
Journal of Information Systems Engineering and Management 
2025, 10(23s) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/ Research Article  

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Augmenting Robotic Navigation: An Analytical Examination 

of X-Y with Yaw Tolerance Modulations within ROS2 and the 

Dynamic Window Paradigm using fusion of Nav2 Stack with 

DWA Algorithm 

 

Dr. Pramod U. Chavan 1 , Dr. Rahul S. Pol 2, Dr. Vijaya N. Aher 3, Dr. Amar B. Deshmukh 4, Dr. Ajay Talele 5, Dr. 

Anup Ingle 6 
1Associate Professor, Department of Electronics and Telecommunication, K J College of Engineering and Management Research, Pune, India 

pramodchavan.kjcoemr@gmail.com 
2Associate Professor, Department of Electronics and Telecommunication, Vishwakarma Institute of Information Technology, Pune, India 

rahul.pol@viit.ac.in 
3Assistant Professor, Department of Electronics and Telecommunication, Vishwakarma Institute of  Technology, Pune, India 

vijaya.aher@vit.edu 
4Associate Professor, Department of Electronics and Telecommunication, Anantrao Pawar College of Engineering & Research, Pune, India 

amarbdeshmukh@gmail.com 
5Assistant Professor, Department of Electronics and Telecommunication, Vishwakarma Institute of  Technology, Pune, India 

ajay.talele@vit.edu 
6Assistant Professor, Department of Electronics and Telecommunication, Vishwakarma Institute of Information Technology, Pune, India  

anup.ingale@viit.ac.in 

 

ARTICLE INFO ABSTRACT 

Received: 20 Dec 2024 

Revised: 08 Feb 2025 

Accepted: 21 Feb 2025  

In the burgeoning domain of robotics, the escalating demand for efficient and precise 

navigation systems is paramount for the seamless integration of robotic entities into diverse 

operational environments. This study investigates the enhancement of navigational capabilities 

utilizing the Robot Operating System 2 (ROS2), complemented by the Navigation2 (Nav2) 

stack and the Dynamic Window Approach (DWA) algorithm. The focal point of this research is 

the meticulous fine-tuning of x-y and yaw tolerances, which are critical parameters affecting 

trajectory planning and execution within the ROS2 navigation framework. The investigation 

commences with a comprehensive review of prevailing navigation algorithms, thereby 

establishing the contextual significance of ROS2, the Nav2 stack, and the DWA algorithm. 

Methodologically, the experimental setup and parameter configurations within the Nav2 stack 

are delineated, providing a robust foundation for subsequent analyses. A pivotal aspect of the 

study is the thorough exploration of the Dynamic Window Approach, elucidating its 

foundational principles while emphasizing the intricate interplay of parameters that dictate its 

operational efficacy. The integration of the DWA algorithm within the broader framework of 

the ROS2 Nav2 stack is meticulously articulated, showcasing the seamless communication 

among components such as global planners, local planners, and costmaps. Moreover, the 

research critically examines the implications of tuning x-y and yaw tolerances on the ROS2 

navigation system. Through systematic experimentation and subsequent analysis of results, the 

study reveals the nuanced adjustments necessary for optimal trajectory planning, thereby 

illuminating the delicate balance between precision and adaptability. The findings of this 

research yield valuable insights into the intricacies of robotic navigation within the ROS2 

ecosystem, enhancing our understanding of parameter tuning within the Nav2 stack and DWA 

algorithm. The demonstrated advancements in trajectory planning underscore the practical 

ramifications of precisely calibrating x-y and yaw tolerances, ultimately facilitating improved 

robotic navigation in real-world applications. 

Keywords: demonstrated, implications, navigation, communication 

I. INTRODUCTION 

Robotic navigation in unstructured and dynamic environments represents a formidable challenge within the 

contemporary field of robotics, particularly as the deployment of autonomous systems expands across various real-
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world applications. The efficacy of robots in effectively traversing such environments is paramount, especially given 

the complexities and uncertainties they frequently confront, including varied terrain, static and dynamic obstacles, 

and unpredictable environmental conditions (Tay et al., 2022; Chen et al., 2023). This research aims to advance 

navigation capabilities by harnessing the potential of the Robot Operating System 2 (ROS2), the Navigation2 

(Nav2) stack, and the Dynamic Window Approach (DWA) algorithm. The Husky robot, a versatile and extensively 

utilized platform, serves as the experimental basis for this investigation, providing a rigorous framework for 

evaluating proposed enhancements. 

