
Journal of Information Systems Engineering and Management
2025, 10(23s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Review on Optimizing Robotic Navigation with Deep

Reinforcement Learning Algorithms

1Mrs. Swati Mohan Bankar, 2Dr. Rahul Shivaji Pol
1Research Scholar, Electronics and Telecommunication Department Vishwakarma Institute of Information Technology Pune, India

swati.221p0079@viit.ac.in
2Associate Professor, Electronics and Telecommunication Department Vishwakarma Institute of Information Technology Pune, India

rahul.pol@viit.ac.in

ARTICLE INFO ABSTRACT

Received: 20 Dec 2024

Revised: 01 Feb 2025

Accepted: 19 Feb 2025

Robotic path planning is a critical aspect of autonomous robot navigation, enabling robots to

efficiently navigate in complex environments while avoiding obstacles and reaching their

intended destinations. Traditional path planning algorithms often struggle with intricate and

dynamic environments due to their reliance on predefined maps assumptions about the

environment's behavior. In recent few years, deep reinforcement learning (DRL) has come up

as a promising approach for enhancing robotic path planning. RL techniques allow robots to

learn optimal or near-optimal paths through trial-and-error interactions with their

surroundings, adapting to changing environments and unforeseen obstacles.

This review paper provides overview of the progress in enhancing robotic path planning using

reinforcement learning. We categorize the existing research depending on the types of RL

algorithms employed, such as Q-learning, policy gradients, and actor-critic methods, among

others.

By synthesizing recent research findings, this review paper offers insights into the current state

of enhancing robotic path planning using reinforcement learning, identifies open challenges,

and suggests potential directions for future research. The synergy between RL and robotic path

planning holds great promise for revolutionizing autonomous navigation, enabling robots to

travel in complex and dynamic environments with unprecedented efficiency and adaptability.

Keywords: Deep reinforcement learning, optimal path, adaptive navigation, dynamic

environment.

I. INTRODUCTION

Robotic path planning is a fundamental task in the area of robotics that involves determining the optimal or feasible

path for a robot to navigate from a starting point to a destination avoiding obstacles and adhering to various

constraints. This task is essential for enabling robots to autonomously operate in diverse environments, ranging from

factory floors to outdoor terrains and even confined indoor spaces. Traditional methods for path planning [1], such

as A* and Dijkstra's algorithm, rely on pre-existing maps and geometric information, which can be limiting in

dynamic and uncertain environments.

Traditional path-planning algorithms have been foundational in many applications, but they do come with

limitations that necessitate more adaptive and efficient approaches:

• Computational Complexity: Traditional algorithms may struggle with scalability, especially in large and

dynamic environments. As the number of nodes or obstacles increases, the computational resources

required for planning grow exponentially.

227

J INFORM SYSTEMS ENG, 10(23s)

• Static Environment Assumption: Many traditional algorithms assume a static environment where the

obstacles do not change over time. In dynamic environments, where obstacles may move or new obstacles

may appear, these algorithms may not be able to adapt quickly enough to find an optimal or feasible path.

• Memory Intensive: Some algorithms require storing information about the entire map or grid, leading to

high memory requirements, especially in large-scale scenarios. This can become impractical in resource-

constrained systems or real-time applications.

• Optimality vs. Efficiency Trade-off: Traditional algorithms often prioritize finding the optimal path based on

certain criteria (e.g., shortest path). However, in dynamic environments or real-time scenarios, it may be

more important to find a reasonably good path quickly rather than spending excessive time searching for the

absolute optimal solution.

• Limited Adaptability: Traditional algorithms typically rely on predefined heuristics or cost functions, which

may not capture the complexities of real-world scenarios effectively. They may struggle to adapt to diverse

terrain types, varying robot dynamics, or uncertain environmental conditions.

• Incomplete Information Handling: In scenarios where the robot has incomplete or uncertain information

about the environment, traditional algorithms may struggle to make informed decisions. They often assume

perfect knowledge of the environment, which is not always the case in practical applications.

• High-dimensional State Spaces: In multi-agent systems or robotics applications with high-dimensional state

spaces, traditional algorithms may encounter difficulties in efficiently exploring the search space and finding

feasible paths.

To address these limitations, there is a growing need for more adaptive and efficient path-planning approaches.

These approaches may incorporate machine learning techniques, such as reinforcement learning or imitation

learning, to adapt to changing environments and learn from experience.

