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Introduction: This study explores applying Explainable Artificial Intelligence (XAI) techniques 

to predict student performance in educational settings. Predicting student outcomes in advance 

has become more accurate with the help of AI and machine learning. However, there is a lack of 

clarity in many AI models and their predictions, which are termed black box models. This is a 

significant problem in the education industry because it can erode administrators' and educators' 

faith in the explainability or openness of predicted outcomes.   

Objectives: This research aims to reduce the shortcomings of traditional AI models by making 

them more understandable using XAI. XAI provides stakeholders with a better understanding of 

the underlying logic of the predictions to make better decisions. By utilizing XAI techniques, this 

paper provided valuable and reasonable intelligence-driven student grade predictions to increase 

confidence in AI systems. These interpretable predictions will guide students who may perform 

poorly at the very early stage.   

Methods: This research employs XAI techniques such as SHAP (SHapley Additive 

exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) to explain the 

predictions. Students' performance scores, such as quizzes, midterm examinations, practical 

tests, assignments, and activities were used as features to predict the final grades using the 

Random Forest Classifier (RFC). The investigation uses Partial Dependence Plots (PDPs), SHAP, 

and LIME to improve the comprehension of the model's predictions.   

Results: Applying these XAI techniques will enhance comprehension of the critical features 

impacting student performance. The results provide clear insights into the areas students can 

improve to achieve higher grades. They also provide a broader view of the factors that influence 

academic accomplishment or failure, aiding educators and stakeholders in making proper 

decisions.   

Conclusions: The findings demonstrate that using XAI in student performance data will 

provide transparency in predicting results. The outcome of this research will help create more 

effective instructional techniques, and students can improve their weaknesses.   

Keywords: explainable artificial intelligence, student performance prediction, shapley additive 

explanations, local interpretable model-agnostic explanations 

 

INTRODUCTION 

Educational research predicting student performance has been developed to the extent of being used to discover 

students who perform well. The development of AI is aimed at more accurate prediction of academic performance 

and is a specific positive trend with the implementation of data-driven systems. However, a machine learning model 

can obtain a big picture by relating various factors and statistics. This approach allows more individualized learning 

instruction and better student performance in general [1][2]. Conversely, an important issue in educational contexts 

is the transparent nature of many AI models, also known as "black box" models. It is challenging for educators and 

administrators to trust and successfully implement these models because of this lack of openness [3]. The solution to 



118  
 

J INFORM SYSTEMS ENG, 10(23s) 

this issue is Explainable AI (XAI). The stakeholders, especially educators, students, and administrators can 

comprehend the reasoning behind AI predictions using XAI to make machine learning models more transparent and 

interpretable. In education, where choices significantly influence students’ academic careers, the interpretability of 

AI models is critical. Improved educational results and increased trust in AI-driven judgments are made possible by 

techniques like SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations), which offer insights into the underlying causes driving predictions [4][5]. 

There is a shortage of research on the specific applications of XAI approaches to enhance academic predictions, 

especially in determining the elements that impact student performance most [6][17][20]. This study aims to bridge 

the knowledge gap and enhance AI predictions in education using XAI methods. By emphasizing explainability, this 

study attempts to increase confidence in AI-driven predictions by ensuring that predictions are practical and 

understandable. The findings will provide educators, administrators, and legislators with a greater understanding of 

how AI can be used to predict academic progress and guide decision-making. This study also has the practical 

ramifications for enhancing educational practices, specifically in terms of customizing interventions for students at 

risk of underperforming, which will result in a more effective and balanced learning environment [7][21]. The primary 

objective of this study was to determine how well explainable AI methods can predict student grades and enhance 

academic performance. This study aims to create a predictive model that analyzes the main variables affecting student 

performance by employing machine learning algorithms and explainability tools such as SHAP and LIME. This 

demonstrates how these features such as the assessments might help students’ academic development. Data from 

various fields of study are included in the study’s scope to guarantee an extensive understanding of the features 

influencing student achievement in diverse subject areas [8] [9]. 

 The remainder of this paper is organized as follows: Section II reviews the relevant research in the areas of XAI and 

AI-based student performance prediction. Section III outlines the process of creating the prediction model, including 

the methods for gathering and analysing data. Section IV presents the study’s findings, with knowledge from 

explainable AI as the primary focus. Section V concludes by discussing the significance of the findings and suggestions 

for further study and application in the field of educational AI. 

LITERATURE REVIEW 

The integration of (XAI) into education has significantly transformed the landscape of student performance 

prediction.  This review focuses on the intersection of machine learning models and XAI techniques when predicting 

student performance, it examines the datasets, methodologies, and role of XAI in providing interpretability and 

actionable insights. The review is structured as follows: First, it examines predictive models for student performance 

and discusses prevalent methodologies and datasets. Next, it highlights the applications of XAI in education, 

presenting notable studies and their contributions to interpretability. The challenges involved in implementing XAI 

techniques in educational settings are explored. The review concludes with a synthesis of the findings, identification 

of research gaps, and recommendations for future work. 

