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This study presents a inventive approach for classing of depression and Alzheimer’s disease 

patients from normative group using functional Magnetic Resonance Imaging (fMRI) data and 

deep learning techniques. Leveraging data from the All India Institute of Medical Sciences 

(AIIMS) and the Alzheimer’s disease Neuroimaging Initiative (ADNI), we developed a 

customized Convolutional Neural Network (CNN) model to accurately categorising between 

participants with neurological disorders and normal group. Our approach involves 

preprocessing fMRI data then all fMRI images were converted into 2D PNG format to facilitate 

analysis. The custom CNN achieved the highest accuracy of 98.06% demonstrating optimal 

results over two state-of-theart pre-trained networks, including MobileNetV3 and Inception-

ResNetV2 assess its efficacy and generalizability. This comparison underscores the advantages 

of task-specific network architectures in accurately classifying neurological conditions. The 

findings contribute to the development of reliable, AI-powered diagnostic tools, offering 

improved accuracy and clinical relevance for timely intervention of depression and Alzheimer’s 

disease. 

Keywords: Convolutional Neural Networks (CNN); Deep Learning; fMRI Data; binary 

Classification; Depression Detection; Alzheimer’s Disease 

 

I. INTRODUCTION 

In the past several years, the intersection of neuroscience and artificial intelligence (AI) [17] has paved the way for 

groundbreaking advancements in the timely identification and categorization of neurological conditions [9]. Among 

these disorders, depression [9] and Alzheimer’s disease [30] stand out as significant public health challenges due to 

their prevalence, impact on quality of life, and societal burden. Depression, defined by ongoing sadness and a 

decreased enthusiasm for daily tasks, impacts more than 264 million individuals globally, according to the World 

Health Organization (WHO) [55]. Alzheimer’s disease, a degenerative neurological disorder, is the leading cause of 

dementia in older adults, with approximately 50 million people worldwide affected by dementia [37]. Prompt and 

precise recognition of these conditions is essential for Strategic care and handling, but it remains a difficult and 

intricate task for healthcare professionals. Functional Magnetic Resonance Imaging (fMRI) [48] has become a highly 

effective method for exploring brain activity and connectivity, providing important exploration of the brain 

mechanisms driving psychiatric and neurological conditions. By tracking changes in blood flow and oxygen levels, 

fMRI allows researchers to examine abnormal brain patterns linked to disorders such as depression and Alzheimer’s 

disease. This study, leverages data from two well-known neuroimaging repositories: the All India Institute of Medical 

Sciences (AIIMS) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

https://ida.loni.usc.edu/home/projectPage.jsp?project=ADNI . Using neural network methodologies, with a focus 

on Convolutional Neural Networks (CNNs), our goal is to create a reliable classification model that can differentiate 

between individuals with depression or Alzheimer’s group and baseline subjects. The core purpose of this study is to 

fabricate a custom deep learning model specifically for classifying patients with depression and Alzheimer’s using 

fMRI data. The performance of this model will be systematically compared with two advanced pretrained models, 

Inception-ResNet-v2 [46] and MobileNet v3 [15], to assess its accuracy, effectiveness, and robustness in comparison 

mailto:sanskritigupta@ncuindia.edu
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to these established models. This evaluation will help determine its potential application in clinical diagnostics. The 

broader aim of this investigation is twofold: to elevate the growing research in neuroimaging-based diagnostic 

techniques and to provide a potentially transformative tool for timely intervention and recognition in depression and 

Alzheimer’s disease. By harnessing the power of AI and neuroimaging, we aspire to advance clinical practice towards 

more precise, personalized, and proactive healthcare strategies for individuals at risk of these debilitating conditions. 

Contribution of the Study 

This research offers several key contributions to the domain of neuroimaging-based diagnostic methodologies and 

the broader landscape of psychiatric and neurological disorder research: 

1) Advanced Classification Model: By utilizing an advanced approach for distinguishing among depression or 

Alzheimer’s groups and normative controls using fMRI data, leveraging neural network methodologies, with a focus 

on Convolutional Neural Networks (CNNs) The creation of a strong CNN-based model marks an innovative use of 

state-of-the-art AI technology in neuroimaging analysis.. 

2) Utilization of Diverse Datasets: Drawing upon data from two prestigious neuroimaging repositories, namely 

the All India Institute of Medical Sciences (AIIMS) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI), this 

study benefits from the richness and diversity of information captured across different populations and settings. By 

incorporating data from multiple sources, our research enhances the generalizability and reliability of the 

classification model. 

