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Plant disease classification is critical in sustainable agriculture, essential for ensuring food 

security and reducing environmental harm. Traditional disease detection methods are often 

inefficient, time-intensive, and costly, highlighting the need for advanced computational 

solutions. This work presents a hybrid intelligent model that integrates a framework of transfer 

learning with bio-inspired optimization in the identification of early and accurate plant diseases. 

The pre-trained VGG-19 is re-trained parietally for the feature extraction process by applying the 

transfer learning concept. The Grey Wolf Optimization (GWO) is utilized to select relevant 

features from the extracted features. This work assesses and evaluates the performance of the 

proposed model using the Plant Village dataset (39 classes) of 14 plants ( Apple, Blueberry, 

Cherry, Corn, Grape, Orange, Peach, Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, 

Tomato).From the experiment result, it is evident that the proposed model has an accuracy of 

99.44%, which is higher compared to the traditional machine learning algorithm and state-of-

the-art approaches. This enhancement has further shown the potential of the model in evolving 

how plant diseases are managed due to timely and precise interventions. 

Keywords: Plant Disease Classification; Transfer Learning; Grey Wolf Optimization (GWO); 

Feature Selection; Deep Neural Networks (DNN) 

 

INTRODUCTION: 

Currently, the earth is inhabited by people; therefore, it is necessary to maintain its stability and resource availability, 

including for the growth of resource-rich environments that will support humankind and preserve sustainable 

agriculture [1, 2]. This involves agroecological and economic sustainability because the practice of agriculture highly 

impacts ecosystems, leading to erosion of biodiversity and transforming natural landscapes. The traditional 

approaches to plant disease identification relied on visual examination or identification, laboratory diagnosis, and 

consultation from an expert. This method might not be efficient, effective, or fast when used, as it might also be costly 

to undertake [3]. Furthermore, several attributes are to be found notable, such as external scale, a complicated 

interdependent problem-solving nature, and diverse stakeholder needs. That makes it important for performing 

high-level computational analyses for diagnosing plant diseases and emerging with the right interventions [4]. Thus, 

it becomes imperative to rely on intelligent models to either eliminate or minimize the constraints in the conventional 

approaches of plant disease identification [5]. 

Computer vision (CV) is an improved, intelligent method of analyzing, enhancing, and classifying images. It could be 

applied in plant disease classification and achieve much more than a decrease of the obstacles of conventional 

approaches [6]. CV technique relies on image scanning of colors present in the plant leaves to diagnose diseases. The 

CV consists of machine learning and deep learning algorithms to tackle the process of detection and classification. 

The integration of two or more techniques in CV could lead to the emergence of the following undesirable 

consequences: computational difficulty, extensive data needs, risk of overfitting, and delays in response times. As a 

result, transfer learning algorithms and bio-inspired optimization have been used as possibly prominent techniques 

in plant health research to improve agricultural practices [7].  
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Transfer learning is a machine learning technique whereby information learned from a pre-trained task on a source 

task is used to improve target task performance when a large, labeled dataset may not be available [8]. This then 

makes use of new deep learning models such as CNNs that have been pre-trained on large databases to learn, for 

example, texture, shape, and color. Transfer learning also cuts down the amount of training data required while 

achieving enhanced detection rates without much computation overhead. In this research, these models are further 

fine-tuned for the task of plant disease classification [9]. The approach improves generalization by allowing the better 

representation of features and accurate classification with a small, high-quality dataset, thereby making it a suitable 

solution for tasks that are characterized by a small data set and limited resources [10]. 

This work contributes to proposing a new approach to plant disease classification using transfer learning algorithms 

and bio-inspired optimization, as follows: 

1- Its goal is to capture plant diseases at early stages to enable interventions, thereby minimizing crop loss. 

2- It starts with preprocessing a set of data composed of various images of plant leaves infected with diseases. 

3- The proposed model employed transfer VGG-19 for extracting features. After that, a swarm-based optimization 

algorithm (Grey Wolf optimization (GWO)) is incorporated into selecting the appropriate features that have been 

extracted earlier in the proposed model. For the classification process, the Deep Neural Network (DNN) is employed.  

The remainder of this paper is structured as follows: Section 2 presents related work, highlighting recent 

advancements in plant disease classification. Section 3 details the proposed methodology, while Section 4 discusses 

experimental setup and evaluation. Finally, Section 5 concludes the study with findings and future directions. 