Decision Trees, Random Forests, Support Vector Machines (SVM), Neural Networks, and ensemble methods are 

widely used models for predicting student performance. Recently, deep learning models and hybrid approaches have 

also gained attention owing to their ability to handle complex patterns and relationships in data. Datasets sourced 

from Learning Management Systems (LMS), online courses, or academic records presents challenges include data 

sparsity, missing values, and the lack of standardization across datasets. The robustness and comprehension of 

Decision Trees and Random Forests make them important options. Chen et al.'s study [10] improved the accuracy of 

forecasts, but it was only usable in online situations and required more evaluation in conventional classrooms. By 

analyzing features from version control logs, Canale et al. [11] focused on how well students score on exams and found 

a high correlation between academic success and coding habits. However, this method's broader usefulness was 

limited because it was only available to students who used version control systems. Other studies aimed at AI's 

application in specific educational fields. Galvez et al. [12] applied process-oriented taxonomy in medical training to 

improve learning outcomes in surgical procedures. However, our results cannot be applied to other medical training 

areas because they are limited to a particular medical intervention. Similarly, Guo et al. [13] used functional near-

infrared spectroscopy data to predict programming ability using an attention-based convolutional neural network 

(CNN). Although this method effectively connected programming ability to brain activity, its high cost necessitated 

neuroscience equipment, which prevented its widespread adoption. 
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To predict student performance, researchers have explored graph-based models and attention mechanisms. Wang et 

al. [14] introduced a heterogeneous learning interactive graph knowledge tracing model that integrates psychological 

factors into learning predictions. While the model effectively captured complex student behaviors, it also struggled 

with interpretability. Similarly, Li et al. [15] proposed a two-way attention approach to enhance predictions of 

academic success by incorporating student interaction data. Although this method improved accuracy, it largely 

depended on high-quality interaction datasets, which are often challenging to obtain. Numerous studies have 

identified the advantages of deep learning in educational AI applications. Islam and Khan [16] used structural 

equation modelling to evaluate the effectiveness of deep learning across various academic fields, highlighting its role 

in recognizing complex patterns. Nonetheless, the intricate nature of deep learning models often poses challenges 

relative to interpretability. Lakshmi and Maheswaran [22] tackled this problem by implementing a Gated Recurrent 

Unit (GRU) model optimized with Analysis of Variance (ANOVA), which enhanced the accuracy of grade predictions. 

Despite these improvements, deep learning models are computationally demanding and require significant data 

preprocessing. 

Researchers have begun incorporating Explainable AI (XAI) methods into scholarly prediction frameworks to 

enhance model interpretability. Using XAI, Ujkani et al. [19] identified students who were at risk in course-level 

performance evaluations. Although this approach provided insightful information, it was limited to specific courses, 

suggesting that more extensive validation is required. The potential of AI-driven academic interventions was 

demonstrated by Afzaal et al. [23] and Afzaal et al. [24], who developed XAI-based feedback and suggestion systems 

to promote student self-regulation. However, the applicability of these models to other courses is limited because 

they were primarily assessed using datasets related to programming instruction. Fuzzy categorization, ensemble 

learning, and belief rule-based systems are other AI techniques that have been studied. A fuzzy ordinal classification 

system for academic performance prediction was proposed by Gámez-Granados et al. [25]. It successfully controlled 

the uncertainty but required complex parameter adjustment. Yan and Liu reported an ensemble model for student 

recommendations [26]. It had high prediction accuracy but had interpretability problems. Although these techniques 

were still computationally demanding, Zhang et al. [27] and Liu et al. [28] enhanced belief rule-based models to 

balance interpretability and accuracy in forecasting student achievement. Ben George et al. [29] evaluated 

incremental learning classifiers for predicting student performance across semesters and identified Aggregated 

Mondrian Forest (94%) and KNN (93%) classifiers as the most accurate but computationally expensive models. 

The most significant challenge in applying XAI in the educational domain is that the datasets often contain diverse 

and multi-dimensional features, making interpretation challenging. Additionally, scalability issues in XAI 

techniques, such as LIME, struggle to handle large-scale data in real-time scenarios.  Also, one of the main challenges 

are the bias and fairness in machine learning models and ensuring equitable interpretations across diverse student 

groups.  Additionally, the majority of XAI's current educational applications are found in higher education, with little 

study being done in undergraduate levels. One of the gaps is the limited integration of XAI in real-time adaptive 

education environment, restricting its potential to enhance personalized education [18]. Additionally, the lack of 

standardized metrics for evaluating the interpretability of AI models in education. Also, Diverse student 

demographics are underrepresented in current research. To ensure that explainable AI (XAI) is utilized more broadly 

and equitably in education, these gaps need to be addressed. The XAI ensures that the explanations provided are 

meaningful and actionable for educators and students. Recent studies show how well XAI methods like SHAP and 

LIME work to provide clear predictions and build confidence in AI-driven judgment. 