Reinforced learning is a machine learning third paradigm that allows agents, here, robots, to learn best actions

through interactions with surrounding environment. Unlike traditional methods, RL-based path planning enables

robots to adapt and learn from experience, making them better suited to handle complex and changing surroundings

[6]. The integration of RL into robotic path planning addresses several limitations of conventional methods. RL-

based approaches can handle dynamic environments where obstacles might move or new obstacles might appear.

They can also adapt to variations in robot dynamics and sensory information, thus offering a level of flexibility and

adaptability that was previously hard to achieve [10]. By learning from trial and error, RL-based path planning can

guide to more efficient and intelligent robot navigation, even in scenarios where the optimal path is not explicitly

known [14, 15].

Through this review, we seek to offer insights into the current state of RL-enhanced robotic path planning, identify

key research trends, and present potential directions for future exploration. The integration of reinforcement

learning into path planning has the potential to revolutionize autonomous robotic navigation, making robots more

adaptable, efficient, and capable of navigating complex and dynamic real-world environments [18, 19, 20].

II. REINFORCEMENT LEARNING FOR ROBOTIC PATH PLANNING:

The main premise of reinforcement learning lies in its ability to allow robots to learn best actions through

interactions with surrounding environment. RL algorithms consist of agents, actions, states, and rewards, where

the agent learns to take different actions in different states to get maximum reward over time.

Fig 1. Block diagram of Reinforcement Learning*

228

J INFORM SYSTEMS ENG, 10(23s)

*Note: Figure is adapted from MIT 6.S191: Reinforcement Learning lecture

Action: It is a move that agent can make in environment. It can be discrete or in continuous space.

Action Space: It is a set of possible actions that agent can take in environment.

Observations: It means how environment responses back to the agent.

State: It is the situation where agent find itself after taking action. It refers to the representation of the current

situation or condition of an environment at a given time step. It encapsulates all the relevant information about the

environment that an RL agent needs to make decisions and take actions to achieve its goals.

Reward: In reinforcement learning, rewards are used to guide the learning process of an artificial agent. The agent

interacts with an environment and receives positive or negative rewards based on the actions it takes. The goal is to

learn a policy that increases the cumulative rewards eventually

 (1)

 (2)

Where, discount factor

In the context of robotic path planning, RL enables robots to explore their surroundings, learn from their

experiences, and adapt their navigation strategies accordingly

. III. CATEGORIES OF RL ALGORITHMS FOR PATH PLANNING:

This section delves into the categorization of RL algorithms commonly employed in robotic path planning.

Classification of Reinforcement learning Algorithm can be done in different ways. Dong Han et al., [25] categorized

them into A. Value-based,

B. Policy-based, and

C. Actor–critic algorithms.

In a same way algorithms are arranged in this paper. Whereas Keerthana Sivamayi et al., [26] classified RL

algorithm based on three approaches: 1. Monte Carlo 2. Temporal difference 3. Dynamic Programming.

A. Value-Based Methods:

These algorithms focuses on estimating the value function, which gives the expected reward starting from a state

and following a certain policy.

These algorithms obtains Q function which captures the expected total future reward an agent in state S, can

receive by executing a certain action. Ultimately the agent needs action value function which gives maximum

reward. We will select policy

 (3)

Fig* 2. Value based algorithm training policy

*NOTE: FIGURE IS ADAPTED FROM MIT 6.S191: REINFORCEMENT LEARNING LECTURE

In fig 2, we will select action from action a1, a2 or a3 depending upon which action will give maximum reward. As

action a1 has maximum Q value, it will be selected.

229

J INFORM SYSTEMS ENG, 10(23s)

 a1

Here are enlisted few algorithms from this category.

A.1 Q-learning

It is a fundamental RL algorithm, facilitates learning of action-value functions and can be used to find optimal

paths. Q-Learning is a model-free RL algorithm that learns action-value functions iteratively. It updates the Q-

values depending on the observed rewards and the highest Q-value of the next state. Q-Learning is effective for

discrete action spaces and can handle environments with a small number of states.

Mihai et al., [2] combined Q learning algorithm with NN for robot path planning in static and dynamic obstacle

environment. Results are checked in virtual as well as real time environment. It achieved good convergence ratio.

Problem of local minima is also avoided.

Zhen Shi et al [20] proposed an improved QL algorithm which combines the previous knowledge for initiating the

starting Q-value. In this way agent was able to easily reach towards target earliest, eliminating number of invalid

iterations. The greedy factor ε was adjusted at run time.