The motivation underpinning this research emerges from the multifaceted challenges associated with guiding 

autonomous robots through heterogeneous and often volatile environments (Chavan P. et al., 2015). As 

applications of robotics extend beyond controlled laboratory settings into real-world scenarios, the necessity for 

agile, reliable, and adaptive navigation systems becomes increasingly evident (LaValle, 2022; Khatib et al., 2021). 

The Husky robot is particularly well-suited for this inquiry due to its robustness, adaptability, and established 

reputation in various operational contexts, rendering it an ideal testbed for implementing and evaluating 

navigation enhancements (Anderson et al., 2023; Della Santina et al., 2023). 

The focal point of this study revolves around fine-tuning specific navigational parameters—specifically, x-y and yaw 

tolerances—within the ROS2-based navigation frameworks. These parameters play a pivotal role in trajectory 

planning and execution, significantly influencing a robot's capacity to navigate complex environments efficiently 

(Gonzalez et al., 2023; Smith et al., 2023). The incorporation of the DWA algorithm enhances navigational 

precision by facilitating real-time path planning and obstacle avoidance, critical components for maintaining 

operational efficacy in dynamic settings (Zhou et al., 2023; Hu et al., 2022). 

Moreover, existing literature emphasizes the significance of parameter tuning in robotic navigation, highlighting 

the intricate balance between precision and adaptability essential for optimal performance (Almashaqbeh et al., 

2023; Wu et al., 2023). Prior investigations have demonstrated that even minimal adjustments in navigation 

parameters can result in substantial enhancements in a robot's navigational capabilities (Kumar et al., 2023; Lee et 

al., 2023). This research aspires to build upon these foundational findings by systematically analyzing the impact of 

tuning x-y and yaw tolerances within the ROS2 and Nav2 frameworks. 

The seamless integration of the DWA algorithm within the ROS2 Nav2 stack allows for a deeper understanding of 

the interdependencies between various navigational components, including global planners, local planners, and 

costmaps (Patel et al., 2023; Yang et al., 2023). The intricate interplay among these elements is vital for developing 

robust navigation strategies capable of addressing the multifaceted challenges encountered in unstructured 

environments (Liu et al., 2023; Zhao et al., 2023). 

Abdi et al. (2022) explored the application of deep learning techniques for obstacle detection, significantly 

improving the reliability of navigation systems in cluttered environments. Furthermore, the adoption of hybrid 

approaches, which combine classical methods with machine learning, has shown promise in addressing the 

limitations of traditional navigation algorithms (Ozer et al., 2022; Dey et al., 2023). 

The role of simulation in validating navigation strategies has also gained attention, with researchers such as Jiang 

et al. (2022) emphasizing the importance of realistic testing environments to ensure robustness in dynamic 

scenarios. Their findings illustrate that simulated environments can provide valuable insights into the potential 

challenges robots may face, facilitating better preparation for real-world applications. Moreover, Li et al. (2023) 

demonstrated that multi-agent systems, leveraging cooperative navigation strategies, could enhance efficiency and 

safety in autonomous operations. 

The use of reinforcement learning (RL) in robotic navigation has further catalyzed advancements in this domain. 

Research by Al-Sabti et al. (2023) reveals that RL algorithms can adaptively optimize navigation paths in real-time, 

thereby improving both speed and accuracy in various operational conditions. In addition, the integration of 

sensory feedback mechanisms has been highlighted by Tang et al. (2023) as a means to facilitate adaptive 

navigation in uncertain environments, emphasizing the need for robots to continually learn from their 

surroundings. 

Another pivotal area of exploration has been the optimization of navigation parameters through evolutionary 

algorithms. Recent studies indicate that evolutionary techniques can efficiently explore the parameter space, 
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leading to significant improvements in navigation performance (Zhao et al., 2022; Qiu et al., 2023). These methods 

not only enhance the adaptability of robotic systems but also reduce the time required for parameter tuning. 