3) Comparison with Pre-trained Models: In addition to proposing a custom CNN-based approach, this research 

conducts a panoramic comparative exploration by evaluating the accurate degree of our model in relation to two 

leading two stateof-the-art pre-trained models. This comparison framework offers important perspectives on the 

relative effectiveness and appropriateness of various artificial neural networks for the task of classifying neurological 

disorder patients, thereby informing future research directions and algorithmic refinements. 

4) Clinical Implications: By offering a potentially transformative tool for the timely identification and 

intervention in depression and Alzheimer’s disease, this study holds significant clinical implications. The accurate 

classification of individuals at risk of these debilitating conditions can facilitate timely access to appropriate 

interventions, personalized treatment plans, and targeted support services, promoting improved patient treatment 

outcomes and improved well-being. 

5) Advancement of Precision Medicine: Through the unification of AI-driven neuroimaging analysis into 

clinical practice, this research contributes to the paradigm shift toward precision medicine in psychiatry and 

neurology. By allowing clinicians to leverage objective biomarkers and computational algorithms for diagnostic 

decision-making, our approach aligns with the broader goal of providing personalized and evidence-based healthcare 

solutions to individuals with complex neurological disorders. 

In summary, this study represents a multidimensional endeavor that combines cutting-edge technology, diverse 

datasets, comparative analysis, clinical relevance, and the advancement of precision medicine principles to address 

pressing challenges in the timely identification and categorization of depression and Alzheimer’s disease. By pushing 

the boundaries of interdisciplinary research and innovation, our findings have the potential to catalyze 

transformative changes in how we understand, diagnose, and treat these conditions, ultimately benefiting 

individuals, families, and communities worldwide. 

The rest of the paper is organized as follows. A detailed literature of previously performed work is shown in Section 

2. Section 3 covers the method used in this research and a framework that can classify patients with depression or 

alzheimer’s and normative control groups. Section 4 presents the results and also discusses the results presented. 

The paper is concluded in Section 5. 

 II. LITERATURE SURVEY 

Payan et al. [32] developed an algorithm for classifying Alzheimer’s groups by combining 3D convolutional deep 

learning models (CNNs) with an autoencoder and 2D CNNs. Their 3D CNN model reached an accuracy of 89.47%, 

while the 2D CNN model achieved around 85.53%. Another notable study was conducted by Saman Sarraf et al. 

[39],[40], where they created a comprehensive pipeline for classifying Alzheimer’s group and normative subjects 
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using both fMRI and MRI data. Their approach utilized two different methods for binary classification, leveraging 

CNN architectures like LeNet-5 [38] and 

GoogLeNet [34], with the LeNet model achieving an average accuracy of 97.5% on fMRI data. Kazemi [21] applied 

the AlexNet CNN to fMRI datasets to categorize five levels of Alzheimer’s disease, obtaining an average accuracy of 

97.63%.This method demonstrated significant improvements over previous studies, with class-specific accuracies 

ranging from 94.55% to 98.34%. Abrol et all [1] supports the exploration of multimodal data fusion frameworks to 

improve the prediction of functional alterations in neuroimaging data. By including the capabilities of both sMRI and 

fMRI, his method offer promising directions for early diagnosis and treatment planning in neurodegenerative 

diseases like Alzheimer’s. Duc [11] research demonstrated that using a 3D CNN on rs-fMRI data achieved an 85.27% 

accuracy in diagnosing Alzheimer’s disease, and predicted MMSE scores with high precision, employing feature 

optimization techniques such as LASSO and SVM-RFE for improved performance . Gupta [19] introduced the 

ambivert degree, a measure that considers both node degree and connection weights to accurately identify brain hubs 

using rs-fMRI data for classification accuracy of Alzheimer’s and Autism Spectrum Disorder patients compared to 

traditional functional connectivity features. Ju [18] advancements in computerized healthcare demonstrate that 

integrating deep learning with brain network features and clinical data significantly enhances early Alzheimer’s 

disease diagnosis, achieving a 

31.21% improvement in prediction accuracy and a 51.23% narrowing of dispersion compared to traditional methods. 

Li [25] introduced a 4D deep model (C3d LSTM) for diagnosing Alzheimer’s disease, leveraging 4D fMRI data to 

gather spatial and temporal insights. This model significantly outperformed approaches using functional connectivity 

or 2D/3D fMRI data, underscoring the importance of retaining natural spatiotemporal details in medical imaging. 