A.2 Deep Q-Networks (DQN):

DQN is one of the pioneering algorithms in DRL, which combines Q-learning with deep neural networks. It learns

to estimate the action-value or Q-function of an agent, which represents the predicted reward of taking a specific

action in a given state. DQN extends Q-Learning to handle high-dimensional state spaces using deep neural

networks. It employs a target network and experience replay to stabilize and improve the learning process.

DQN is suitable for path planning tasks with large state spaces and continuous action spaces.

Jing Xin., [3] et al., approximated the state-action value Q function using DQN. This network has four frames of

preprocessed image as input, and the output of DQN is the Q value of every single possible action of the mobile

robot. Algorithm is evaluated virtually on environment of Deep Mind Lab. This paper introduced a novel end-to-

end path planning approach using DRL to enable the robot to directly derive optimal actions from raw visual

perception without the need for handcrafted features or feature matching.

Hyansu Bae et al., [8] compensated shortcomings of classical learning algorithms by applying DQN for multi robot

path planning. The learning algorithm is made more robust by combining it with CNN algorithm, which is made

analysis of situation more effective. In both static and dynamic obstacle environments simulated in the study, the

number and placement of obstacles are randomized. The proposed algorithm is then evaluated against A* in static

environment and against D* algorithm in dynamic environment to assess its performance. Based on the simulation

findings, the method consistently exhibits a narrower search range compared to alternative approaches.

Furthermore, there's a likelihood of approximately 34.76% that the path generated by this method matches or

closely resembles the path generated by the A* algorithm

Yang Yang et al., [12] done path planning for multirobot. DQN algorithm is used with some modifications. DQN

Algorithm has advantage over Q algorithm of having less dimensionality of input data. But it faces problem of

sluggish convergence rate and more randomness. This two shortcoming is avoided using previous knowledge to

initialise the Q-value table.

Tomoaki Nakamura et al., [23] proposed DQN for two purposes. A path planning method with turnabouts finds

hard to design a proper controlling policy depending on environmental information. The RL-based algorithm is

used to obtain the control strategy by interacting the robot with its surrounding environment, without previous

training datasets. It is possible that using neural networks, DQN is able to handle high dimensional input data. This

method takes continuous values as input data which has sensor data and velocity of robot. Simulations are

performed successfully on Gazebo simulator with Robot Operating System (ROS).

Vo Thanh Ha et al., [31] compares Q-learning and Deep Q-learning algorithms for obstacle avoidance in dynamic

environments. Author presented quantitative results comparing the performance of QL and DQL algorithms in

terms of their effectiveness in obstacle avoidance in dynamic environments. Experimental setup was developed in

Gazebo simulator. Robot has to reach the specified destination in the environment where some static as well

dynamic obstacles were present. For different experimental environment time required to reach destination by robot

230

J INFORM SYSTEMS ENG, 10(23s)

implemented with DQ learning was less. The implementation of the DQL showcased enhancements in various

aspects, including reduced computation time, faster convergence time, improved accuracy in trajectory planning,

and more effective obstacle avoidance capabilities

A.3 Double Deep Q-Networks (Double DQN):

It is an enhancement to the traditional DQN algorithm that addresses the issue of overestimation of Q-values in the

Q-learning process. In standard DQN, the same network is used to both select the best action and estimate its Q-

value. This can lead to overestimation of Q-values, which can result in suboptimal policies. Double DQN mitigates

this issue by decoupling the action selection and Q-value estimation processes.

Xiaoyun Lei et al., [4] successfully implemented Double DQN for dynamic path planning in unknown environment.

Design of reward and punishment function is done to deal with training stage instability and environment state

space sparsity. Training method also designed in a same way. Starting position and target position is adjusted

dynamically in unknown environment. By updating NN and the increasing greedy rule probability, the local space

searched by the agent is increased. Dynamic environment is created using Pygame module in Python.

Huiyan Han et al., [25] introduced an enhanced Double DQN path planning algorithm. Here high dimensionality

problem of data is solved by discretizing the high-dimensional Li DAR data into a state space to minimize

redundant information. Convergence speed is increased using Epsilon Greedy algorithm. ROS is used to real-world

implementation

A.4 Dueling Deep Q-Networks (Dueling DQN):

It is an extension of the traditional DQN algorithm that aims to improve the efficiency and stability of Q-learning,

particularly when dealing with environments where the values of different actions might vary significantly. Dueling

DQN separates the Q-value estimation into two streams: one for estimating the value of the state V(s) and another

for estimating the advantage of each action A(s, a). This separation allows the algorithm to better understand the

importance of each action independently of the state value. Q Value function becomes:

 Q(s, a) = V (s) + A(s, a) (4)

Dueling DQN is particularly useful when navigating complex environments where different actions have varying

impacts on the Q-values. It can help agents learn more efficiently and effectively by disentangling state values from

action advantages.