Moreover, the implementation of cloud-based navigation frameworks has been proposed to leverage distributed 

computing resources for more complex navigation tasks. Research by Varela et al. (2023) illustrates that cloud 

computing can facilitate the processing of large datasets, enabling robots to make informed navigational decisions 

based on extensive environmental analysis. This trend highlights the growing intersection between robotics and 

data science, further enriching the field. 

Furthermore, the increasing importance of ethical considerations in autonomous navigation has been addressed by 

Liu et al. (2023), who argue that ethical frameworks should be integrated into navigation algorithms to ensure safe 

and socially acceptable robot behavior. This aspect is becoming critical as robots are deployed in sensitive 

environments such as healthcare and public spaces. 

This research not only seeks to advance the theoretical comprehension of robotic navigation but also aspires to 

provide practical insights into the implementation of enhanced navigation systems applicable to real-world 

scenarios. By concentrating on the Husky robot and leveraging the capabilities of ROS2, Nav2, and DWA, the study 

aims to contribute significantly to the growing corpus of knowledge surrounding autonomous navigation, 

ultimately paving the way for more effective deployment of robotic systems in dynamic and unpredictable 

environments. 

Motivation 

The impetus for this research arises from the intricate challenges associated with the navigation of autonomous 

robots within heterogeneous and often unpredictable environments. The Husky robot, celebrated for its robustness 

and versatility, serves as an exemplary platform for the proposed enhancements. As the deployment of robotic 

systems transitions from controlled laboratory settings to more diverse real-world contexts, the necessity for agile, 

resilient, and reliable navigation becomes increasingly paramount. This research endeavors to augment the 

navigational capabilities of robotic systems, ensuring optimal performance across a wide array of operational 

scenarios. 

A. Context and Significance 

In the realm of robotic navigation, the Robot Operating System 2 (ROS2) has emerged as a foundational 

framework, offering the essential infrastructure for the development of modular and scalable robotic systems. The 

Navigation2 (Nav2) stack, constructed upon ROS2, encompasses a comprehensive suite of navigation modules, 

including global planners, local planners, and costmaps. This study aims to contribute to the existing body of 

knowledge by scrutinizing the nuanced interactions and dynamics of the Dynamic Window Approach (DWA) 

algorithm within the ROS2 Nav2 stack, with a particular emphasis on tailoring its operational parameters to 

enhance trajectory planning specifically for the Husky robot. 

B. Objectives 

The primary objective of this investigation is to refine the navigational efficacy of the Husky robot through the 

meticulous fine-tuning of x-y and yaw tolerances within the ROS2 Nav2 stack, leveraging the Dynamic Window 

Approach. By systematically exploring and adjusting these critical parameters, this study seeks to elevate the 

robot’s proficiency in navigating complex and dynamic environments, thereby fostering heightened precision and 

adaptability in its operational performance. This pursuit of optimization transcends theoretical discourse; it aims to 

bridge the gap between navigational frameworks and practical applications, ultimately enhancing the robustness of 

autonomous systems in real-world contexts.  

II. LITERATURE    REVIEW 

The domain of robotic navigation has experienced substantial advancements over the past decade, evolving from 

traditional algorithms to more sophisticated approaches. Conventional navigation techniques, such as potential 

fields and occupancy grids, while effective in specific contexts, often struggle to accommodate the complexities of 

dynamic environments (Thrun et al., 2005; Khatib, 1986). The introduction of the Robot Operating System (ROS) 

and its successor, ROS2, heralded a transformative shift towards modular and scalable navigation frameworks 

(Quigley et al., 2009; O'Grady et al., 2019). This evolution has prompted researchers to focus on comprehensive 
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systems like the Navigation2 (Nav2) stack, which offers an array of navigation modules specifically designed to 

mitigate the shortcomings of traditional methods (Ritz et al., 2020). 

A. Dynamic Window Approach (DWA) Algorithm 

 The Dynamic Window Approach (DWA), originally introduced by Fox et al. (1997), stands as a seminal 

contribution to local trajectory planning. This algorithm innovatively assesses feasible velocities within a "dynamic 

window," thereby facilitating agile and adaptive navigation that accounts for both the robot's dynamics and 

environmental constraints (Bhatia et al., 2014). Numerous studies have highlighted DWA's efficacy in real-time 

responsiveness and obstacle avoidance, thereby laying the groundwork for its integration into broader robotic 

systems (Drescher et al., 2019; Wurm et al., 2015). 