Parmar [31] demonstrated the use of a modified 3D CNN on resting-state fMRI data for Alzheimer’s classification, 

preserving both spatial and temporal information. This method effectively distinguished between normative controls, 

mild cognitive impairment (MCI), and Alzheimer’s group, highlighting its potential for early detection and improved 

diagnosis. Ramzan [35] applied resting-state fMRI and the ResNet-18 architecture for differentiation of Alzheimer’s 

disease into multiple stages, achieving state-of-the-art accuracy of 97.92% with an off-the-shelf model and 97.88% 

with a fine-tuned version. This research emphasizes the potential of advanced deep models for timely diagnosis and 

enhanced clinical selection process in neurodegenerative conditions. Tajammal [45] proposed a two-step deep neural 

network based approach for Alzheimer’s diagnosis, attaining 98.8% accuracy in classifying six stages of the disease 

using MRI scans. This method involved binary classification of MCI and AD, followed by multi-class categorization, 

which was further improved using max-voting ensembling techniques. Shamrat [43] introduced a fine-tuned CNN 

model, AlzheimerNet, which achieved a test accuracy of 98.67%, outperforming existing models in identifying six 

levels of Alzheimer’s disease from MRI scans and surpassing traditional methods. 

Limitations of previous studies: 

Although the cited studies provide important insights into the use of AI and neuroimaging for classifying depression 

and Alzheimer’s disease, several limitations can be identified, presenting opportunities for improvement and 

innovation in the present research: 

• Limited Generalizability: Many existing studies focus on single-site data or specific populations, which may 

limit the generalizability of their findings. By leveraging data from multiple sources, including AIIMS and ADNI, the 

cited research has the potential to improve the diversity and representativeness of the study cohort, resulting in more 

robust and widely applicable classification models. 

• Feature Representation: Some studies rely on handcrafted or predefined features extracted from 

neuroimaging data, which may overlook subtle but important patterns relevant to disease classification. By 

employing deep learning techniques, such as CNNs, the present research is capable of learning hierarchical structures 

without manual intervention directly from fMRI data, potentially capturing more informative and discriminative 

features for improved classification performance. 

• Interpretability: Deep learning models are frequently criticized for their limited interpretability, making it 

difficult to comprehend the reasoning behind their classification decisions. Incorporating techniques for model 

interpretability, such as feature visualization or attention mechanisms, can enhance the transparency and 

trustworthiness of the classification framework, enabling clinicians to better interpret and validate the results. 
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• Data Imbalance: Class imbalances, where one class (e.g., Alzheimer’s patients) may be significantly 

underrepresented compared to others (e.g., healthy controls), can pose challenges for training robust classification 

models. Utilizing methods like data augmentation, oversampling, or incorporating class weights during training can 

help address data imbalance and improves the system’s ability to accurately classify minority groups. 

By overcoming these limitations and expanding on current research, this study can push forward advancements in 

AI-driven neuroimaging analysis for classifying depression and Alzheimer’s disease, leading to more precise, 

interpretable, and clinically applicable diagnostic tools. 

III. MATERIAL AND METHOD 

A. Dataset Description 

The meticulously curated datasets, annotated by specialists and sourced from various channels, include fMRI scans 

from ADNI and AIIMS dataset shown in Figure 1 and Figure 2 respectively. Both datasets have undergone rigorous 

preprocessing using SPM12, ensuring high-quality inputs for the deep learning models. The preprocessing steps—

such as slice timing correction, realignment, normalization, and smoothing—are essential for improving the signal-

to-noise ratio and ensuring consistent data standardization across subjects. 

 

Figure 1: fMRI scans ADNI Dataset (Coronal, Axial, and Sagittal views from left to right) 

fMRI data inherently contains rich spatial and temporal information about brain activity, making it ideal for deep 

learning approaches that thrive on complex, high-dimensional data. This characteristic allows the custom model and 

the pretrained models to potentially capture nuanced patterns associated with each condition. The datasets include 

a substantial number of subjects with varying degrees of depression and Alzheimer’s, providing a comprehensive 

representation of these conditions. This assortment is crucial for training models that can effectively extend across 

various patient groups. 

For the Alzheimer’s dataset , 15 patients and 10 healthy participants with an average age of 64.5 were selected from 

the ADNI database. Scanning for ADNI data employed 3T MR scanners, covering both structural and functional 

scans. The functional scans were performed with a voxel size of 3 x 3 x 3 mm, a repetition time of 2 seconds, an echo 

time of 30 ms, a flip angle of 70 degrees, and a 20 cm field of view with a 64 x 64 matrix. 