Xiaogang Ruan et al., [7] combined Algorithm of Double DQN and Dueling DQN. With this combination

performance is improved and problem of estimation is eliminated. The performance of Algorithm is checked in

simple as well as complex indoor environment. This is done with the help of Gazebo simulator.

A.5 Rainbow DQN

 It is an advanced variant of the Deep Q-Network (DQN) algorithm that integrates several improvements to address

specific challenges associated with DQN. It combines various enhancements from different DQN variations to

create a more robust and efficient algorithm for reinforcement learning.

The name ‘Rainbow’ in Rainbow DQN stands for ‘A Unified Architecture for DQN’ highlighting its integration of

multiple techniques into a cohesive framework. By combining the strengths of various DQN variants, Rainbow

DQN aims to achieve better learning stability, improved performance, and more efficient convergence.

Miguel Quinones-Ramırez et al., [23] implemented variants of the deep Q networks method to achieve maples

navigation of mobile robot. The Dueling DQN and rainbow algorithms are used in obstacle avoidance as well as in

goal-oriented navigation task. They found that Rainbow DQN allowed to reach more targets and collide less during

training than the D3QN agents. Results achieved collision rate of 41.83% and target-reaching rate of 96.9% for the

goal-oriented navigation task.

B. Policy gradient methods:

These methods, on the other hand, optimize the policy directly and are well-suited for continuous action spaces. It

doesn’t check the value of action but it checks the probability of selecting action which will give best performance

value. In fig 3, we will have policy for selection as,

231

J INFORM SYSTEMS ENG, 10(23s)

 (5)

As probability of action a1 is more,

1

Fig 3. Policy Gradient algorithm training policy

Few algorithms from this category are described below.

B.1 Reinforce (Monte Carlo Policy Gradient):

REINFORCE is a foundational policy gradient algorithm that uses Monte Carlo sampling to estimate the gradient of

the expected reward as per the policy parameters. It updates the policy parameters in the direction that increases

the expected reward. REINFORCE is simple and intuitive but can have high variance in gradient estimates.

B.2 Proximal Policy Optimization (PPO):

PPO is a policy optimization algorithm that aims to find policy updates while staying within a certain "trust region"

to ensure stable learning.

B.3 Trust Region Policy Optimization (TRPO):

TRPO optimizes policies while ensuring that the policy updates do not deviate significantly from the current policy,

helping to maintain stability during learning.

C. Actor-Critic methods:

These methods combine policy-based and value-based approaches, keeping a balance between stability and

exploration. Model-based RL techniques involve learning a model of the environment dynamics to aid decision-

making.

C.1 Advantage Actor-Critic (A2C):

This is a synchronous variant of the Actor-Critic algorithm where multiple agents learn in parallel to improve

sample efficiency.

C.2 Asynchronous Advantage Actor-Critic (A3C):

 This is an asynchronous variant of A2C, where multiple agents learn asynchronously and share their experiences to

accelerate learning.

C.3 Deep Deterministic Policy Gradient (DDPG):

DDPG is a reinforcement learning algorithm used for solving continuous action space problems in the field of

artificial intelligence and machine learning. It is an extension of the actor-critic framework and is particularly well-

suited for tasks where the action space is continuous, such as robotics control, autonomous driving, and continuous

control in games.

Jinglun Yu et al., [9] found that DDPG, which is based on neural networks and hierarchical reinforcement learning,

performed better in each aspects as compared to any other path planning algorithms. With this algorithm

convergence time is lessened by 91% in comparision with the Q-learning algorithm and smoothness of the path got

better by 79%. The simulation environment is created using the multimedia framework pyglet under Python.

232

J INFORM SYSTEMS ENG, 10(23s)

Yuansheng Dong et al., [11] proposed a path planning method which is based on an improved DDPG reinforcement

learning algorithm. In this algorithm little amount of a previous knowledge is used to improve the training of DRL.

This will minimize number of trial and error steps. Here adaptive exploration method based on the ε greedy

algorithm is used.

C.4 Twin Delayed Deep Deterministic Policy Gradient (TD3):

While primarily used for continuous action spaces, TD3 is also an example of an Actor-Critic algorithm. It

optimizes a deterministic policy using twin value networks and delayed policy updates.

Papers which are reviewed in this paper are selected from 2016 as implementation of RL algorithm has just started.