B. Integration within ROS2 and the Nav2 Stack 

The advent of ROS2 has significantly enhanced real-time performance and reliability, further enabling the 

integration of sophisticated navigation algorithms (Rostral et al., 2021). The Nav2 stack, an extension of ROS2, has 

emerged as a modular and extensible framework encompassing vital components such as global planners, local 

planners, costmaps, and controllers (Coutinho et al., 2021). Recent investigations have focused on the integration 

of DWA within the ROS2 Nav2 stack, leveraging the strengths of both systems to improve overall navigation 

capabilities (López et al., 2022; Hsu et al., 2020).  

C. Husky Robot as an Experimental Platform 

The Husky robot, developed by Clear path Robotics, has gained recognition as a versatile and robust platform for 

experimental research. Its compatibility with both ROS and ROS2 renders it an ideal environment for testing and 

validating navigation algorithms (Bishop et al., 2020). Researchers have employed the Husky robot to examine the 

practical implications of various navigation algorithms in real-world scenarios, yielding valuable insights that 

advance the field (Kapila et al., 2023; Della Corte et al., 2021). 

III. METHODOLOGY 

This section delineates the methodology employed to investigate and enhance the navigation capabilities of the 

Husky robot utilizing the ROS2 Nav2 stack and the Dynamic Window Approach (DWA). 

Several investigations have delved into the tuning of Dynamic Window Approach (DWA) parameters across various 

robotic platforms. Notably, [1] focused on the optimization of DWA parameters for the TurtleBot3, while [2] 

examined similar tuning for the Kobuki robot. However, these studies overlooked the Husky robot and the specific 

x-y and yaw tolerances that form the crux of this research. 

A. Software Configuration 

The ROS2 Nav2 stack serves as the foundational software framework for autonomous navigation. This stack 

provides a modular and extensible architecture, facilitating the integration of diverse navigation modules (Wang et 

al., 2022). The ROS2 environment was meticulously configured to ensure seamless communication between the 

robot and the navigation modules (Mok et al., 2023). 

B. Experimental Setup 

To validate the efficacy of x-y tolerance tuning, experiments were conducted in controlled environments that 

simulate real-world scenarios. The experimental setup involved deploying the robot in a variety of contexts, 

including confined spaces, cluttered pathways, and static obstacle configurations. Data collected during these trials 

illuminated the intricate relationship between x-y tolerance parameters and the robot’s navigational performance in 

challenging terrains. The experimental setup utilized the Clearpath Husky robot, equipped with ROS2 middleware, 

including Gazebo and RViz (Gonzalez et al., 2022). The choice of the Husky robot as the experimental platform was 

predicated on its versatility, established reputation, and compatibility with ROS2, making it an exemplary choice 

for rigorous research (Thiel et al., 2021). 
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Fig. 1: Husky robot  

 

Fig. 2: Gazebo Setup 

C. Integration of the Dynamic Window Approach (DWA) Algorithm 

The DWA algorithm, widely recognized for its efficacy in local trajectory planning, was seamlessly integrated into 

the navigation system. Key parameters of the DWA algorithm—including the dynamic window size, time horizon, 

and velocity increments—were meticulously fine-tuned to enhance the robot's responsiveness within dynamic and 

unstructured environments. 

D. Tuning of X-Y and Yaw Tolerances 

To tackle specific challenges associated with x-y and yaw tolerances, a systematic tuning process was implemented. 

This process involved iterative adjustments to the tolerance parameters, aimed at striking an optimal balance 

between navigational precision and the robot's responsiveness to dynamic obstacles. 

E. Data Collection 

Experiments were conducted in controlled environments characterized by varying levels of complexity, designed to 

simulate real-world scenarios. The data collection encompassed robot trajectories, sensor readings, and 

performance metrics, including path accuracy, obstacle avoidance, and computation time. 

F. Performance Evaluation 

The efficacy of the enhanced navigation system was assessed through a comprehensive series of both quantitative 

and qualitative analyses. Quantitative metrics included path completion times, while qualitative assessments 

comprised visual inspections of the robot’s behavior across diverse scenarios.  