The Depression dataset involved recruiting 30 patients and 10 healthy controls from the AIIMS outpatient center in 

India . Using a 1.5 T MR scanner, fMRI data acquisition included functional scans with parameters such as a voxel 

dimension of 2 x 2 x 2 mm, repetition time of 2 seconds, an echo time of 26.3 ms, and a field of view measuring 25.6 

cm with a 256 x 256 matrix. A total of 128 slices, each 5 mm thick, were obtained. 
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Figure 2: fMRI scans AIIMS Dataset (Coronal, Axial and Sagittal views from left to right) 

B. Methodology 

This section outlines the framework used in our research, covering the preprocessing of raw fMRI images, model 

training, and evaluation. The process begins with data preprocessing to remove anomalies, reduce noise, and 

standardize the dataset. Following this, feature extraction is accomplished using a custom Convolutional Neural 

Network (CNN) for image recognition. In this study, we conducted binary classifications for Alzheimer’s disease (AD) 

and Depression. The custom CNN was used to classify scans into two categories: Alzheimer’s vs. Controls and 

Depression vs. Controls. For multiclass classification, we utilized various CNN models, which were combined with 

the custom CNN to form an ensemble of models. Figure 3 illustrates the detailed methodology. 

1) Data Preprocessing: The preprocessing of raw fMRI images is an essential step to ensure that the data are clean, 

compatible, and ready for analysis by deep learning models. This process involves several sequential stages, which 

are detailed below: 

Two diverse data sets were used for this study, each containing fMRI scans from subjects diagnosed with depression, 

Alzheimer’s, and healthy controls. (Details were explicitly presented in the previous section). The data set explored 

here consists of fMRI scans in NIfTI format. 

Preprocessing of the raw fMRI data was conducted using SPM12, a software package widely used for the analysis of 

cerebral imaging data. The steps included are as follows: 

1) Slice Timing Correction: This step addresses the time differences in slice acquisition within each fMRI 

volume. This is crucial because fMRI data is acquired in a sequential manner, meaning different slices are captured 

at slightly different times. It aligns the time courses of voxels in different slices by interpolating the data, effectively 

adjusting the data as if all slices were acquired simultaneously. 

2) Realignment: To correct for head movements that occur between scans. Even slight movements can 

introduce artifacts that affect the analysis. It utilizes a rigid body transformation to align all images in a time series 

to the first image (or a mean image). This step involves estimating the movement parameters and applying them to 

realign all volumes. 

3) Coregistration: It is a vital preprocessing step in fMRI data analysis, aimed at aligning images from different 

modalities 

 

Figure 3: Methodology 
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or different time points to a common space. This step is essential for ensuring that anatomical and functional data 

correspond accurately across different scans. 

4) Normalization: To map the fMRI data from individual subjects into a standardized anatomical space, 

typically based on a template such as the Montreal Neurological Institute (MNI) space. It involves spatially 

transforming each participants brain image to match a conventional template. This allows for meaningful 

comparison and averaging across subjects. 

5) Smoothing: Aims to enhance the signal-to-noise ratio and to accommodate individual structural variations 

by averaging the data over a specified spatial scale. This step applies a Gaussian kernel to the fMRI images, blurring 

the data slightly to enhance the signal. The size of the kernel (e.g., 6-8 mm FWHM (full-width at half-maximum)) is 

chosen based on the scale of the expected effects. 

6) Segmentation: It is a preprocessing step in fMRI analysis where the brain image is divided into different 

tissue types. This step is crucial for isolating regions of interest, enhancing the precision of functional analysis, and 

facilitating more detailed anatomical studies. The primary tissue types segmented usually include grey matter (GM), 

white matter (WM), soft tissue, and cerebrospinal fluid (CSF). 

7) Conversion into 2D images: To transform the 4D fMRI data (3D spatial + time) into a format suitable for 

input into 2D convolutional neural networks. The segmentation results in the 4 tissues and total of 700 and 129 for 

ADNI and AIIMS data respectively segmented images of each patient as well as control, which result in 64 × 64 × 84 

× 128 scans , with each scan including 64 × 64 3D-84 volumes per scan (a total of 128 scans)for ADNI data and 64 × 

64 × 29 × 140 scans with each scan including 64 × 64 3D-29 volumes per scan (a total of 140 scans) for AIIMS data. 

After the conversion process, selection criteria of images are done using entropy. In image processing, entropy 

quantifies the level of information or randomness in an image. A higher entropy value signifies greater complexity 

and variation in pixel intensity, indicating that the image contains more detailed and useful information. Conversely, 

lower entropy implies less variability and potentially redundant or less informative data. By calculating the entropy 

of each image, we can assess its information content and make informed decisions about which images to retain for 

analysis as explained in algorithm 1. 