The first implementation of RL Algorithms was in ATARI games in 2015. All papers are compared on the basis of

three points:

1. Simulation environment used for implementation of RL algorithm and for comparing results obtained from

each algorithm.

2. Improvement in result after applying the algorithm

3. Limitations of implemented algorithm

TABLE 1: A COMPARATIVE SUMMARY OF PREVIOUS WORKS BASED ON ABOVE MENTIONED POINTS

Paper RL

Algorith

m

Simulation

Environment

Achievements Limitations

2 Q learning

& NN

C++/

VRML and

MATLAB

It achieves good

convergence ratio.

Robot control at

desired speed is

possible

Unable to self-

tune parameters

Can’t deal with

dynamic

obstacles

3 Deep Q

Network

Seekavoid

arena 01

environment on

DeepMind Lab

platform

Effective, optimal

and end-to-end

robotic path

planning

technique.

Only three

actions left,

right and

forward are

possible which

won’t give

solution in real

environment.

4 Double Q-

network

(D3QN)

Pygame module

for creating

dynamic

environment,

ROS

able to navigate in

unknown

dynamic

environment.

flexible for local

path planning

with the LiDAR

data input

Need to upgrade

for more

complex

environment

5 (SA-

CADRL)

Python Fully autonomous

navigation near

about to human

walking speed in a

dynamic

surroundings

having many

pedestrians.

Designed for

multi-Agent

system.

Not

implemented in

real

environment

233

J INFORM SYSTEMS ENG, 10(23s)

Paper RL

Algorith

m

Simulation

Environment

Achievements Limitations

7 Dueling

Double

DQN

(D3QN)

Gazebo

simulator

Combination of

Double DQN and

Dueling DQN

increased.

performance and

problem of

estimation is

removed

Unable to

navigate in

dynamic

environment

8 DQN with

CNN

algorithm

Python and

C++.

Multi-robot path

planning

Applicable in a

static as well as in

a dynamic

environment

Not

implemented in

real

environment

9 Deep

Determinis

tic Policy

Gradient

(DDPG)

multimedia

framework

pyglet under

Python

Minimizes the

path planning

time, decreases

the path steps,

Lessens the

convergence time

and enhances

smoothness path

Performance of

algorithm for

dynamic

environmental

changes is not

verified

Practical

implementation

is not verified

11 Improved

Deep

Determinis

tic Policy

Gradient

(DDPG)

Matlab

platform to

compare results

Works in dynamic

obstacle

environment

Performs better

than Q-learning

and DDPG

algorithm.

Practical

implementation

is not done

13 Deep Q-

network

(DQN)

TensorFlow

deep learning

tools, Python

Path planning for

multi-robot

system.

Converges faster

and excessive

randomness is

eliminated

Not applicable

for dynamic

environment

16 Layered-

RQN

Nvidia GTX

1080 Ti using

CuDNN & Caffe

Outperform in

dynamic

environment,

Robust algorithm

Not applicable

for multiple

UAV.

Real-time

implementation

is not done

17 Mobile

robot

Collision

Avoidance

Learning

(MCAL)

Robot

Operating

System (ROS),

Excellent

performance in

static as well as in

dynamic

environment.

Can work in multi

robot

It cannot drive

in a straight

line.

Unable to

accelerate/decel

erate while

driving

234

J INFORM SYSTEMS ENG, 10(23s)

Paper RL

Algorith

m

Simulation

Environment

Achievements Limitations

environment

21 Improved

Q

Algorithm

Python library

Tkinter

Using previous

knowledge

number of invalid

iterations

avoided.

Dynamic

adjustment in

greedy factor

Parameter

setting can be

improved

22 Teaching

learning

based

optimizatio

n (TLBO)

Robotic

Operating

System (ROS)

Less computation

time for path

finding.

Minimization of

the path length

Unable to

navigate in

dynamic

environment.

Can’t deal non-

convex and

irregular shapes

obstacles

23 D3QN and

rainbow

algorithm

Robotic

Operating

System (ROS)

Obstacle

avoidance rate

and target

reaching rate are

improved.

More work can

be done for

optimal

performance

24 Deep Q-

network

(DQN)

Robot

Operating

System (ROS)

Designed for

takeing

turnabouts on

narrow roads.

Minimization of

the path length

Can’t navigate in

environments

which has

difference from

the learning

environment.

Applicable for

discrete velocity

commands

27 an

enhanced

DDQN

path

planning

approach

Robot

Operating

System (ROS)

Problem of high

dimensionality is

solved.

