Ratio based on VM
Table 7. Task Rejection Ratio based on VM
Total VMs/Methods 10 20 30 40 50
Proposed 1 5 6 17 34
WOA 11 12 13 15 68
BAT 15 17 22 35 87
RR 24 26 31 44 99
ROP 39 41 45 45 72

The energy used to process individual tasks is measured by the energy utilization analysis shown in Figure
6. As a result, the GIP model helps to reduce transmission and processing energy by offloading tasks to nearby fog
nodes whenever feasible. Furthermore, the ICOA-GO-based server offloading considers energy usage to be one of
the fitness factors that aid in the efficient use of energy. The detailed energy utilization analysis based on various
tasks is presented in Table 8.

2,250
2,000

1.750

=
= 1.so0
é A.Z2S0
1,000
g TEO
=00
o -j 0o I00 S00 Too

Total Tasls
= Proposed = WOA = BAT RR = ROP

Figure 6. Energy Utilization based on Task

547 J INFORM SYSTEMS ENG, 10(22s)

Table 8. Energy Utilization based on Task

Total tasks/Methods 100 300 500 700

Proposed 93.589 293.589 793-589 793.589
WOA 222.523 433.477 921.477 969.477
BAT 577.97 1001.97 1065.97 1113.97
RR 866.955 1290.95 1354.95 1402.95
ROP 1733.91 2189.91 2221.91 2269.91

Figure 7 demonstrates the latency analysis of the proposed model based on offloading and non-offloading
mechanisms. The analysis shows that the suggested offloading model minimizes latency because of the optimal
server selection and delay-aware queuing design.

100
00
80
0
60
50
40
30
20
‘n =
0 500

1000 1500 2000
Total Tasks
= Offloading ® Non Offloading

Latency (us)

=

Figure 7. Analysis based on Latency

The ablation study of the proposed method is presented in Figure 8. The analysis demonstrates the
superiority of the proposed model with a minimal task rejection ratio. Let the analysis with 900 tasks; the proposed
DFQM- Fuzz + ICOA - GO method acquired the task rejection ratio of 69. Still, the proposed method with criteria 1
accomplished the task rejection ratio of 144. Criteria 1 indicates that the proposed model offloads HU and U tasks
only via fog and NU and ND tasks only via the cloud. The DFQM — Fuzz + COA yielded a task rejection ratio of 154,
and the genetic operators are not included in the proposed task offloading model. Thus, the incorporation of genetic
operators into the COA aids the proposed technique in minimizing task rejection rates by selecting the optimal
server without local optimal trapping. Furthermore, ICOA-GO (proposed model without fuzzy-based task
prioritization) yielded a task rejection ratio of 167. Thus, the ablation analysis demonstrates the superiority of the
proposed model with fuzzy-based priority scheduling and optimal server selection.

548 J INFORM SYSTEMS ENG, 10(22s)

170

140
_
a\.:, 130
~= 120
'E 110
-
g2 100
o0
30
a0
50
40
30
20
" HN 1| in
0
s00 700 200

100 300

Task Rejection
3

Ablation Study
® Proposed ® Criteria 1 = DFQM-Fuzz+COA ICOA-GO

Figure 8. Ablation Study

Comparative Discussion

The comparative discussion based on the best case is portrayed in Table 9. Here, the minimal energy
utilized by the proposed method is 93.589, which is 57.94%, 83.81%, 89.20%, and 94.60% compared to
conventional WOA, BAT, RR, and ROP methods. Here, the minimal Task Rejection Ratio by the proposed method
is 1, which is 90.91%, 93.33%, 95.83%, and 97.44% compared to conventional WOA, BAT, RR, and ROP methods.
Here, the minimal makespan by the proposed method is 1.96073, which is 41.80%, 59.73%, 79.05%, and 87.21%
compared to conventional WOA, BAT, RR, and ROP methods.

Table 9. Comparative Discussion

Metrics/ Methods WOA BAT RR ROP Proposed
Energy Utilization 222,523 577.97 866.955 1733.91 93.589
Task Rejection Ratio 11 15 24 39 1
Makespan 3.36915 4.86923 9.35804 15.3327 1.96073

Here, the analysis indicates the superiority of the proposed method compared to the existing methods.