Entropy H of an image is calculated using the probability distribution of pixel intensities. Mathematically, it is defined 

as: 

 Hi = − X p · log2(p) (1) 

p∈Pi 

where: 

• p(i) represents the probability of the i-th intensity level in the image. 

• n depicts the total number of possible intensity levels (for example, 256 in an 8-bit grayscale image). 

 

Algorithm 1 Entropy-Based fMRI Image Selection 

 

Require: 2D fMRI images I with probability distribution of pixel intensities Himage 

Ensure: Selected fMRI images 

0: Compute the entropy value of the image using the entropy formula. 

0: Determine an appropriate entropy threshold Hthreshold. 

0: for each image I do 

0: if Himage ≥ Hthreshold then 0: Retain the image. 

0: else if Himage < Hthreshold then 0: Discard the image. 

0: end if 
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0: end for 

=0 

 

By applying this entropy-based selection method, the dataset is refined to include only those images that are likely to 

provide valuable information for training the deep neural network model. Table 1 presents the number of images 

collected. These preprocessing steps aim to standardize the fMRI data, reduce noise, and format it appropriately for 

training deep learning models, potentially improving model performance and leading to more accurate classification 

results. The result is a set of high-quality 2D images that accurately reflect the underlying brain activity, providing a 

robust foundation for model training and subsequent analysis. 

Dataset Patients Controls 

AIIMS (20-P) 14811 2949 

ADNI (30-P) 14946 3338 

Table I: Number of Images obtained 

C. Classification 

The preprocessed fMRI data is converted into 2D images of size 224 x 224, which serve as the input for the deep 

learning models. This paper include three Convolution neural networks to train fMRI dataset and tested results 

framed the best CNN for above mentioned datasets. 

• Mobile netV2: MobileNet V2 is a deep learning model designed for efficient performance [23]. It builds upon 

the original MobileNet architecture, introducing several enhancements to improve both accuracy and speed while 

keeping the model lightweight. MobileNet V2 [42] is an advanced, efficient neural network architecture designed to 

perform well on mobile and embedded devices. It aquires this through the use of depthwise separable convolutions, 

inverted residuals with linear bottlenecks, and an overall design focused on reducing computational cost while 

promising quite good accuracy. This makes MobileNetV2 an impactful choice for real-time image processing on 

devices with constrained computational power 

[5]. 

 

Figure 4: Architecture of Mobilenet v2 
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• Inception Resnet : Inception-ResNet [10] combines the strengths of two influential neural network 

architectures: the Inception architecture, known for its multi-scale feature extraction [27], and Residual Networks 

(ResNet) [52] enable the efficient training of quite deep neural networks. It was designed to escalate both the training 

efficiency and accuracy of deep learning models by leveraging the complementary strengths of these architectures. 

Inception-ResNet represents a powerful and an efficient deep learning models that leverages the combined reinforce 

of Inception modules and residual connections. Its design allows for effective multi-scale feature extraction, stable 

and efficient training of deep networks, and adaptability to various image processing tasks. This makes Inception-

ResNet [3] a valuable tool in both research and practical applications, including medical imaging, where it can can 

greatly improve the accuracy and efficiency of diagnostic models. 

Inception-ResNet has proven itself to be a top performer across multiple benchmark image classification datasets, 

including the widely recognized ImageNet [29]. Its strength lies in its robust feature extraction capabilities, making 

it a go-to architecture for transfer learning in diverse vision tasks [44]. By combining the best of Inception modules 

and residual connections, it provides an exceptionally powerful backbone for deep learning models, allowing them 

to tackle complex image-based problems with remarkable precision and efficiency. 

 

Figure 5: Inception-Resnet v1 architecture 

In this research, we employ a systematic technique to categorize images using 2 pretrained and one custom CNN into 

two categories: patient and control. The detailed steps of algorithm using pretrained network are as provided in 

Algorithm 2. 

 

Algorithm 2 Training a Classification Model 

 

Require: Dataset D containing images xi and labels yi. 

Ensure: Trained Classification Model Ntrained, Model accuracy A. 0: Initialize Dataset D(xi,yi). 

0: Split D into training set Dtrain and test set Dtest. 

0: Load the pretrained network Npre. 

0: Modify layers of the network: 

0: Remove final layers and add custom layers for binary classification to Npre. 

0: Nmod = Remove Layers(Npre). 

0: Nmod = Add New Layers(Nmod,numClasses = 2). 

0: Specify learning rate α, batch size m, and number of epochs E. 