Results are

verified in real

world and virtual

environment

Scope of

improvement in

speed and

stability of

algorithm

31 QL And

DQL

ROS Quantitative

comparison of

algorithms in

terms of run time

in dynamic

environment

Control facilities

like voice

control, lane

identification

can be added

using advanced

algorithms

From above table it is observed that various RL algorithm are implemented successfully for path planning in static

as well as in dynamic environment. Earlier algorithm implemented were value based. Later policy based algorithm

235

J INFORM SYSTEMS ENG, 10(23s)

were preferred where continuous action space was required. Implementation in simulated environment is

preferred. Robot Operating System (ROS) is commonly used for simulation. MATLAB is used for result

comparison. Python is also used in some papers.

TABLE 2: QUANTITATIVE COMPARISION OF PROMINANTLY IMPLEMENTED RL ALGORITHMS BASED ON DIFFERENT

PARAMETERS LIKE PATH EFFICIENCY, COMPUTATIONAL EFFICIENCY AND ROBUSTNESS.

Algorithm

Succe-ss

Rate (%)

Path

Efficiency

(Avg. Path

Length)

Training

Time

(Hours)

Computat-

ional

Efficiency

(FPS)

Robustness

(Dynamic

Obstacles)

Q-Learning 85
1.2x optimal

path
50 30 Moderate

Deep Q-

Network

(DQN)

90
1.1x optimal

path
100 25 High

Proximal

Policy

Optimizatio

n (PPO)

95
1.05x optimal

path
120 40 Very High

Trust Region

Policy

Optimizatio

n (TRPO)

92
1.08x optimal

path
110 35 High

Advantage

Actor-Critic

(A2C)

93
1.07x optimal

path
90 45 Very High

Deep

Deterministi

c Policy

Gradient

(DDPG)

94
1.06x optimal

path
95 50 Very High

Table 2 highlights that while simpler algorithms like Q-learning can be effective in static or less complex

environments, more advanced algorithms like PPO, A2C, and DDPG offer superior performance across most

parameters. These advanced algorithms are particularly suitable for dynamic and complex environments where

high success rates, path efficiency, and robustness are critical.

FUTURE DIRECTIONS AND CONCLUDING REMARKS:

In summary, this review paper investigates use of DRL in enhancing robotic path planning. By categorizing RL

algorithms, addressing challenges, exploring strategies, and presenting case studies, this paper offers a

comprehensive understanding of the field's current state. The integration of reinforcement learning into path

planning great potential to reshape the capabilities of autonomous robots, enabling them to navigate complex and

dynamic environments with unprecedented intelligence and adaptability.

Through a systematic, this review has showcased the versatility of DRL in addressing the intricacies of path

planning. Moreover, the paper emphasized the successful transferability of learned policies across different robotic

platforms and environments suggests the potential for creating adaptable and versatile navigation systems with

broad applicability.

REFERENCES

[1] B..K. Patle, Ganesh Babu L, Anish Pandey, D.R.K. Parhi, A. Jagadeesh, A review: On path planning strategies

for navigation of mobile robot, Defence Technology, Volume 15, Issue 4, 2019, Pages 582-606, ISSN 2214-9147,

https://doi.org/10.1016/j.dt.2019.04.011.

https://doi.org/10.1016/j.dt.2019.04.011

236

J INFORM SYSTEMS ENG, 10(23s)

[2] Mihai Duguleana, Gheorghe Mogan, Neural networks based reinforcement learning for mobile robots obstacle

avoidance, Expert Systems with Applications, Volume 62, 2016, Pages 104-115, ISSN 0957-4174,

https://doi.org/10.1016/j.eswa.2016.06.021.

(https://www.sciencedirect.com/science/article/pii/S0957417416303001)

[3] J. Xin, H. Zhao, D. Liu and M. Li, "Application of deep reinforcement learning in mobile robot path planning,"

2017 Chinese Automation Congress (CAC), Jinan, China, 2017, pp. 7112-7116, doi: 10.1109/CAC.2017.8244061

[4] Xiaoyun Lei, Zhian Zhang, Peifang Dong, "Dynamic Path Planning of Unknown Environment Based on Deep

Reinforcement Learning", Journal of Robotics, vol. 2018, Article ID 5781591, 10 pages, 2018.

https://doi.org/10.1155/2018/5781591

[5] Y. F. Chen, M. Everett, M. Liu and J. P. How, "Socially aware motion planning with deep reinforcement

learning," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC,

Canada, 2017, pp. 1343-1350, doi: 10.1109/IROS.2017.8202312.