METHODS 

Figure 1 indicates that the investigation collected information on a range of pupil performance metrics, including 

assignments, activities, quizzes, midterm exams, and practical tests. The pedictive models are constructed using these 

data sources as attributes. The dataset, which focuses on performance outcomes as the dependent variable, was 

gathered from one of Oman’s most reputable higher education institutions, guaranteeing a varied depiction of 

learning contexts. 

The Random Forest (RF) classifier is the main machine learning framework for forecasting student outcomes. The 

RF classifier was selected owing to its resilience and capacity to manage several parameters with comparatively high 

accuracy. The model undergoes training using previous student data to forecast future educational achievement 

based on previously described attributes. Techniques for Explainable AI: Two XAI approaches were employed to 

solve the problem of model interpretability and raise stakeholders' confidence in forecasting. 
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Figure 1: Proposed Methodology 

The SHAP values consistently indicate each feature's influence on the prediction. This method describes how each 

unique feature (such as quiz results, midterm results, etc.) influences the model’s output for a particular student. 

SHAP Summary Plots can illustrate the significance of various features throughout the dataset, and the SHAP values 

are used to determine the primary elements that influence projections. LIME was used to understand how the 

algorithm’s estimates differ for different circumstances (students). By altering the input data and tracking any 

modifications in expectations, LIME produces interpretable insights that highlight the characteristics responsible for 

a particular student’s expected success. This approach provides insights into areas for development by illuminating 

local causes for why particular students are expected to perform satisfactorily or not. 

With other features held constant, PDPs illustrate the connection between a feature and the anticipated result. 

Charting these associations, PDP demonstrates how modifications to a particular aspect (such as quiz performance) 

affect student performance. The use of PDPs can highlight nonlinear correlations and interactions among 

characteristics that might not be immediately obvious from the raw results. To ensure that the framework produces 

accurate projections, the Random Forest classifier's efficiency is assessed using conventional measures, including 

accuracy, precision, and recall. In the model evaluation phase, educators’ and administrators’ user feedback is used 

to gauge how well the XAI techniques improve interpretability by gauging their comprehension of the model's logic 

and their comfort level with AI-driven forecasts for decision-making processes. Our proposed model outperformed 

the others. 

RESULTS 

This section provides a comprehensive analysis of the performance of the Random Forest classifier in predicting 

student academic performance, as well as the interpretability gained from the XAI methods. The performance 

outcome is obtained from a student performance dataset, such as a quiz, midterm exam, practical test, assignment, 
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and activity marks. Explainability techniques such as SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model-agnostic Explanations) are applied to interpret the model predictions and understand key 

factors driving student success. 

The confusion matrix provides a detailed breakdown of the model’s performance in terms of grades. As shown in 

Figure 2, the model achieved high performance for grades A, A-, C, C-, D, and F but minor misclassifications were 

found for B and B+ grades and C+ and B- grades, suggesting similar feature distributions. The classification report 

indicates that the model can predict with 92 % accuracy and a weighted F1-score of 0.90. This shows that the model 

is highly reliable in predicting grades. The model also derives perfect precision and recall for grades A, C-, D, and F, 

but there is relatively less recall and F1-scores for grades B and B+. These results confirm the robustness of the model 

and highlight areas for further tuning. The feature engineering and interpretability methods (SHAP, LIME) yielded 

more interpretable results 

 

Figure 2: Confusion Matrix for Random Forest Predictions 

A more comprehensive study of feature contributions across predictions was conducted using global interpretability 

analysis with SHAP. Figure 3 SHAP summary plot showing how different student performance indicators affect the 

model’s predictions. The SHAP value, which indicates the extent to which a feature influences the projected grade, is 

indicated by the position of each dot on the x-axis, representing a data point. The distribution of feature values was 

represented by a color gradient ranging from blue (low values) to red (high values). Assignment and midterm scores 

have a significant favorable influence, with greater values typically pushing the model toward higher grades. 