0: Train Network using: 

0: Ntrained = TrainNetwork(Nmod,Dtrain,α,m,E). 
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0: Evaluate the trained network Ntrained on Dtest and calculate accuracy: 

A = correct predictions 

• Custom CNN: Convolutional Neural Networks (CNNs) [26] are a specialized deep learning based neural network 

architecture fabricated to handle grid-like data, such as images. Due to their feasibility that they absorb spatial 

hierarchies of features through backpropagation, CNNs are highly effective in image recognition and classification 

tasks [49]. Figure 6 illustrates the architecture of a basic CNN model. 

A prototypical CNN architecture includes [22] an input layer, multiple convolutional layers with ReLU activations, 

pooling layers, a flattening layer, fully connected (dense) layers, and a final softmax layer for classification. This 

combination of layers enables the network to efficiently learn and classify complex patterns from image data [7], 

making CNNs ideal for a wide range of computer vision tasks. 

 

Figure 6: CNN Architecture 

CNNs process input images through a series of specialized layers, each serving a distinct function. Algorithm 3 

demonstrates the steps for a custom CNN, starting with the input layer, which processes images of size 224×224. The 

convolutional layers apply filters to extract features from the image, mathematically represented as: 

  (2) 

Where I is the input image and K is the filter (kernel). Following the convolution, the ReLU activation function 

introduces non-linearity, represented as: 

f(x) = max(0,x) 

A batch normalization layer is used to stabilize the training process by normalizing outputs, defined as: 

(3) 

  (4) 

Where µ and σ2 represent the mean and variance, respectively. Next, the max-pooling layer reduces the spatial 

dimensions by adopting the max number in 2×2 window [13], mathematically expressed as: 

 y(i,j) = max(x(m,n)),form,npoolingwindow (5) 

A dropout layer is then applied during training to prevent overfitting, randomly setting a fraction ppp of input units 

to 

zero: 

 Y i = xi/(1 − p) (6) 

The flatten layer transforms the 2D feature maps into a 1D vector, preparing the data for the fully connected layers 

(Dense layer) [41], which connects every neuron to all neurons in the previous layer, mathematically represented as 

 y = f(Wx + b) (7) 

where W is the weight matrix, b is the bias, and f is typically ReLU activation function. Finally, the output layer 

produces classification probabilities using the softmax function, 

  (8) 

 |D  |  
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ensuring the outputs sum to one, suitable for binary classification. Each layer’s contribution enables the CNN to learn 

hierarchical features and make accurate classifications [6]. The CNN model includes the following key layers: Input 

layer: Receives the input image, normalizing pixel values from [0, 224] to [0, 1]. Convolution layer: Uses 16 filters 

(3×3) and the ReLU activation function as shown in Equation (2). Max-pooling layer: After three convolutional 

layers, this layer reduces the dimensions using Equation (3). Batch normalization: Applied after max-pooling to 

stabilize training and normalize outputs. Additional convolutional layers: Consisting of 32 filters (3×3) with ReLU 

activation, followed by max-pooling and batch normalization. Fully connected (dense) layer: Contains 128 units, each 

connected to every neuron from the previous layer, using the ReLU activation function. Another dense layer: With 

64 units, this layer is also activated by the ReLU function. Dropout layer: A dropout rate of 0.25 is applied to prevent 

overfitting by setting 25% of the neuron outputs to zero during training, enhancing generalization. Final fully 

connected layer: Consisting of 2 units, this layer uses the softmax function for classification.The architecture of the 

proposed CNN model is visually represented in Figure 

7. 

 

Figure 7: Proposed customized CNN model 

IV. RESULTS 

This section outlines the analysis and experimental results, underlined the performance and productiveness of the 

suggested models and two pretrained networks on two distinct datasets for binary classification tasks. The 

classification tasks involved distinguishing between: 

• Depression vs. Controls using AIIMS dataset. 

• Alzheimer’s Disease vs. Controls using ADNI dataset. 

The final results were based on the average values of evaluation metrics such as accuracy, specificity, sensitivity, 

recall, and F1 score. Additionally, the training and testing times were recorded. Section 4.1 provides comprehensive 

details about the workspace setup. The models’ performance was assessed using the datasets described in Section 

4.2, and a comparative analysis of the findings is presented in Section 4.3. 

A. Working Characteristics 

All programming for the deep neural networks was conducted using MATLAB 2023a. The hyperparameter and 

default settings for the models, such as the selected optimizer, loss function, and maximum number of epochs, are 

summarized in the table II 

These configurations were selected to enhance the training process and ensure strong performance across various 

datasets. 