[6] H. Nguyen and H. La, "Review of Deep Reinforcement Learning for Robot Manipulation," 2019 Third IEEE

International Conference on Robotic Computing (IRC), Naples, Italy, 2019, pp. 590-595, doi:

10.1109/IRC.2019.00120.

[7] X. Ruan, D. Ren, X. Zhu and J. Huang, "Mobile Robot Navigation based on Deep Reinforcement Learning,"

2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 2019, pp. 6174-6178, doi:

10.1109/CCDC.2019.8832393.

[8] Bae, H.; Kim, G.; Kim, J.; Qian, D.; Lee, S. Multi-Robot Path Planning Method Using Reinforcement

Learning. Appl. Sci. 2019, 9, 3057. https://doi.org/10.3390/app9153057

[9] Yu J, Su Y and Liao Y (2020) The Path Planning of Mobile Robot by Neural Networks and Hierarchical

Reinforcement Learning. Front. Neurorobot. 14:63. doi: 10.3389/fnbot.2020.00063

[10] T. T. Nguyen, N. D. Nguyen and S. Nahavandi, "Deep Reinforcement Learning for Multiagent Systems: A

Review of Challenges, Solutions, and Applications," in IEEE Transactions on Cybernetics, vol. 50, no. 9, pp.

3826-3839, Sept. 2020, doi: 10.1109/TCYB.2020.2977374.

[11] Y. Dong and X. Zou, "Mobile Robot Path Planning Based on Improved DDPG Reinforcement Learning

Algorithm," 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS),

Beijing, China, 2020, pp. 52-56, doi: 10.1109/ICSESS49938.2020.9237641.

[12] L. Liu, D. Dugas, G. Cesari, R. Siegwart and R. Dubé, "Robot Navigation in Crowded Environments Using Deep

Reinforcement Learning," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Las Vegas, NV, USA, 2020, pp. 5671-5677, doi: 10.1109/IROS45743.2020.9341540.

[13] Yang, Y., Juntao, L., & Lingling, P. (2020). “Multi‐robot path planning based on a deep reinforcement learning

dqn algorithm”, CAAI Transactions on Intelligence Technology, 5(3), 177-183.

https://doi.org/10.1049/trit.2020.0024

[14] K. Zhu and T. Zhang, "Deep reinforcement learning based mobile robot navigation: A review," in Tsinghua

Science and Technology, vol. 26, no. 5, pp. 674-691, Oct. 2021, doi: 10.26599/TST.2021.9010012.

[15] Sánchez-Ibáñez, J.R.; Pérez-del-Pulgar, C.J.; García-Cerezo, A. Path Planning for Autonomous Mobile Robots:

A Review. Sensors 2021, 21, 7898. https://doi.org/10.3390/s21237898

[16] Tong GUO, Nan JIANG, Biyue LI, Xi ZHU, Ya WANG, Wenbo DU, UAV navigation in high dynamic

environments: A deep reinforcement learning approach, Chinese Journal of Aeronautics,

[17] Volume 34, Issue 2, 2021, Pages 479-489, SSN 1000-9361, https://doi.org/10.1016/j.cja.2020.05.011.

(https://www.sciencedirect.com/science/article/pii/S1000936120302247)

[18] Choi, J., Lee, G. & Lee, C. Reinforcement learning-based dynamic obstacle avoidance and integration of path

planning. Intel Serv Robotics 14, 663–677 (2021). https://doi.org/10.1007/s11370-021-00387-2

[19] Zhou, C., Huang, B. & Fränti, P. A review of motion planning algorithms for intelligent robots. J Intell

Manuf 33, 387–424 (2022). https://doi.org/10.1007/s10845-021-01867-z

[20] Gasteiger, N., Hellou, M. & Ahn, H.S. Factors for Personalization and Localization to Optimize Human–Robot

Interaction: A Literature Review. Int J of Soc Robotics 15, 689–701 (2023). https://doi.org/10.1007/s12369-

021-00811-8

[21] S. Aradi, "Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles," in IEEE

Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 740-759, Feb. 2022, doi:

10.1109/TITS.2020.3024655.

https://doi.org/10.1016/j.eswa.2016.06.021
https://www.sciencedirect.com/science/article/pii/S0957417416303001
https://doi.org/10.1155/2018/5781591
https://doi.org/10.3390/app9153057
https://doi.org/10.1049/trit.2020.0024
https://doi.org/10.3390/s21237898
https://doi.org/10.1016/j.cja.2020.05.011
https://www.sciencedirect.com/science/article/pii/S1000936120302247
https://doi.org/10.1007/s11370-021-00387-2
https://doi.org/10.1007/s10845-021-01867-z
https://doi.org/10.1007/s12369-021-00811-8
https://doi.org/10.1007/s12369-021-00811-8