RELATED WORK 

There are several models intended to create plant disease taxonomy. Some of these models are:    

In crop leaves, in 2022 [11] Paymode and Malode proposed a challenging issue of plant disease detection, particularly 

on tomato and grape leaves. They proposed a CNN on VGG architecture recommended for multi-crop disease 

identification for leaves. Furthermore, the authors correctly classified and predicted diseased and healthy tissues 

using a dataset of diseased and healthy leaf images. The proposed method provided a recognition accuracy of 98.40% 

for grape leaves and 95.71% for tomato leaves.  

An approach using transfer learning in deep learning to diagnose diseases in the paddy crop leaves which are easily 

affected by disease-causing agents including fungi and bacteria had been developed by Gautam et al. in 2022 [12]. 

VGG16, ResNet, InceptionV3, SqueezeNet as well as VGG19 were used by the authors in classifying the images of a 

leaf. The suggested approach was prescreening through semantic segmentation for area extraction with adjustment 

of transfer learning models for classification. This made the model impressive with a general accuracy of 96.4%.  

Elaraby et al. in 2022 [13] directed their works on improving deep learning model to distinguish disease in many 

crops to enhance the performance. To classify diseases the authors used a deep convolutional neural network called 

AlexNet made more suitable by Particle Swarm Optimization (PSO) algorithm and they used five crops containing 

25 classes of disease. With their method, they recorded a great sensitivity estimate of 98.83%, specificity of 98.56% 

and sensitivity of 98.78%.  

Tabbakh and Barpanda in 2023 [14] proposed a novel, transfer learning and Vision Transformers (ViT) based model 

called TLMViT for plant disease classification. The proposed method refines feature extraction by initially using pre-

trained CNN models like VGG19 or ResNet50 and then using a ViT at a deeper level. We evaluated our proposed 

TLMViT model using the PlantVillage and Wheat dataset to obtain validation accuracy scores equivalent to 98.81% 

and 99.86%, respectively. 

Nayak et al. in 2023 [15] focused on rice disease and nutrient deficiency detection; this study demonstrates the 

effectiveness of CNN-based transfer learning models for smartphone image processing. The MobileNetV2 model 

achieved superior results with a validation accuracy of 97.56% and was integrated into an Android application for 

real-time diagnostics. This research provides a low-cost, accessible solution for farmers, enabling on-field disease 

detection without reliance on internet connectivity. 
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Ahad et al.in 2023 [16] compared six CNN architectures, including DenseNet121 and ResNet152V, and introduced a 

DEX ensemble model for rice disease classification. Using a dataset of nine epidemic rice diseases, the ensemble 

model achieved accuracy of 98% . 

Sharma et al. in 2024 [17] addressed a very current need for plant disease detection systems for accurate classification 

of diseases given the shortage of it due to the minimal availability of large datasets.[1] They concentrated their study 

on optimizing and enhancing the state-of-the-art Deep Learning models: MobileNetV2, ResNet18, AlexNet, and 

VGG16 to recognize multiple types of plant diseases. The best result of 94.4% was achieved using MobileNetV2 after 

fine-tuning these architectures on a dataset containing 39 classes of healthy and diseased leaves from 14 species of 

plants.  

Shafik et al. in 2024.[18] focused on the challenge of accurately detecting plant diseases and overfitting and fine 

feature extraction in training deep learning models. The authors proposed two innovative plant disease detection 

models: PDDNet-AE and PDDNet-LVE, which integrate nine pre-trained CNN architectures, including DenseNet201 

and ResNet50, combined with ensemble learning techniques. Using the Plant Village dataset containing 54,305 

images of 38 categories, the proposed models achieved accuracies of 96.74% and 97.79%, respectively.  

Naseer et al. in 2024 [19] provided an insight into the type of growth stages of pomegranates while providing a CRnet 

transfer learning-based approach that extracts spatial features, best matched to a random forest classifier to enhance 

the precision. On examining a collection of 5,857 images distributed over five growth stages, the proposed model was 

found to attain a classification accuracy of 98%. This study contributes significantly to improving pomegranate 

production and market quality in terms of yield and quality by mobilizing resources efficiently and avoiding pests.  