CNN Model Parameter 

Mobilenet v2 

Optimizer = adam 

Loss Function = 

crossentropy 

Epochs = 10 

Mini Batch Size = 100 
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Initial Learning Rate = 

0.001 

Validation Frequency = 

100 

Inception resnet 

Optimizer = adam 

Loss Function = 

crossentropy 

Epochs = 10 

Mini Batch Size = 100 

Initial Learning Rate = 

0.001 

Validation Frequency = 

100 

Custom CNN 

Optimizer = rmsprop 

Loss Function = 

crossentropy 

Epochs = 20 

Mini Batch Size = 50 

Initial Learning Rate = 

0.002 

Validation Frequency = 30 

Table II: CNN Model Parameters used 

B. Training Progress 

The training progress for the binary classification of depression vs. controls using the AIIMS dataset and Alzheimer’s 

Disease vs. controls using the ADNI dataset is a plot of accuracy and loss over iterations of training on training as 

well as validation data for the custom CNN, MobileNetV2, and InceptionResNetV1 models. The top panel depicts the 

accuracy trends over iterations, while the bottom panel represents the loss trends. 

In Figure 8, (a) shows the training progress of Mobilenet. The training accuracy (blue line) starts at a lower value and 

improves steadily over iterations, reaching near 100% in the later epochs indicates the model successfully learns the 

training data features. Also, the training loss (orange line) decreases significantly during the early epochs, stabilizing 

near zero reflects effective learning and optimization. The figure (b) shows the training progress of inception resnet 

v2, the training accuracy line shows rapid movement during initial epochs while the validation starts at a low level 

but improves steadily, reaching final value of 95.38%. This class alignment between training and validation 

accuracies indicates minimal overfitting and good generalization to unseen data. The figure (c) illustrates the training 

progress of custom CNN model, the training and validation accuracy trends are represented by the solid blue and 

dashed black lines, respectively. The final validation accuracy achieved was 97.29%, indicating the model’s high 

performance on unseen data. In the lower graph, the loss function values decreased rapidly during the initial 

iterations and plateaued in later stages, demonstrating effective convergence of the model. 

Figure 9, (a) shows the training progress of the Mobilenet v2 model, with the top graph representing accuracy and 

the bottom graph depicting loss during training across 10 epochs. Training and validation accuracies achieved a final 

validation accuracy of 94.65%.The loss curve demonstrates rapid convergence, with the loss stabilizing near zero by 

the end of the training. Figure (b) illustrates the training progress of inception resnet v2, showing a validation 

accuracy of 96.28% and smooth convergence of accuracy and loss curves over 10 epochs and 1420 iterations. The 
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results highlight the model’s effective learning and strong generalization, with stable optimization achieved using a 

constant learning rate of 0.001 on a single CPU. Figure (c) 

 

a) MobileNet v2 

b) Inception ResNet v1 

c) Custom CNN 

Figure 8: Training Progress for Depression vs. Controls Classification (AIIMS, India) 

demonstrate the validation accuracy increases steadily and closely follows the training accuracy, indicating low 

overfitting. The loss curve decreases smoothly, showing effective convergence of the optimization process. The 

training and validation curves demonstrate a well-trained model with minimal overfitting. High validation accuracy 

(98.06%) suggests that the model generalizes well to unseen data. The constant learning rate and choice of epochs 

appear suitable, as the model has converged without unnecessary overtraining. 

C. Performance Evaluation 

The results of the three deep neural networks (custom CNN, MobileNetV2, and InceptionResNetV1) are summarized 

in 

Tables 3 and 4. The performance comparison graph is also depicted in Fig. 10 

Network Accuracy (%) Specificity (%) Sensitivity (%) Recall (%) F1 Score 

Custom CNN 97.29 96.5 98.1 98.1 97.7 

MobileNetV2 89.14 92.2 94.6 94.6 93.4 

InceptionResNetV1 95.38 94.0 96.4 96.4 95.2 

Table III: Performance Metrics for Depression vs. Controls Classification (AIIMS, India) 
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a) MobileNet v2 

b) Inception ResNet v1 

c) Custom CNN 

Figure 9: Training Progress for Alzheimer’s vs. Controls Classification (ADNI) 

Network Accuracy (%) Specificity (%) Sensitivity (%) Recall (%) F1 Score 

Custom CNN 98.06 97.5 98.6 98.6 98.1 

MobileNetV2 94.65 93.7 95.9 95.9 94.8 

InceptionResNetV1 96.28 94.9 97.1 97.1 96.0 

Table IV: : Performance Metrics for Depression vs. Controls Classification (ADNI) 

D. Discussion 

The results indicate that the custom CNN outperforms both MobileNetV2 and InceptionResNetV1 from an accuracy 

standpoint for both classification tasks. Notably, the tailored CNN attains an accuracy rate of 97.29% for the 

depression vs. controls classification using the AIIMS dataset and 98.06% for the Alzheimer’s Disease vs. controls 

classification using the ADNI dataset. This demonstrates the efficacy of the custom CNN architecture tailored to the 

specific characteristics of the datasets used. 