 

Fig. 3: Dynamic window algorithm flowchart. 
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TABLE I: LOCAL PLANNER TUNING PARAMETERS 

Parameter Category Parameter 

Velocity and 

Acceleration 

Maximum linear velocity: 

0.26 m/s  
Maximum angular velocity: 1 

rad/s  
Linear acceleration limit: 2.6 

m/s²  
Angular velocity limit: 3.2 

rad/s 

Goal Tolerances XY goal tolerance: 0.21 m  
Yaw goal tolerance: 0.17 rad 

DWA Planner 

Parameters 

Sim time: 4 

 
Linear granularity: 0.05  
Angular granularity: 0.025  
Transform tolerance: 0.2  
XY goal tolerance: 0.25 m  
Trans stopped velocity: 0.25 

m/s 

 

This table clearly presents the local planner tuning parameters, which include velocity and acceleration limits, goal 

tolerances, and specific parameters for the Dynamic Window Approach (DWA) planner. 

I. X-Y TOLERANCE   TUNING 

II. X-Y TOLERANCE TUNING 

In the realm of robotic navigation, achieving precise and adaptive control is essential for traversing dynamic, 

unpredictable environments. A critical factor in ensuring accuracy and adaptability is the fine-tuning of x-y 

tolerances within the navigation algorithms. X-Y tolerance tuning refers to the meticulous adjustment of 

parameters that dictate how much deviation is permissible in the robot’s position along the horizontal (x) and 

vertical (y) axes. 

A. Significance of X-Y Tolerance 

The importance of x-y tolerance tuning lies in its profound influence on a robot’s precision in reaching its target 

position within specific time constraints. In dynamic environments, where obstacles can force minor deviations 

from the planned trajectory, the correct calibration of the inflation layer in the local costmap becomes crucial. This 

tuning process is aimed at striking the ideal balance between allowing necessary deviations to avoid obstacles and 

maintaining trajectory accuracy, all while ensuring the robot reaches its goal in an acceptable timeframe. When 

optimized, x-y tolerances enhance the robot’s ability to adjust its path dynamically without excessive detours or 

delays. 

B. Tuning Parameters 

X-Y tolerance tuning involves adjusting various parameters within the ROS2 navigation system's controller server. 

These parameters include the permissible lateral deviation from the robot’s planned trajectory, the precision of 

positional estimates, and the system’s responsiveness to changes in the environment. Fine-tuning these parameters 

is not a one-time process but rather an iterative and experimental approach. Often, the process is guided by 

empirical data collected from the robot’s performance in different environments, both real and simulated. For 

instance, adjustments might be made to improve the robot’s ability to maintain course within strict boundaries in 

cluttered environments or to respond more quickly to the presence of moving obstacles. 

C. Iterative Optimization Approach 
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X-Y tolerance tuning follows an iterative optimization approach to refine the robot’s performance over successive 

trials. The initial values of x-y tolerance parameters are typically based on theoretical assumptions and the general 

design characteristics of the system. However, these values are fine-tuned through a series of trials in which the 

robot’s navigation performance is evaluated under different conditions, adjusting the parameters iteratively based 

on empirical data. This process allows for the fine-tuning of tolerances to address the intricacies of the robot's 

movement, such as its velocity profile, response time, and positional accuracy. Real-world scenarios and simulated 

environments serve as testing grounds for these adjustments, offering critical insights into the robot’s capacity to 

navigate through complex, unstructured terrain. 

D. Performance Evaluation and Metrics 

The success of x-y tolerance tuning is evaluated through a combination of quantitative metrics and qualitative 

observations. Key performance metrics include path accuracy, the average time taken to reach x-y goals, and the 

robot’s ability to respond to unexpected obstacles. Additionally, the robot's settling time how quickly it stabilizes 

after a trajectory adjustment is closely monitored. Both the precision of the robot’s movement and its ability to 

reach goals within the required timeframes are crucial to assessing the impact of x-y tolerance adjustments. By 

systematically analyzing these metrics, the tuning process ensures that the navigation system operates efficiently 

and reliably in a variety of challenging environments. Ultimately, x-y tolerance tuning significantly enhances the 

robot's navigational agility, precision, and overall performance. 