Ibarra-Pérez et al. in 2024 [20] worked on classifying the phenological stages of beans by evaluating four CNN 

architectures: AlexNet, VGG19, SqueezeNet, and GoogleNet. From a dataset produced by RGB cameras, GoogleNet 

offered the best results, achieving an accuracy of 96.71% and specificity of 98.73%.  

Rezaei et al. in 2024 [21] focused on the problem associated with the use of limited data for plant disease 

identification and have thus proposed the use of few-shot learning (FSL) with Feature Attention (FA) Model. Their 

PMF+FA method resulted in 90.12% accuracy in the PlantDoc benchmark in few as five images per class even with 

such complex field settings. This work shows that FSL techniques can be applied to low-data environments thus 

making it easy to scale up for real-time digital farming systems. 

MATERIAL AND METHODS 

This section introduces the essential material and method used in the proposed model.  

Dataset 

The dataset for this study was obtained from the PlantVillage database, containing 54,305 images of 14 plants (Apple, 

Blueberry, Cherry, Corn, Grape, Orange, Peach, Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, Tomato) 

species across 39 classes, with each class labeling leaves as healthy or diseased. There is also a category with 1,143 

background images without leaves. The dataset underwent several augmentation processes to increase training data 

diversity and reduce overfittings, such as image flipping, gamma correction, noise injection, color augmentation via 

PCA, rotation, and scaling. This resulted in an expanded dataset of 61,486 images. Figure 1 shows a sample of the 

dataset.  

 

Figure 1: sample of the dataset 
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Grey Wolf Optimization (GWO) 

The Gray Wolf Optimization Algorithm (GWO) is inspired by grey wolves and their social ranking behavior in the 

pack. GWO has shown promising outcomes in several optimization domains compared to other intelligent 

algorithms[22]. GWO involves four operational mechanisms. The first mechanism is the encircling alpha operation, 

where wolves surround the alpha wolf for prey. Other wolves surround the prey. The second mechanism involves the 

encircling beta operation, where wolves run to the beta wolf while closing in on the prey. The third mechanism is the 

encircling delta operation, where the wolves locate the delta wolf while closing in on it. The fourth operational 

mechanism relates to the encircling omega operation, where wolves approach the prey from different directions[23]. 

In addition to the four mechanisms, a mathematical representation depicts the search strategies of the wolves. In 

standard GWO, wolves of different ranked members search for prey, with the alpha wolf having the top-ranked 

position, the beta wolf having the second top-ranked position, and the delta wolf ranked third among the wolves. The 

rest of the wolves scatter at random to search for the prey. The position of the alpha wolf, the beta wolf, and the delta 

wolf in the search space represents the movement of the wolves to minimize the objective function. The number of 

iterations or the termination condition for GWO is also defined.  

Visual Geometry Group -19 (VGG-19) 

Convolutional Neural Networks (CNNs) have achieved remarkable performance in various visual perception tasks, 

such as image recognition, object detection, and semantic segmentation. Among the CNN architectures, the 

VGG16/19 is the state-of-the-art method involving deeper two-dimensional filters that exploit spatial hierarchies. 

The VGG uses small convolution filters of size 3 x 3 with huge depth and 2 x 2 max pooling. Figure 2 shows the main 

architecture of VGG-19. 

 

Figure 2: VGG19 Architecture 

Deep Neural Networks (DNNs)  

Deep Neural Networks (DNNs) can be considered a more intricate version of the human brain’s communication 

system. They are built from layers of interconnected units, commonly known as neurons, each performing a relatively 

simple calculation. Stacking these layers one after another allows the network to learn more complex patterns 

gradually. It’s similar to how children learn: first recognizing simple shapes, then putting them together into objects, 

and eventually understanding entire scenes. Figure 3 illustrates the DNN architecture [24].  
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Figure 3: Basic DNN Architecture 

Evaluation metrics 

Evaluation metrics are essential tools for assessing the performance of classification models, particularly in 

applications like plant disease detection. They provide  

insights into how well a model can classify data, identify errors, and balance trade-offs between outcomes. The 

evaluation metrics include accuracy, precision, recall, and F1-score. 