The performance metrics across all networks also highlight the high specificity and sensitivity of the custom CNN, 

contributing to its superior overall accuracy. The F1 score, which considers both precision and recall, further supports 

the robustness of the custom CNN in classifying both depression and Alzheimer’s Disease from controls. 
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Overall, the custom CNN provides a significant improvement in classification performance, suggesting its potential 

for clinical application in distinguishing between healthy individuals and those affected by depression or Alzheimer’s 

Disease. 

 

Figure 10: Performance Comparison 

E. Comparison with existing literature 

Tables 5 and 6 compare the proposed work with existing studies for predicting depression and Alzheimer’s subjects 

using machine learning models. These tables highlight the classification performance of various studies, considering 

different classifiers and sample sizes. 

Sr. No. Technique Year Algorithm Used Accuracy 

1 Zhang et al. [51] 2024 STANet integrates CNN and RNN for depression diagnosis. 82.38 % 

2 Hatami et al. [15] 2024 MobileNet V2 model 97.7 % (F1-

Score) 

3 Dai et al. [8] 2024 Residual Denoising Autoencoder framework for classification. 75.1 % 

4 Zhu et al. [54] 2023 Deep graph convolutional neural network 72.1 % 

5 Zheng et al. [53] 2023 Function and structure co-attention fusion (FSCF) module 75.2 % 

6 Hao et al. [16] 2024 Support Vector Machines (SVMs) 92.9 % 

7 Li et al. [24] 2022 Deep convolutional networks for feature extraction and 

classification 

87.46 % 

8 Pitsik et al. [33] 2023 Graph neural network (GNN) 93 % 

9 Gao et al. [12] 2022 Attention-guided unified deep convolutional neural network 76.54 % 

10 Proposed 2024 Custom CNN for classification 97.29 % 

Table V: Comparison of Different Techniques for Depression Classification 

V. CONCLUSION 

This paper outlines a fresh perspective to multiclass classification of depression, Alzheimer’s, and control subjects by 

utilizing deep learning methods. By leveraging a custom convolutional neural network (CNN) alongside two 

pretrained models, we achieved superior performance in distinguishing these classes from fMRI data. The custom 

CNN demonstrated particularly high accuracy, achieving 97.29% for the AIIMS dataset (depression vs. controls) and 

98.06% for the ADNI dataset (Alzheimer’s vs. controls). These findings emphasize the effectiveness of our model in 

identifying and learning from intricate patterns in grayscale fMRI images. All deep learning programming was 

conducted using MATLAB 2023a, ensuring a robust and 
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Sr. No. Technique Year Algorithm Used Accuracy 

1 Ravi et al. [36] 2024 ResNet-50v2 97.84 % 

2 Hassan et al. [14] 2024 Random Forest, SVM, and KNN classifiers. 84 % 

3 Tajammal et al. [45] 2023 VGG-16, ResNet-18, AlexNet, and Custom CNN. 96.8 % 

4 Alrof et al. [2] 2022 Stacked Sparse Autoencoders and Brain Connectivity Graph 

CN 

84.03 % 

5 Mohtasib et al. [28] 2022 Logistic-Regression and Random-Forest 74 % 

6 Amini et al. [4] 2021 CNN 96.7 % 

7 Zamini et al. [50] 2022 Multi-layer Perceptron Artificial Neural Network (ANN) 94.55 % 

8 Kavitha et al. [20] 2022 Decision Tree, SVM, Gradient Boost, Random Forest 83 % 

9 Wang et al. [47] 2021 3DShuffleNet 85.2 % 

10 Parmar et al. [31] 2020 modified 3D CNN 98 % 

11 Proposed 2024 Custom CNN 98.06 % 

Table VI: Comparison of Different Techniques for Alzheimer’s Classification 

reproducible implementation of the proposed models. The detailed hyperparameter settings and training 

configurations provided a clear framework for replicating and extending this work. This research highlights the 

promise of deep learning methods, especially customized CNNs, in the accurate classification of neurological 

conditions using fMRI data. The high performance of our models suggests their applicability in clinical settings, 

potentially aiding in the early identification and distinction between depression and Alzheimer’s disease. Future work 

will explore further optimization of the network architecture and the inclusion of additional datasets to enhance 

model robustness and applicability. 
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