I. YAW TOLERANCE TUNING 

In robotic navigation, achieving optimal performance extends beyond controlling movement along the X and Y axes 

to also include precise orientation, typically represented by the yaw angle. Yaw tolerance tuning is a vital aspect of 

refining navigation algorithms, involving the careful adjustment of parameters that govern the allowable deviation 

in the robot’s heading and rotational positioning. 

A. Significance of Yaw Tolerance 

Yaw tolerance tuning is critical to the robot's ability to navigate complex environments with precision and agility. 

The robot’s orientation plays a significant role when navigating intricate paths, especially in tight or obstacle-filled 

spaces, where slight deviations in yaw can cause navigation errors. Proper yaw tuning ensures that the robot aligns 

accurately with its goal orientation, which is essential for tasks requiring exact positioning or precise interaction 

with the environment. In scenarios with static obstacles or predefined navigation objectives, calibrated yaw 

tolerance directly contributes to the robot’s ability to maintain a stable and accurate course. 

B. Tuning Parameters 

The process of yaw tolerance tuning involves adjusting specific parameters within the navigation algorithm that 

dictate the permissible angular deviation from the planned trajectory. These parameters include the maximum 

allowable yaw deviation, the speed at which the robot can adjust its orientation, and its sensitivity to external 

factors that may cause disturbances to its yaw. Fine-tuning these elements requires balancing the need for precise 

orientation with the robot's ability to react smoothly to its surroundings, without overcorrecting or deviating from 

its intended path. Achieving this balance is crucial for ensuring that the robot can respond dynamically to changing 

environmental conditions while maintaining high positional accuracy. 

C. Iterative Optimization Approach 

Similar to the process used for x-y tolerance tuning, yaw tolerance tuning follows an iterative optimization 

approach. Initial parameters are determined based on theoretical knowledge of the system and general navigation 

requirements. These preliminary settings are then tested in both simulated environments and real-world scenarios, 

where the robot’s navigation performance is closely monitored and evaluated. Each iteration of testing provides 

empirical data that informs further adjustments to the yaw tolerance parameters. The goal of this iterative process 

is to optimize the robot’s ability to handle diverse navigation challenges, including sharp turns, narrow passages, 

and varying obstacle configurations, by refining its yaw tolerance. 

D. Performance Metrics 

The effectiveness of yaw tolerance tuning is measured using a set of performance metrics, such as orientation 

accuracy, stability during yaw adjustments, and the robot’s adherence to planned trajectories. Orientation accuracy 
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refers to how closely the robot aligns with its target orientation at each waypoint or goal. Stability during yaw 

adjustments ensures that the robot maintains control without overshooting or oscillating when adjusting its 

orientation. Finally, adherence to planned trajectories assesses how well the robot follows its predefined path while 

making necessary yaw corrections. By analyzing these metrics, both quantitatively and qualitatively, insights are 

gained into how optimized yaw tolerances contribute to the overall performance and reliability of the robot’s 

navigation system. 

IV. RESULTS 

This section outlines the outcomes derived from the systematic evaluation of x-y and yaw tolerance tuning applied 

to the robotic navigation system. The experiments were conducted within controlled environments featuring 

various dynamic and static challenges, allowing for a comprehensive analysis of the tuned parameters and their 

influence on the robot's navigation performance. 

A. X-Y Tolerance Tuning Results 

The primary objective of x-y tolerance tuning was to achieve an optimal balance between lateral precision and the 

settling time of the robot's movement. A detailed quantitative assessment revealed that fine-tuning the x-y 

tolerance parameters yielded significant improvements in the robot’s ability to achieve target positions within 

shorter timeframes. However, as tolerance increments were reduced past a certain threshold, there was a noticeable 

and abrupt increase in settling time. The results demonstrated that while reducing tolerance improves positional 

accuracy, diminishing returns occur beyond a tolerance of 0.20m, where the system's efficiency degrades due to 

excessively prolonged settling times. The graph in Figure 4 illustrates this relationship, showcasing the "knee point" 

where further reductions in tolerance sharply increase the time required for the robot to settle, underscoring the 

need for balanced tuning to avoid compromising performance. 

 

Fig. 4: X-Y tolerance vs settling time 

Furthermore, the iterative optimization approach applied to x-y tolerance tuning led to a marked reduction in 

lateral deviations from the preplanned trajectory. The tuned parameters enabled the robot to adapt more effectively 

to environmental changes while maintaining a desirable level of precision. The adaptive tuning enhanced the 

robot’s capability to manage deviations due to obstacles and unforeseen conditions, optimizing the trade-off 

between time efficiency and positional accuracy. 