Accuracy evaluates the proportion of correctly classified samples out of the total samples. Equation 1 calculates the 

accuracy of the model: 

 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           ... 1 

Where: TP is the number of instances correctly predicted as belonging to the positive class, TN is the number of 

instances correctly predicted as belonging to the negative class, FP is the number of instances incorrectly predicted 

as belonging to the positive class, and FN is the number of instances incorrectly predicted as belonging to the negative 

class. 

Recall (or Sensitivity) indicates the proportion of actual positives correctly identified by the model. Equation 2 

calculates the Recall of the model: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       ... 2 

Precision measures the proportion of true positive predictions among all positive predictions. Equation 3 calculates 

the Precision of the model: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑝
                                                                                                                  ….3 

F1-Score combines precision and recall into a single metric to balance their trade-offs. Equation 4 calculates the F1-

Score of the model:  

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 
𝑃𝑟𝑒𝑐𝑒𝑖𝑠𝑖𝑜𝑛× 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑒𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
                         … 4 

The Proposed Model 

The proposed mode of plant disease detection is based on transfer learning and swarm algorithms. It consists of 

several stages, starting from preprocess data to classify the plant disease. The proposed model consists of four major 

stages:  pre-processing, feature extraction, feature selection, and evaluation of the proposed model. Each of these 

stage plays a crucial role in the overall effectiveness and efficiency of the disease detection system.  Figure 4 illustrates 

the essential stage of the proposed model design . 
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Figure 4: Proposed model design 

Data Pre-processing Techniques 

This deals with data pre-processing before feeding them to the machine learning models.  During the preprocessing 

stage, data transformations and cleaning steps are employed to improve the data acquired from different sources so 

that the results are reliable. This step includes Image Resizing and Normalization, Image enhancement using 

histogram normalization and Data Augmentation Strategies. By carefully handling the data in this stage, any 

inconsistencies or errors are minimized, thus leading to a more accurate and reliable disease classification process 

[19].  

Image Resizing 

Image resizing is the process of changing the dimensions of an image to fit the requirements of a particular model or 

application. Most machine learning models, especially convolutional neural networks (CNNs), require input images 

to be of a consistent size [25]. Therefore, in this uniform model, the size of the images (in both train and test models) 

is uniform to make the deep learning work properly.  This work used the nearest-neighbor interpolation method to 

resize and uniform the image. It works by selecting the value of the nearest pixel to determine the value of a new 

pixel when enlarging or reducing an image. This technique does not consider other surrounding pixel values, making 

it computationally efficient. It can lead to jagged edges or a blocky appearance, especially when enlarging images 

[25]. 

Image Contrast Enhancement 

Enhance Image Contrast refers to technologies highlighting details and altering the contrast between dark and light. 

This work uses Contrast Limited Adaptive Histogram Equalization (CLAHE) to improve image contrast. It is 

designed to improve the contrast of images by working on small regions (tiles) rather than the entire image at once, 

ensuring that the enhancement is adaptive to local variations in intensity. This approach prevents noise over-

amplification and reduces the risk of introducing unwanted artifacts. Figure 5 shows an example with the main steps 

of Contrast Limited Adaptive Histogram Equalization (CLAHE): 

 

Figure 5:  Example and main steps of CLAHE 
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Data Augmentation Strategies 

Image augmentation techniques have become very common in data pre-processing. They range from rotation, 

flipping, scaling, and image shifting. Random rotations increase hyperparameter tuning but help increase the 

training data diversity [26]. Flipping images, either horizontally or vertically, helps increase the image diversity 

representation when there is reflection symmetry; images must not be flipped. Moreover, images should only be 

flipped vertically if their context involves a human head or facial and perspective objects close to us. Scaling 

invariance of training data augmentations may be of interest, especially in the case of object detection. Object scaling 

is irrelevant for object localization, which does not learn the object's identity. Until recently, data distortion 

techniques like elastic distortion were introduced [19].  

Image Normalization 

Image normalization is a fundamental pre-processing technique in image processing and computer vision. It involves 

adjusting the range of pixel intensity values in an image to a standard scale or distribution. This work used Min-Max 

Normalization (Feature Scaling). This method scales the pixel values to a specific range, typically between 0 and 1 or 

0 and 255. Equation 5 calculates the pixel normalization (𝐼norm ): 

𝐼norm = (
𝐼−𝐼min

𝐼max−𝐼min
)         … 5 

Where: I represent original pixel intensity, 𝐼min, 𝐼max : represent minimum and maximum pixel intensities in the 

original image. 