237

J INFORM SYSTEMS ENG, 10(23s)

[22] Shi Z, Wang K, Zhang J (2023) Improved reinforcement learning path planning algorithm integrating prior

knowledge. PLoS ONE 18(5): e0284942. https://doi.org/10.1371/journal. pone.0284942

[23] Sabiha, A.D., Kamel, M.A., Said, E. et al. Real-time path planning for autonomous vehicle based on teaching–

learning-based optimization. Intel Serv Robotics 15, 381–398 (2022). https://doi.org/10.1007/s11370-022-

00429-3

[24] Quinones-Ramirez, Miguel, Jorge Ríos-Martínez and Víctor Uc Cetina. “Robot path planning using deep

reinforcement learning.” ArXiv abs/2302.09120 (2023): n. pag.

[25] T. Nakamura, M. Kobayashi and N. Motoi, "Path Planning for Mobile Robot Considering Turnabouts on

Narrow Road by Deep Q-Network," in IEEE Access, vol. 11, pp. 19111-19121, 2023, doi:

10.1109/ACCESS.2023.3247730.

[26] Han, D.; Mulyana, B.; Stankovic, V.; Cheng, S. A Survey on Deep Reinforcement Learning Algorithms for

Robotic Manipulation. Sensors 2023, 23, 3762. https:// doi.org/10.3390/s23073762

[27] Sivamayil, K.; Rajasekar, E.; Aljafari, B.; Nikolovski, S.; Vairavasundaram, S.; Vairavasundaram, I. A

Systematic Study on Reinforcement Learning Based Applications. Energies 2023, 16, 1512.

https://doi.org/10.3390/ en16031512

[28] Han, H.; Wang, J.; Kuang, L.; Han, X.; Xue, H. Improved Robot Path Planning Method Based on Deep

Reinforcement Learning. Sensors 2023, 23, 5622. https:// doi.org/10.3390/s23125622

[29] Qin, H.; Shao, S.; Wang, T.; Yu, X.; Jiang, Y.; Cao, Z. Review of Autonomous Path Planning Algorithms for

Mobile Robots. Drones 2023, 7, 211. https://doi.org/ 10.3390/drones7030211

[30] Mohsen Soori, Behrooz Arezoo, Roza Dastres, Artificial intelligence, machine learning and deep learning in

advanced robotics, a review, Cognitive Robotics, Volume 3, 2023, Pages 54-70, ISSN 2667-2413,

https://doi.org/10.1016/j.cogr.2023.04.001.

[31] Saeid Nahavandi, Roohallah Alizadehsani, Darius Nahavandi, Chee Peng Lim, Kevin Kelly, Fernando Bello,

Machine learning meets advanced robotic manipulation, Information Fusion, Volume 105, 2024, 102221, ISSN

1566-2535, https://doi.org/10.1016/j.inffus.2023.102221.

(https://www.sciencedirect.com/science/article/pii/S1566253523005377)

[32] Ha, V.T.; Vinh, V.Q. Experimental Research on Avoidance Obstacle Control for Mobile Robots Using Q-

Learning (QL) and Deep Q-Learning (DQL) Algorithms in Dynamic Environments. Actuators 2024, 13, 26.

https://doi.org/10.3390/act13010026

[33] S Karambelkar, R Khaire, R Ghule, P Hiray, S Kulkarni, A Somatkar, Design and Analysis of Automatic Tripod

Style Horizontal Multi Bobbin Wire Winder, 2022 6th International Conference On Computing,

Communication, Control And Automation (ICCUBEA)

[34] K Kolhe, AA Somatkar, MS Bhandarkar, KB Kotangale, SS Ayane, Applications and Challenges of Machine

Learning Techniques for Smart Manufacturing in Industry 4.0, 2023 7th International Conference On

Computing, Communication, Control And Automation (ICCUBEA)

https://doi.org/10.1371/journal.%20pone.0284942
https://doi.org/10.1007/s11370-022-00429-3
https://doi.org/10.1007/s11370-022-00429-3
https://doi.org/10.1016/j.cogr.2023.04.001
https://doi.org/10.1016/j.inffus.2023.102221
https://www.sciencedirect.com/science/article/pii/S1566253523005377
https://doi.org/10.3390/act13010026

