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Robotic path planning is a critical aspect of autonomous robot navigation, enabling robots to 

efficiently navigate in complex environments while avoiding obstacles and reaching their 

intended destinations. Traditional path planning algorithms often struggle with intricate and 

dynamic environments due to their reliance on predefined maps assumptions about the 

environment's behavior. In recent few years, deep reinforcement learning (DRL) has come up 

as a promising approach for enhancing robotic path planning. RL techniques allow robots to 

learn optimal or near-optimal paths through trial-and-error interactions with their 

surroundings, adapting to changing environments and unforeseen obstacles. 

This review paper provides overview of the progress in enhancing robotic path planning using 

reinforcement learning. We categorize the existing research depending on the types of RL 

algorithms employed, such as Q-learning, policy gradients, and actor-critic methods, among 

others.  

By synthesizing recent research findings, this review paper offers insights into the current state 

of enhancing robotic path planning using reinforcement learning, identifies open challenges, 

and suggests potential directions for future research. The synergy between RL and robotic path 

planning holds great promise for revolutionizing autonomous navigation, enabling robots to 

travel in complex and dynamic environments with unprecedented efficiency and adaptability. 

Keywords: Deep reinforcement learning, optimal path, adaptive navigation, dynamic 

environment. 

 

I. INTRODUCTION  

Robotic path planning is a fundamental task in the area of robotics that involves determining the optimal or feasible 

path for a robot to navigate from a starting point to a destination avoiding obstacles and adhering to various 

constraints. This task is essential for enabling robots to autonomously operate in diverse environments, ranging from 

factory floors to outdoor terrains and even confined indoor spaces. Traditional methods for path planning [1], such 

as A* and Dijkstra's algorithm, rely on pre-existing maps and geometric information, which can be limiting in 

dynamic and uncertain environments. 

Traditional path-planning algorithms have been foundational in many applications, but they do come with 

limitations that necessitate more adaptive and efficient approaches: 

• Computational Complexity: Traditional algorithms may struggle with scalability, especially in large and 

dynamic environments. As the number of nodes or obstacles increases, the computational resources 

required for planning grow exponentially. 
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• Static Environment Assumption: Many traditional algorithms assume a static environment where the 

obstacles do not change over time. In dynamic environments, where obstacles may move or new obstacles 

may appear, these algorithms may not be able to adapt quickly enough to find an optimal or feasible path. 

• Memory Intensive: Some algorithms require storing information about the entire map or grid, leading to 

high memory requirements, especially in large-scale scenarios. This can become impractical in resource-

constrained systems or real-time applications. 

• Optimality vs. Efficiency Trade-off: Traditional algorithms often prioritize finding the optimal path based on 

certain criteria (e.g., shortest path). However, in dynamic environments or real-time scenarios, it may be 

more important to find a reasonably good path quickly rather than spending excessive time searching for the 

absolute optimal solution. 

• Limited Adaptability: Traditional algorithms typically rely on predefined heuristics or cost functions, which 

may not capture the complexities of real-world scenarios effectively. They may struggle to adapt to diverse 

terrain types, varying robot dynamics, or uncertain environmental conditions. 

• Incomplete Information Handling: In scenarios where the robot has incomplete or uncertain information 

about the environment, traditional algorithms may struggle to make informed decisions. They often assume 

perfect knowledge of the environment, which is not always the case in practical applications. 

• High-dimensional State Spaces: In multi-agent systems or robotics applications with high-dimensional state 

spaces, traditional algorithms may encounter difficulties in efficiently exploring the search space and finding 

feasible paths. 

To address these limitations, there is a growing need for more adaptive and efficient path-planning approaches. 

These approaches may incorporate machine learning techniques, such as reinforcement learning or imitation 

learning, to adapt to changing environments and learn from experience.  

Reinforced learning is a machine learning third paradigm that allows agents, here, robots, to learn best actions 

through interactions with surrounding environment. Unlike traditional methods, RL-based path planning enables 

robots to adapt and learn from experience, making them better suited to handle complex and changing surroundings 

[6]. The integration of RL into robotic path planning addresses several limitations of conventional methods. RL-

based approaches can handle dynamic environments where obstacles might move or new obstacles might appear. 

They can also adapt to variations in robot dynamics and sensory information, thus offering a level of flexibility and 

adaptability that was previously hard to achieve [10]. By learning from trial and error, RL-based path planning can 

guide to more efficient and intelligent robot navigation, even in scenarios where the optimal path is not explicitly 

known [14, 15]. 