 

Split data into train-test and validation  

When building machine learning models, evaluating their performance accurately is crucial. To achieve this, data is 

typically split into three distinct sets: training, validation, and test datasets. Each of these  

datasets serves a specific purpose in the model development process [27].  

Transfer learning for feature extraction 

Transfer learning is a powerful technique in deep learning where a pre-trained model, such as VGG19, is repurposed 

for a new task, leveraging its learned knowledge from a large dataset like ImageNet. This approach significantly 

reduces the computational cost and training time required to build a model from scratch, especially when the target 

dataset is small or domain-specific [3]. 

Feature extraction in VGG19 can be done by retaining only certain layers of the model, normally the convolutional 

layers that contain high-hierarchical features like edges, textures and patterns [12]. For example, retaining 10% of 

the original VGG19 architecture combines concentration on establishing the bottom-level features of vision and 

elimination of deeper layers for classification. Such a truncated approach is useful because it allows the model to be 

used as a feature extractor to create useful, interpretable and usable representations of the input data for other 

models or classifiers to work with. Such applications are especially useful where features extracted from the images 

are used in enhancing the results such as image quality, detected objects, or in compressing fine-grained image 

analysis.  In the proposed model, VGG19 was used due to its effectiveness in performing hierarchical feature 

extraction as observed in other studies [11].  The pre-train model has been gained from extensive pre-training on 

large-scale image datasets.  Rather than building a network from scratch, we rely on VGG19’s strong, pre-learned 

representation of visual patterns—ranging from low-level edges and textures to high-level shapes and objects—and 

then adjust only a fraction of its parameters to fit our specific task. This selective fine-tuning helps adapt the model 

to our domain with minimal data and computational demands, ensuring that we benefit from its rich foundational 

features while avoiding the pitfalls of full-scale retraining on a limited dataset [16].  In the proposed work, the pre-

trained VGG19 model is imported into the ImageNet database. Then, all of the model's layers are frozen to preserve 

their original weights. Only the top layers are frozen, while the lower 20% are frozen for retraining using new data. 

Figure 6 shows the main Illustration of TL method. 
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Figure 6: Illustration of TL method 

Metaheuristic for feature selection 

Metaheuristics are high-level strategies that aim to find, generate, or select a heuristic that provides a sufficiently 

good solution to an optimization problem, especially in incomplete or imperfect information. One such application 

is feature selection, which aims to identify the most relevant features for a given data set to improve the performance 

of machine learning models [21]. The GWO is used as an optimizer to select features suitable for the proposed model's 

classification step.  

• Feature selection strategy 

 The proposed feature selection strategy employs a real-number encoding mechanism and a threshold-based decision 

rule to identify the most relevant features from a dataset. This approach leverages the flexibility and exploration 

capabilities of metaheuristic optimization methods while addressing the limitations of traditional binary encoding. 

• Representation of Features 

In the dataset, features are given in terms of real values normally from [0,1]. This encoding provides a probabilistic 

solution to the feature-selection process of arriving at the final subset. The designated real-number values represent 

the probability of selecting the feature mentioned in the corresponding subset into the final subset. The solution 

vector represents a candidate feature subset as a real-valued vector of dimension 𝑛 of the total feature in the dataset. 

For instance, a one solution vector [0.2,0.8,0.6,0.3] indicates potential inclusion probabilities of four features, (n=4). 

The solution vectors are created interactively during the optimization routine based on the chosen metaheuristic 

algorithm which can be PSO, GA or GWO. This work used GWO as a metaheuristic algorithm to generate a solution 

factor.   

By encoding features as real numbers and applying a threshold for inclusion, this strategy balances exploration of 

the solution space and fine-tuning of feature subsets. The initial random generation ensures diverse exploration, 

while iterative updates optimize the feature selection process to identify subsets that maximize the objective function. 

• Threshold Mechanism 

A predefined threshold 𝑇 is applied to the real-number encoded vector to determine feature inclusion. Equation 6 

represents how the selected feature is based on the threshold value (T): 

𝑓(𝑥) = {
𝑥 ≥  𝑇, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑒𝑟 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,  𝑟𝑒𝑚𝑜𝑣𝑒 𝑣𝑒𝑎𝑡𝑢𝑒𝑟
                                                   … 6 

If the value of a feature 𝑥𝑖 ≥ 𝑇, the feature is selected; otherwise, it is excluded. For instance, with 𝑇 = 0.5, the vector 

[0.2,0.8,0.6,0.3] results in the selected subset [remove, selected , selected , remove], indicating the inclusion of the 

second and third features. 