The distributions of quiz marks and practical exam scores are more diverse, suggesting that their impact may vary 

depending on the circumstances. These two assessments have neutral effects in some situations but continue to 

impact particular student predictions, as seen by the concentration of points around zero. One important finding is 

that activity marks have a smaller impact on final grades, despite their influence on student outcomes. This suggests 

that structured assessments, such as midterms and assignments, have a more influence on predicting strong or poor 

performance than in-class participation alone. According to the summary plot, students who want to improve their 

marks should prioritize doing well on midterm examinations and assignments. This analysis aids in understanding 

the transparency of the model and identifies the academic components that contribute most significantly to 

classification decisions. 
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Figure 3: SHAP Summary Plot for Global Interpretability 

A random student who received a B- grade was selected to understand the factors contributing to a specific student’s 

performance.  The SHAP force plot in Figure 4 reveals that the students’ midterm marks (14.5) and Assignment marks 

(13.75) were the primary contributors to their final grade. These two scores were above the failing threshold, but the 

student did not achieve a higher grade. The Quiz mark (5.0), Practical test mark (9.75), and Activity mark (5.0) were 

almost close to the maximum marks but had minimal impact on the final grades. 

 

Figure 4: SHAP Force Plot for Individual Prediction 

The LIME explanation given in Figure 5 highlights the thresholds for each feature that contributed to the B- grade. 

The LIME local explanation plot illustrates the key features influencing the model’s prediction for a student classified 

as B-. The horizontal bars represent the impact of each feature on the final classification, where red indicates a 

negative influence and green indicates a positive influence. In this figure, the Quiz mark between 4.75 and 6.00 has 

the most significant effect, strongly contributing to the prediction of B- grade. Similarly, Practical tests with marks 

ranging between 7.5 and 9.75, assignment marks between 12 and 14 and midterm marks between 11 and 14.5 also 

play a crucial role in this classification of the B- grade. The Activity mark had a negative score, suggesting that it had 

a relatively weaker influence on the final grade. This analysis helps explain how different academic components affect 

student performance predictions and provides transparency into the model’s decision-making process. 
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Figure 5: LIME Feature Importance Plot for Grade B- 

The SHAP interaction value plot in Figure 6, explores the interactions between features and their combined impact 

on student performance. The x-axis displays the SHAP interaction value, which demonstrates how the combination 

of two variables affects the model’s output. Each dot represents an interaction effect between two features. The plot 

shows a significant positive correlation between midterm, quiz, and assignment scores, indicating that students who 

do well on these measures have a high chance of passing. The sparse distribution of specific characteristics, such as 

the Practical test and the activity mark, suggests that their interactions less strongly impact the model’s decision-

making. 

 

Figure 6: SHAP interaction plot 

The Partial Dependence Plot in Figure 7 highlights the primary factors influencing the students’ grade predictions. 

The features that exhibit the most substantial positive relationships with final grades are the quiz and midterm scores. 

The model’s output rose considerably when the quiz scores exceeded five and midterm scores exceeded 14. 

Assignment scores show a notable increase in significance for scores greater than 10 points. In addition, the practical 

test scores influenced the predictions if they rose above 7, suggesting a moderate contribution. Activity marks 



124  
 

J INFORM SYSTEMS ENG, 10(23s) 

consistently increase despite having a relatively lesser impact, indicating that participation and engagement affect 

final performance. 

 

Figure 7: Partial Dependence Plot 

DISCUSSION 

Based on the XAI analysis of student performance prediction, the following strategies were recommended for 

improving students' grades. All assessments are important for students to achieve good grades. Based on the data 

analyzed, midterm examinations and assignments were the most influential factors in determining student success. 

Students should allocate more time and resources to prepare for midterm exams and complete assignments. It is also 

recommended that Quiz and Practical Test Performance be improved because these features have a moderate impact 

but still contribute to overall performance. Regular practice and targeted study can help students improve in these 

areas. Activity marks have the slightest impact but must boost overall grades. These indicate the assessments that 

students must focus on to achieve better grades. 

The results show the power of XAI techniques in delivering insightful information into student performance. By 

defining the key features that affect grades and understanding their interactions, educators and students can come 

up with targeted strategies to improve academic results. The findings demonstrate the critical role of midterm exams 

and assignments, while also emphasizing the importance of a balanced approach to academic preparation. These 

insights can inform interventions and support systems to enhance student success. 

CONCLUSION AND FUTURE WORK 

The research paper explored ways to predict student academic performance and explore the results using XAI. The 

students' grades were predicted using a Random Forest Classifier, which achieved an impressive accuracy rate of 

90%. The key factors influencing the prediction of the student grade were identified through explainability techniques 

such as SHAP and LIME. The findings revealed that midterm marks, Quiz scores, and Assignment were the most 

critical features determining students’ grades. The individual student case studies provided clear insight into the 

model’s decision-making process and demonstrated the role of features in predicting the final grades. These 
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revelations highlight teachers’ and students’ use of predictive models when making academic decisions and 

interventions. Future research should explore the integration of behavioral and engagement data such as attendance, 

participation in learning platforms, and study habits to develop a more comprehensive predictive model. In addition, 

using deep learning models against traditional classifiers can further optimize prediction accuracy. 
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