B. Yaw Tolerance Tuning Results 

Yaw tolerance tuning focused on refining the robot's ability to adjust its orientation with precision and stability 

during navigation. Experimental data indicated that the fine-tuning of yaw tolerance parameters substantially 

improved the robot’s heading accuracy, particularly when compared to performance with untuned settings. The 

robot demonstrated heightened stability and responsiveness during rotational movements, with an optimal yaw 

tolerance identified at approximately 10 degrees. As illustrated in Figure 5, further decreases in yaw tolerance below 

this threshold result in diminishing returns, with only marginal improvements in orientation accuracy but 

increased settling times. 
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Fig. 5: Ywa tolerance vs settling time 

These results highlight the robot's improved ability to align itself accurately with dynamic goals while maintaining a 

reasonable response time. By optimizing the yaw tolerance, the robot could navigate complex environments with 

greater precision, achieving smooth rotational adjustments without sacrificing efficiency. 

C. Visualizations 

To further substantiate the quantitative results, visualization tools such as Rviz were employed to graphically 

represent the robot's trajectories, path planning, and obstacle avoidance behavior. These visualizations provided 

qualitative insights into how the tuned x-y and yaw tolerances impacted the robot's performance. In Figure 6, the 

cost map generated in Rviz showcases the robot’s navigation through various environments, with tuned parameters 

allowing for more efficient path planning and obstacle detection. The visualizations corroborated the experimental 

data, illustrating improved alignment with target trajectories and smoother transitions in both linear and angular 

movements. 

 

Fig. 6: The cost map in RViz. 

D. Discussion 

The results reveal critical insights into the effectiveness of x-y and yaw tolerance tuning within the ROS2 navigation 

framework. The significant improvements in trajectory precision, settling time, and orientation stability 

demonstrate the practical utility of carefully calibrated parameters. The discussion addresses the broader 

implications of these findings for real-world robotic applications, particularly in dynamic environments where 

responsive navigation is paramount. The tuned parameters not only enhanced the robot's adaptability but also 

highlighted the need for further research into fine-tuning tolerances to suit diverse robotic platforms and scenarios. 

Additionally, the scalability of these results and their potential generalizability to other robotic systems are 

explored, suggesting future avenues for refinement and optimization in robotic navigation systems. 
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Fig. 7: The green square represents the Husky robot. 

 

Fig. 8: Path taken is traced in Rviz. 

This research explored the integration of the ROS2 Navigation2 stack with the Dynamic Window Approach (DWA) 

algorithm, emphasizing the critical importance of tuning x-y and yaw tolerances for optimized robotic navigation. 

The findings highlight the profound effect that these tuning parameters have on enhancing the precision, 

adaptability, and overall performance of the robotic system in navigating complex environments. 

The study's focus on x-y tolerance tuning uncovered a delicate balance between achieving positional accuracy and 

minimizing settling time. By identifying the knee point—where further reductions in tolerance began to have 

diminishing returns—the parameters were optimized to improve speed and control while minimizing lateral 

deviations. The iterative optimization process demonstrated clear improvements in the robot’s responsiveness, 

allowing it to navigate intricate spaces with heightened accuracy and agility. 

Additionally, yaw tolerance tuning proved to be a key factor in improving the robot’s orientation adjustments. The 

results showed enhanced orientation speed and stability during rotations, allowing the robot to maintain precise 

alignment even when executing tight turns or navigating through dynamic environments. Fine-tuning yaw 

tolerance parameters contributed significantly to the system's overall navigation effectiveness, particularly in 

scenarios requiring quick and precise heading adjustments. 

In summary, the successful integration of the ROS2 Navigation2 stack with the DWA algorithm, combined with the 

fine-tuning of x-y and yaw tolerances, represents a significant advancement in autonomous robotic navigation 

systems. The tuned parameters achieved a remarkable improvement in both settling time and orientation accuracy, 

positioning this research as a crucial contribution to the evolving field of robotics. These findings lay the foundation 

for further innovations in robotic navigation, paving the way for more agile and precise autonomous systems 

capable of handling real-world challenges. 
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