 

 



633  
 

J INFORM SYSTEMS ENG, 10(22s) 

For example, if there is a dataset with 10 features and 5 samples, and T=0.5, the selected feature would be: 

 

In the above scenario, the optimization model selects 5 features over 10. The Threshold 𝑇 can be fixed or dynamically 

adjusted during the optimization process. A dynamic threshold strategy begins with a higher threshold to select 

fewer, highly significant features and gradually reduces the threshold to refine the feature subset as the algorithm 

converges. 

Using a static threshold (T) in real-number-based feature selection strategies has several limitations. Here are the 

key drawbacks: 

• Lack of Adaptability to Dataset Characteristics; 

• The performance of the selection process heavily depends on the initial choice of  𝑇; 

• Reduced Flexibility for Metaheuristic Algorithms; 

• Possible to make constant Feature selections across Iterations. 

The dynamic thresholds provide flexibility and improve the adaptability of the feature selection process, enabling 

better alignment with the dataset's characteristics and the metaheuristic's optimization behavior: 

𝑇 =  (𝑇𝑚𝑖𝑛 + (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) ∗
𝑖

𝑁
 ) ∗ 𝑟                                                                     … 7 

Where 𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥 represent a maximum and minimum threshold in value (0,0.5) (, i current iteration, N maximum 

iteration r random value in interval [0,1].  

In the proposed approach, the dynamic threshold starts at a minimum value (𝑇𝑚𝑖𝑛) during the initial iterations of the 

algorithm. As the search progresses, the threshold gradually increases based on the iteration index and other factors, 

ensuring that the threshold adapts to the search progress. This gradient-based adjustment allows the algorithm to 

initially focus on selecting only strongly relevant features and later include features with marginal relevance, 

optimizing the feature subset selection process. With an additional condition that triggers a modification in T when 

stagnation is identified. This approach makes the dynamic threshold adaptive to the iteration progress and the 

algorithm's performance, balancing exploration and exploitation throughout the optimization process. Algorithm 1 

illustrates the proposed feature selection algorithm.  

Algorithm 1: Proposed dynamic features selection   

Input: 

• Dataset D, Maximum Iterations N, Stagnation Threshold Nstagnation,  

Objective Function F, 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 

Output: 

• Optimal Feature Subset S* 

Begin 

 1. Initialize  

population S with random real-number vectors Set initial best solution S*  

T = 𝑇𝑚𝑎𝑥 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 iteration i = 1 and stagnation counter c = 0 
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 2. While i ≤ N do 

         For each solution s_j in S do  

              B_j ←  Select features based on T (Eq.6)  and optimization vector (s_j ) 

                  Evaluate fitness F(B_j)  

                  If F(B_j) > F(S*):  //  

                        Update S* = B_j  

                        Reset stagnation counter c = 0 

                  Else    stagnation counter c = +1  

                  If c > Nstagnation 

                                   Update T = (𝑇𝑚𝑖𝑛 + (𝑇𝑚𝑎𝑥- 𝑇𝑚𝑖𝑛) * i / N) * r          

          End For  

    End While 

 3. Return Optimal Feature Subset (S*) 

 4. Return Optimal Feature Subset (S*) 

End  

Figure 7 shows the distribution of T over the iterations of the optimization process. 

 

Figure 7:  Distribution of the dynamic value of T 

• Integration with Metaheuristics 

The real-number encoding and threshold mechanism are seamlessly integrated into the metaheuristic algorithm. 

This work used the GWO optimization algorithm as a metaheuristic algorithm to optimize real-number vectors in 

the continuous search space. 

RESULT DISCUSSION 

This section discusses the effectiveness of the proposed methods, focusing on their performance improvements 

compared to traditional approaches. The findings validate the models' ability to address specific challenges, 

highlighting their potential for practical applications and further advancements. In this section, we will discuss the 

results in three ways: analysis of the training phase, comparison of the proposed model with machine learning 

algorithms, and finally, comparison of the proposed model with some plant disease classification methods. 