CONCLUSION

This paper introduced a novel task offloading model for the GIP system using delay-aware prioritization
and optimal server selection. In this case, the DFQM-Fuzz model is used to prioritize the incoming task offloading.
The parameters like task size, arrival time, and delay are considered by the fuzzy model to prioritize the incoming
task. Here, prioritization assists the model in eliminating task rejection by crossing the deadline. For efficient task
offloading, the optimal server selection is employed using the ICOA-GO algorithm. The proposed ICOA-GO
algorithm incorporates the genetic operators to acquire the best global solution. The optimal best server selection is
employed using the ICOA-GO by considering energy consumption, task execution cost, and task execution delay as
its fitness for efficient task offloading. The analysis based on Energy Utilization, Task Rejection Ratio, and
Makespan acquired the values of 93.589, 1, and 1.96073, respectively.

LIMITATIONS AND FUTURE RESEARCH

Integrating the DFQM-Fuzz and ICOA-GO improves task prioritizing and offloading efficiency while reducing
execution time, energy consumption, and cost. The reliance on fog servers with limited resources poses challenges
when high task density is considered, which leads to computational bottlenecks. Future enhancements should be

549

J INFORM SYSTEMS ENG, 10(22s)

made to the GIP model by integrating advanced Al techniques for dynamic task scheduling, supporting real-time
adaptability and scalability.

AUTHORS BIOGRAPHIES

1Mr. Sarkarsinha H. Rajput, completed his B.E. from D. N. Patel College of Engineering, Shahada Dist: Nandurbar
(M.S.) and M.E. from SSBT’s College of Engineering and Technology, Bambhori, Jalgaon (M.S.). He has been
working as Assistant Professor in SSBT’s College of Engineering and Technology since 2009. He is pursuing a Ph.D.
in Computer Science & Engineering from Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon
(M.S.). His areas of interest are Fog Computing, Cloud Computing, and Machine Learning.

-

Ay

'S

i

2Dr. Manoj Eknath Patil has completed PhD degree in Computer Science & Engineering from Jodhpur National
University, Jodhpur, Rajasthan. Currently, he is working as an Associate Professor & Head, at the Department of
Computer Engineering, SSBT’s College of Engineering & Technology, Jalgaon (M.S.) and recognized PhD Guide in
Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon (M.S.). He has 39 research papers in
reputed peer-reviewed journals in addition to 20 papers in International Conferences to his credit. He is a Life
Member of ISTE. His research interests are Wireless Sensor Networks, Web Security, Cloud Computing, Fog

Computing.

REFRENCES

[1] Abdulazeez, D. H. & Askar, S. K. (2023) Offloading mechanisms based on reinforcement learning and deep
learning algorithms in the fog computing environment. Ieee Access, 11, 12555-12586.

[2] Angel, N. A,, Ravindran, D., Vincent, P. D. R., Srinivasan, K. & Hu, Y.-C. (2021) Recent advances in evolving
computing paradigms: Cloud, edge, and fog technologies. Sensors, 22(1), 196.

[3] Azizi, S., Shojafar, M., Abawajy, J. & Buyya, R. (2022) Deadline-aware and energy-efficient IoT task
scheduling in fog computing systems: A semi-greedy approach. Journal of network and computer
applications, 201, 103333.

[4] Bai, W., Ma, Z., Han, Y., Wu, M., Zhao, Z., Li, M. & Wang, C. (2021) Joint optimization of computation
offloading, data compression, energy harvesting, and application scenarios in fog computing. IEEE Access, 9,
45462-45473.

[5] Chauhan, N., Banka, H. & Agrawal, R. (2021) Delay-aware application offloading in fog environment using
multi-class Brownian model. Wireless Networks, 27(7), 4479-4495.

[6] Das, R. & Inuwa, M. M. (2023) A review on fog computing: issues, characteristics, challenges, and potential
applications. Telematics and Informatics Reports, 10, 100049.

[7] Deb, P. K., Misra, S. & Mukherjee, A. (2021) Latency-aware horizontal computation offloading for parallel
processing in fog-enabled IoT. IEEE Systems Journal, 16(2), 2537-2544.

[8] Dehghani, M., Montazeri, Z., Trojovska, E. & Trojovsky, P. (2023) Coati Optimization Algorithm: A new bio-

inspired metaheuristic algorithm for solving optimization problems. Knowledge-Based Systems, 259, 110011.

550 J INFORM SYSTEMS ENG, 10(22s)

[o] Deng, X., Yin, J., Guan, P., Xiong, N. N., Zhang, L. & Mumtaz, S. (2021) Intelligent delay-aware partial
computing task offloading for multiuser industrial Internet of Things through edge computing. IEEE Internet
of Things Journal, 10(4), 2954-2966.