Through this review, we seek to offer insights into the current state of RL-enhanced robotic path planning, identify 

key research trends, and present potential directions for future exploration. The integration of reinforcement 

learning into path planning has the potential to revolutionize autonomous robotic navigation, making robots more 

adaptable, efficient, and capable of navigating complex and dynamic real-world environments [18, 19, 20]. 

II. REINFORCEMENT LEARNING FOR ROBOTIC PATH PLANNING: 

The main premise of reinforcement learning lies in its ability to allow robots to learn best actions through 

interactions with surrounding environment. RL algorithms consist of agents, actions, states, and rewards, where 

the agent learns to take different actions in different states to get maximum reward over time.  

 

Fig 1. Block diagram of Reinforcement Learning* 
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*Note: Figure is adapted from MIT 6.S191: Reinforcement Learning lecture  

Action: It is a move that agent can make in environment. It can be discrete or in continuous space.  

Action Space: It is a set of possible actions that agent can take in environment. 

Observations: It means how environment responses back to the agent. 

State: It is the situation where agent find itself after taking action. It refers to the representation of the current 

situation or condition of an environment at a given time step. It encapsulates all the relevant information about the 

environment that an RL agent needs to make decisions and take actions to achieve its goals. 

Reward: In reinforcement learning, rewards are used to guide the learning process of an artificial agent. The agent 

interacts with an environment and receives positive or negative rewards based on the actions it takes. The goal is to 

learn a policy that increases the cumulative rewards eventually 

        (1) 

                                           (2) 

Where,  discount factor     

In the context of robotic path planning, RL enables robots to explore their surroundings, learn from their 

experiences, and adapt their navigation strategies accordingly 

. III. CATEGORIES OF RL ALGORITHMS FOR PATH PLANNING: 

This section delves into the categorization of RL algorithms commonly employed in robotic path planning. 

Classification of Reinforcement learning Algorithm can be done in different ways. Dong Han et al., [25] categorized 

them into A. Value-based, 

B. Policy-based, and 

C. Actor–critic algorithms.  

In a same way algorithms are arranged in this paper. Whereas Keerthana Sivamayi et al., [26] classified RL 

algorithm based on three approaches: 1. Monte Carlo 2. Temporal difference 3. Dynamic Programming. 

A. Value-Based Methods: 

These algorithms focuses on estimating the value function, which gives the expected reward starting from a state 

and following a certain policy. 

These algorithms obtains Q function which captures the expected total future reward an agent in state S, can 

receive by executing a certain action. Ultimately the agent needs action value function which gives maximum 

reward. We will select policy 

                                          (3) 

 

Fig* 2. Value based algorithm training policy 

*NOTE: FIGURE IS ADAPTED FROM MIT 6.S191: REINFORCEMENT LEARNING LECTURE 

In fig 2, we will select action from action a1, a2 or a3 depending upon which action will give maximum reward. As 

action a1 has maximum Q value, it will be selected.  
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 a1 

Here are enlisted few algorithms from this category. 

A.1 Q-learning 

It is a fundamental RL algorithm, facilitates learning of action-value functions and can be used to find optimal 

paths. Q-Learning is a model-free RL algorithm that learns action-value functions iteratively. It updates the Q-

values depending on the observed rewards and the highest Q-value of the next state. Q-Learning is effective for 

discrete action spaces and can handle environments with a small number of states.  

Mihai et al., [2] combined Q learning algorithm with NN for robot path planning in static and dynamic obstacle 

environment. Results are checked in virtual as well as real time environment. It achieved good convergence ratio. 

Problem of local minima is also avoided. 

Zhen Shi et al [20] proposed an improved QL algorithm which combines the previous knowledge for initiating the 

starting Q-value. In this way agent was able to easily reach towards target earliest, eliminating number of invalid 

iterations. The greedy factor ε was adjusted at run time. 

A.2 Deep Q-Networks (DQN): 

DQN is one of the pioneering algorithms in DRL, which combines Q-learning with deep neural networks. It learns 

to estimate the action-value or Q-function of an agent, which represents the predicted reward of taking a specific 

action in a given state.  DQN extends Q-Learning to handle high-dimensional state spaces using deep neural 

networks. It employs a target network and experience replay to stabilize and improve the learning process. 

DQN is suitable for path planning tasks with large state spaces and continuous action spaces. 

Jing Xin., [3] et al., approximated the state-action value Q function using DQN. This network has four frames of 

preprocessed image as input, and the output of DQN is the Q value of every single possible action of the mobile 

robot. Algorithm is evaluated virtually on environment of Deep Mind Lab. This paper introduced a novel end-to-

end path planning approach using DRL to enable the robot to directly derive optimal actions from raw visual 

perception without the need for handcrafted features or feature matching.  