Training result 

Figure 8 illustrates the training and validation accuracy of the proposed model, demonstrating a clear trend of 

increasing accuracy over the training epochs. This indicates that the model is effectively learning from the training 

data, as evidenced by the gap between the training and validation accuracy becoming smaller, suggesting good 

generalization. 
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Figure 8: Training and validation accuracy of the proposed model 

Figure 9 presents the Grey Wolf Optimization (GWO) convergence accuracy used for feature selection. This figure 

likely showcases how the feature selection process improves the model’s performance by honing in on the most 

relevant features, contributing to more efficient training and potentially higher accuracy in classification tasks. 

 

Figure 9: Convergence accuracy of GWO of feature selection 

Table 1: Accuracy of the model for classifying plant diseases and health conditions 

 TP TN FP FN Accuracy 

Apple_Apple_scab 162.0 9065.0 1.0 2.0 99.967 

Apple_Black_rot 147.0 9081.0 1.0 1.0 99.978 

Apple_Cedar_apple_rust 159.0 9070.0 1.0 0.0 99.989 

Apple healthy 248.0 8980.0 2.0 0.0 99.978 

Background_without_leaves 169.0 9061.0 0.0 0.0 100 

Blueberry healthy 209.0 9021.0 0.0 0.0 100 

Cherry Powdery mildew 151.0 9078.0 1.0 0.0 99.989 

Cherry healthy 144.0 9085.0 1.0 0.0 99.989 

Corn_Cercospora_leaf_spot Gray_leaf_spot 155.0 9068.0 6.0 1.0 99.924 

Corn Common rust 187.0 9041.0 0.0 2.0 99.978 

Corn_Northern_Leaf_Blight 149.0 9076.0 1.0 4.0 99.946 

Corn healthy 182.0 9048.0 0.0 0.0 100 

Grape Black rot 182.0 9046.0 1.0 1.0 99.978 

Grape Esca_(Black Measles) 207.0 9021.0 1.0 1.0 99.978 

Grape_Leaf_blight_(Isariopsis_Leaf_Spot) 158.0 9072.0 0.0 0.0 100 

Grape healthy 160.0 9069.0 0.0 1.0 99.989 
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Orange_Haunglongbing_ (Citrus greening) 794.0 8434.0 1.0 1.0 99.978 

Peach_Bacterial_spot 333.0 8894.0 0.0 3.0 99.967 

Peach healthy 144.0 9085.0 1.0 0.0 99.989 

Pepper, _bell_Bacterial_spot 128.0 9100.0 1.0 1.0 99.978 

Pepper, _bell healthy 213.0 9015.0 1.0 1.0 99.978 

Potato_Early_blight 155.0 9069.0 1.0 5.0 99.935 

Potato_Late_blight 162.0 9062.0 3.0 3.0 99.935 

Potato healthy 174.0 9056.0 0.0 0.0 100 

Raspberry healthy 157.0 9073.0 0.0 0.0 100 

Soybean healthy 769.0 8461.0 0.0 0.0 100 

Squash_Powdery_mildew 273.0 8956.0 1.0 0.0 99.989 

Strawberry Leaf scorch 174.0 9056.0 0.0 0.0 100 

Strawberry healthy 175.0 9055.0 0.0 0.0 100 

Tomato Bacterial spot 329.0 8900.0 1.0 0.0 99.989 

Tomato_Early_blight 154.0 9066.0 4.0 6.0 99.892 

Tomato_Late_blight 271.0 8948.0 5.0 6.0 99.881 

Tomato_Leaf_Mold 133.0 9093.0 2.0 2.0 99.957 

Tomato_Septoria_leaf_spot 237.0 8986.0 4.0 3.0 99.924 

Tomato_Spider_mites Two-spotted_spider_mite 245.0 8977.0 4.0 4.0 99.913 

Tomato_Target_Spot 214.0 9008.0 5.0 3.0 99.913 

Tomato_Tomato_Yellow_Leaf_Curl_Virus 779.0 8449.0 1.0 1.0 99.978 

Tomato_Tomato_mosaic_virus 154.0 9076.0 0.0 0.0 100 

Tomato healthy 242.0 8987.0 1.0 0.0 99.989 

 

Table 1 presents Accuracy of the model for classifying plant diseases and health conditions. The model demonstrates 

very strong performance in classifying plant diseases and health conditions, achieving an overall high accuracy of 

between 99.881% and 100% across all categories. 