[10] Gasmi, K., Dilek, S., Tosun, S. & Ozdemir, S. (2022) A survey on computation offloading and service
placement in fog computing-based IoT. the Journal of Supercomputing, 78(2), 1983-2014.

[11] Hussain, M. M. & Beg, M. S. (2021) CODE-V: Multi-hop computation offloading in Vehicular Fog Computing.
Future Generation Computer Systems, 116, 86-102.

[12] Jazayeri, F., Shahidinejad, A. & Ghobaei-Arani, M. (2021) A latency-aware and energy-efficient computation
offloading in mobile fog computing: a hidden Markov model-based approach. The Journal of
Supercomputing, 77, 4887-4916.

[13] Kaur, P. & Mehta, S. (2022) Improvement of Task Offloading for Latency Sensitive Tasks in Fog Environment.
Energy Conservation Solutions for Fog-Edge Computing Paradigms, 49-63.

[14] Keshavarznejad, M., Rezvani, M. H. & Adabi, S. (2021) Delay-aware optimization of energy consumption for
task offloading in fog environments using metaheuristic algorithms. Cluster Computing, 1-29.

[15] Laroui, M., Nour, B., Moungla, H., Cherif, M. A., Afifi, H. & Guizani, M. (2021) Edge and fog computing for
IoT: A survey on current research activities & future directions. Computer Communications, 180, 210-231.

[16] LEE, H. S., SIA, B. K., CHONG, S. C. & LOW, C. W. (2020) Investment in Research & Development or Size
Expansion? The Case of Internet of Things Companies, 2020 IEEE 8th Conference on Systems, Process and
Control (ICSPC). IEEE.

[17] Mazumdar, N., Nag, A. & Singh, J. P. (2021) Trust-based load-offloading protocol to reduce service delays in
fog-computing-empowered IoT. Computers & Electrical Engineering, 93, 107223.

[18] Meena, V., Gorripatti, M. & Suriya Praba, T. (2021) Trust enforced computational offloading for health care
applications in fog computing. Wireless Personal Communications, 119(2), 1369-1386.

[19] Mishra, K., Rajareddy, G. N., Ghugar, U., Chhabra, G. S. & Gandomi, A. H. (2023) A collaborative
computation and offloading for compute-intensive and latency-sensitive dependency-aware tasks in dew-
enabled vehicular fog computing: A federated deep Q-learning approach. IEEE Transactions on Network and
Service Management, 20(4), 4600-4614.

[20] Panda, S. K., Pounjula, T., Ravirala, B. & Taniar, D. (2023) An Energy, Delay and Priority-Aware Task
Offloading Algorithm for Fog Computing.

[21] Razaq, M. M., Tak, B., Peng, L. & Guizani, M. (2021) Privacy-aware collaborative task offloading in fog
computing. IEEE Transactions on Computational Social Systems, 9(1), 88-96.

[22] Sabireen, H. & Neelanarayanan, V. (2021) A review on fog computing: Architecture, fog with IoT, algorithms
and research challenges. Ict Express, 7(2), 162-176.

[23] Salehnia, T., Seyfollahi, A., Raziani, S., Noori, A., Ghaffari, A., Alsoud, A. R. & Abualigah, L. (2024) An optimal
task scheduling method in IoT-Fog-Cloud network using multi-objective moth-flame algorithm. Multimedia
Tools and Applications, 83(12), 34351-34372.

[24] Sivanandam, S., Deepa, S., Sivanandam, S. & Deepa, S. (2008) Genetic algorithm optimization problems.
Introduction to genetic algorithms, 165-209.

[25] Tran-Dang, H. & Kim, D.-S. (2021) FRATO: Fog resource based adaptive task offloading for delay-minimizing
IoT service provisioning. IEEE Transactions on Parallel and Distributed Systems, 32(10), 2491-2508.

[26] Tran-Dang, H. & Kim, D.-S. (2023) Dynamic collaborative task offloading for delay minimization in the
heterogeneous fog computing systems. Journal of Communications and Networks, 25(2), 244-252.

[27] Yu-Jie, S., Hui, W. & Cheng-Xiang, Z. (2022) Balanced computing offloading for selfish IoT devices in fog
computing. IEEE Access, 10, 30890-30898.