Hyansu Bae et al., [8] compensated shortcomings of classical learning algorithms by applying DQN for multi robot 

path planning. The learning algorithm is made more robust by combining it with CNN algorithm, which is made 

analysis of situation more effective. In both static and dynamic obstacle environments simulated in the study, the 

number and placement of obstacles are randomized. The proposed algorithm is then evaluated against A* in static 

environment and against D* algorithm in dynamic environment to assess its performance. Based on the simulation 

findings, the method consistently exhibits a narrower search range compared to alternative approaches. 

Furthermore, there's a likelihood of approximately 34.76% that the path generated by this method matches or 

closely resembles the path generated by the A* algorithm 

Yang Yang et al., [12] done path planning for multirobot. DQN algorithm is used with some modifications. DQN 

Algorithm has advantage over Q algorithm of having less dimensionality of input data. But it faces problem of 

sluggish convergence rate and more randomness. This two shortcoming is avoided using previous knowledge to 

initialise the Q-value table.  

Tomoaki Nakamura et al., [23] proposed DQN for two purposes. A path planning method with turnabouts finds 

hard to design a proper controlling policy depending on environmental information. The RL-based algorithm is 

used to obtain the control strategy by interacting the robot with its surrounding environment, without previous 

training datasets. It is possible that using neural networks, DQN is able to handle high dimensional input data. This 

method takes continuous values as input data which has sensor data and velocity of robot. Simulations are 

performed successfully on Gazebo simulator with Robot Operating System (ROS).  

Vo Thanh Ha et al., [31] compares Q-learning and Deep Q-learning algorithms for obstacle avoidance in dynamic 

environments. Author presented quantitative results comparing the performance of QL and DQL algorithms in 

terms of their effectiveness in obstacle avoidance in dynamic environments. Experimental setup was developed in 

Gazebo simulator. Robot has to reach the specified destination in the environment where some static as well 

dynamic obstacles were present. For different experimental environment time required to reach destination by robot 
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implemented with DQ learning was less. The implementation of the DQL showcased enhancements in various 

aspects, including reduced computation time, faster convergence time, improved accuracy in trajectory planning, 

and more effective obstacle avoidance capabilities 

A.3 Double Deep Q-Networks (Double DQN):  

It is an enhancement to the traditional DQN algorithm that addresses the issue of overestimation of Q-values in the 

Q-learning process. In standard DQN, the same network is used to both select the best action and estimate its Q-

value. This can lead to overestimation of Q-values, which can result in suboptimal policies. Double DQN mitigates 

this issue by decoupling the action selection and Q-value estimation processes.  

Xiaoyun Lei et al., [4] successfully implemented Double DQN for dynamic path planning in unknown environment. 

Design of reward and punishment function is done to deal with training stage instability and environment state 

space sparsity. Training method also designed in a same way. Starting position and target position is adjusted 

dynamically in unknown environment. By updating NN and the increasing greedy rule probability, the local space 

searched by the agent is increased. Dynamic environment is created using Pygame module in Python. 

Huiyan Han et al., [25] introduced an enhanced Double DQN path planning algorithm. Here high dimensionality 

problem of data is solved by discretizing the high-dimensional Li DAR data into a state space to minimize 

redundant information. Convergence speed is increased using Epsilon Greedy algorithm. ROS is used to real-world 

implementation 

A.4 Dueling Deep Q-Networks (Dueling DQN):  

It is an extension of the traditional DQN algorithm that aims to improve the efficiency and stability of Q-learning, 

particularly when dealing with environments where the values of different actions might vary significantly. Dueling 

DQN separates the Q-value estimation into two streams: one for estimating the value of the state V(s) and another 

for estimating the advantage of each action A(s, a). This separation allows the algorithm to better understand the 

importance of each action independently of the state value. Q Value function becomes: 

   Q(s, a) = V (s) + A(s, a)   (4) 

Dueling DQN is particularly useful when navigating complex environments where different actions have varying 

impacts on the Q-values. It can help agents learn more efficiently and effectively by disentangling state values from 

action advantages. 

Xiaogang Ruan et al., [7] combined Algorithm of Double DQN and Dueling DQN. With this combination 

performance is improved and problem of estimation is eliminated. The performance of Algorithm is checked in 

simple as well as complex indoor environment. This is done with the help of Gazebo simulator. 

A.5 Rainbow DQN 

 It is an advanced variant of the Deep Q-Network (DQN) algorithm that integrates several improvements to address 

specific challenges associated with DQN. It combines various enhancements from different DQN variations to 

create a more robust and efficient algorithm for reinforcement learning. 