• Healthy categories (e.g., "healthy") obtained 100% accuracy in several cases, including tomatoes, strawberries, 

soybeans, and corn. This demonstrates the model's capacity to correctly and easily recognize healthy situations. • For 

diseases with clear and distinct symptoms, such as Tomato_Yellow_Leaf_Curl_Virus and Grape_Leaf_Blight, the 

model reached near-perfect accuracy. This demonstrates the clarity of visual patterns for these diseases in training 

data. 

• Categories, such as Tomato_Early_blight and Potato_Early_blight, showed slightly lower. 

Compare the proposed model with machine learning algorithms  

The results for machine learning comparison with the proposed model can be seen in Table 2 below. The results of 

the plant disease classification task present a comparative analysis of several machine learning models, 

demonstrating their efficacy in classifying plant diseases using various metrics, like accuracy, precision, recall, and 

F1 score. Below is the analysis of each model’s performance.  

Table 2: Comparison of performance of the proposed model and traditional machine learning 

Model Accuracy Precision Recall F1 Score 

XGBClassifier 88.99 88.79 88.71 88.75 

KNeighborsClassifier 89.25 89.14 89.02 89.07 

DecisionTreeClassifier 83.18 81.48 81.48 81.46 

RandomForestClassifier 89.21 89.18 88.97 89.07 

Proposed model 99.44 99.32 99.31 99.31 
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      The findings show the performance of traditional models such as Random Forest and KNN is satisfactory, But 

the proposed model is significantly better, achieving an accuracy of 99.44%. This brings questions to methods and 

techniques used in the proposed model since it establishes a new standard in plant disease classification. 

The results discussed in this study demonstrate that several aspects of the proposed model may be very promising 

for practical use, including the enhancement of agricultural productivity by recognizing diseases on plants at the 

right time. However, it is crucial to consider the complexity of the model, its interpretability, and the computational 

demands it may require when implemented. Future investigation could tackle the examination sensitivity of the 

proposed model to other datasets, exploration of how it performs when future diseases come into play, as well as 

evaluation of its performances when in use in the real world.  

Compare the proposed model with other models  

 The proposed model is compared with other existing methods for plant disease classification in terms of accuracy in 

Table 3. The results further show that the proposed model has an impressive accuracy of 99.44%, thus outperforming 

all other listed methods. To elaborate on this, the Transfer Learning using VGG16 achieved 98.4%. another Transfer 

Learning model  VGG19 that was developed for paddy leaf disease detection achieved 96.4 %. while optimization 

model developed with Particle Swarm Optimizer (PSO) achieved 98.83%. In addition, the fine-tuning of 

MobileNetV2 achieved 94.4%. These findings confirm the effectiveness of the proposed model in achieving enhanced 

classification and could be used as a useful tool for increasing the rate of accuracy of plant disease detection. 

Table 3: Comparison results of the proposed model with other plant disease classifications 

Ref Method Summary Result (Accuracy) 

[11] Transfer Learning for Multi-Crop Leaf Disease 

Classification using CNN (VGG16) 

98.4% 

[12] Transfer Learning-Based AI Model for Paddy Leaf 

Disease Detection 

96.4% 

[13] Optimization of Deep Learning Model for Plant 

Disease Detection Using Particle Swarm Optimizer 

(PSO) 

98.83% 

[17] Detection of plant leaf disease using advanced deep 

learning architectures 

94.4% 

Proposed Model 99.44% 

 

CONCLUSION 

This work introduces a hybrid intelligent model for plant disease classification, which is based on deep transfer 

learning and Grey Wolf Optimization to overcome the drawbacks of existing detection techniques. Through the 

application of advanced feature extraction and selection, the built model effectively acquires an accuracy of 99.44% 

which surpasses commonly used machine learning methods and other dominant works. These results show the 

effectiveness of the proposed model in tackling complex classification problems with high accuracy. The model’s 

potential suggests that the designed model can easily be applied to real-life farming contexts to bring about early 

disease detection and low crop loss. As future work, it could consider using it on different datasets, real-time 

monitoring, and in combination with existing IoT-based agriculture platforms to increase the application potential. 
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