The name ‘Rainbow’ in Rainbow DQN stands for ‘A Unified Architecture for DQN’ highlighting its integration of 

multiple techniques into a cohesive framework. By combining the strengths of various DQN variants, Rainbow 

DQN aims to achieve better learning stability, improved performance, and more efficient convergence. 

Miguel Quinones-Ramırez et al., [23] implemented variants of the deep Q networks method to achieve maples 

navigation of mobile robot. The Dueling DQN and rainbow algorithms are used in obstacle avoidance as well as in 

goal-oriented navigation task. They found that Rainbow DQN allowed to reach more targets and collide less during 

training than the D3QN agents. Results achieved collision rate of 41.83% and target-reaching rate of 96.9% for the 

goal-oriented navigation task. 

B. Policy gradient methods: 

These methods, on the other hand, optimize the policy directly and are well-suited for continuous action spaces. It 

doesn’t check the value of action but it checks the probability of selecting action which will give best performance 

value. In fig 3, we will have policy for selection as, 
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                                                     (5) 

As probability of action a1 is more, 

1 

 

Fig 3. Policy Gradient algorithm training policy 

Few algorithms from this category are described below. 

B.1 Reinforce (Monte Carlo Policy Gradient): 

REINFORCE is a foundational policy gradient algorithm that uses Monte Carlo sampling to estimate the gradient of 

the expected reward as per the policy parameters. It updates the policy parameters in the direction that increases 

the expected reward. REINFORCE is simple and intuitive but can have high variance in gradient estimates. 

B.2 Proximal Policy Optimization (PPO): 

PPO is a policy optimization algorithm that aims to find policy updates while staying within a certain "trust region" 

to ensure stable learning. 

B.3 Trust Region Policy Optimization (TRPO): 

TRPO optimizes policies while ensuring that the policy updates do not deviate significantly from the current policy, 

helping to maintain stability during learning. 

C.  Actor-Critic methods: 

These methods combine policy-based and value-based approaches, keeping a balance between stability and 

exploration. Model-based RL techniques involve learning a model of the environment dynamics to aid decision-

making. 

C.1 Advantage Actor-Critic (A2C):  

This is a synchronous variant of the Actor-Critic algorithm where multiple agents learn in parallel to improve 

sample efficiency. 

C.2 Asynchronous Advantage Actor-Critic (A3C): 

 This is an asynchronous variant of A2C, where multiple agents learn asynchronously and share their experiences to 

accelerate learning. 

C.3 Deep Deterministic Policy Gradient (DDPG):  

DDPG is a reinforcement learning algorithm used for solving continuous action space problems in the field of 

artificial intelligence and machine learning. It is an extension of the actor-critic framework and is particularly well-

suited for tasks where the action space is continuous, such as robotics control, autonomous driving, and continuous 

control in games. 

Jinglun Yu et al., [9] found that DDPG, which is based on neural networks and hierarchical reinforcement learning, 

performed better in each aspects as compared to any other path planning algorithms. With this algorithm 

convergence time is lessened by 91% in comparision with the Q-learning algorithm and smoothness of the path got 

better by 79%. The simulation environment is created using the multimedia framework pyglet under Python. 
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Yuansheng Dong et al., [11] proposed a path planning method which is based on an improved DDPG reinforcement 

learning algorithm. In this algorithm little amount of a previous knowledge is used to improve the training of DRL. 

This will minimize number of trial and error steps. Here adaptive exploration method based on the ε greedy 

algorithm is used.  

C.4 Twin Delayed Deep Deterministic Policy Gradient (TD3):  

While primarily used for continuous action spaces, TD3 is also an example of an Actor-Critic algorithm. It 

optimizes a deterministic policy using twin value networks and delayed policy updates. 

Papers which are reviewed in this paper are selected from 2016 as implementation of RL algorithm has just started. 

The first implementation of RL Algorithms was in ATARI games in 2015. All papers are compared on the basis of 

three points: 

1. Simulation environment used for implementation of RL algorithm and for comparing results obtained from 

each algorithm. 

2. Improvement in result after applying the algorithm 

3. Limitations of implemented algorithm  

TABLE 1: A COMPARATIVE SUMMARY OF PREVIOUS WORKS BASED ON ABOVE MENTIONED POINTS 

Paper  RL 

Algorith

m  

Simulation 

Environment  

Achievements Limitations 

2 Q learning 

& NN 

C++/ 

VRML and 

MATLAB 

It achieves good 

convergence ratio. 

Robot control at 

desired speed is 

possible 

Unable to self-

tune parameters 

Can’t deal with 

dynamic 

obstacles 

3 Deep Q 

Network 

Seekavoid 

arena 01 

environment on 

DeepMind Lab 

platform 

Effective, optimal 

and end-to-end 

robotic path 

planning 

technique. 

Only three 

actions left, 

right and 

forward are 

possible which 

won’t give 

solution in real 

environment. 

4 Double  Q-

network 

(D3QN) 

Pygame module 

for creating 

dynamic 

environment, 

ROS  

able to navigate in 

unknown 

dynamic 

environment. 

flexible for local 

path planning 

with the LiDAR 

data input 

Need to upgrade 

for more 

complex 

environment 

5  (SA-

CADRL) 

Python Fully autonomous 

navigation near 

about to human 

walking speed in a 

dynamic 

surroundings 

having many 

pedestrians. 

Designed for 

multi-Agent 

system. 

Not 

implemented in 

real 

environment 
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Paper  RL 

Algorith

m  

Simulation 

Environment  

Achievements Limitations 

7 Dueling 

Double 

DQN 

(D3QN) 

Gazebo 

simulator 

Combination of 

Double DQN and 

Dueling DQN 

increased. 

performance and 

problem of 

estimation is 

removed 

Unable to 

navigate in 

dynamic 

environment 

8 DQN with 

CNN 

algorithm 

Python and 

C++. 

Multi-robot path 

planning 

Applicable in a 

static as well as in 

a dynamic 

environment 

Not 

implemented in 

real 

environment 

9 Deep 

Determinis

tic Policy 

Gradient 

(DDPG) 

multimedia 

framework 

pyglet under 

Python 

Minimizes the 

path planning 

time, decreases 

the path steps, 

Lessens the 

convergence time 

and enhances 

smoothness path 

Performance of 

algorithm for 

dynamic 

environmental 

changes is not 

verified 

Practical 

implementation 

is not verified 

11 Improved 

Deep 

Determinis

tic Policy 

Gradient 

(DDPG) 

Matlab 

platform to 

compare results 

Works in dynamic 

obstacle 

environment 

Performs better 

than Q-learning 

and DDPG 

algorithm. 

Practical 

implementation 

is not done 

13  Deep Q-

network 

(DQN) 

 

TensorFlow 

deep learning 

tools, Python  

Path planning for 

multi-robot 

system. 

Converges faster 

and excessive 

randomness is 

eliminated 

Not applicable 

for dynamic 

environment 

16 Layered-

RQN 

Nvidia GTX 

1080 Ti using 

CuDNN & Caffe 

Outperform in 

dynamic 

environment, 

Robust algorithm 

Not applicable 

for multiple 

UAV. 

Real-time 

implementation 

is not done 

17 Mobile 

robot 

Collision 

Avoidance 

Learning 

(MCAL)  

Robot 

Operating 

System (ROS),  

Excellent 

performance in 

static as well as in 

dynamic 

environment. 

Can work in multi 

robot 

It cannot drive 

in a straight 

line. 

Unable to 

accelerate/decel

erate while 

driving 
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Paper  RL 

Algorith

m  

Simulation 

Environment  

Achievements Limitations 

environment 

 

 

21 Improved 

Q 

Algorithm 

 

Python library 

Tkinter 

Using previous 

knowledge 

number of invalid 

iterations 

avoided. 

Dynamic 

adjustment in 

greedy factor 

Parameter 

setting can be 

improved 

 

22 Teaching 

learning 

based 

optimizatio

n (TLBO) 

Robotic 

Operating 

System (ROS) 

Less computation 

time for path 

finding. 

Minimization of 

the path length 

Unable to 

navigate in 

dynamic 

environment. 

Can’t deal non-

convex and 

irregular shapes 

obstacles 

23 D3QN and 

rainbow 

algorithm 

Robotic 

Operating 

System (ROS) 

Obstacle 

avoidance rate 

and target 

reaching rate are 

improved. 

More work can 

be done for 

optimal 

performance 

24 Deep Q-

network 

(DQN) 

Robot 

Operating 

System (ROS)  

Designed for 

takeing 

turnabouts on 

narrow roads. 

Minimization of 

the path length 

Can’t navigate in 

environments 

which has 

difference from 

the learning 

environment. 

Applicable for 

discrete velocity 

commands 

27 an 

enhanced 

DDQN 

path 

planning 

approach 

Robot 

Operating 

System (ROS) 

Problem of high 

dimensionality is 

solved. 

Results are 

verified in real 

world and virtual 

environment 

Scope of 

improvement in 

speed and 

stability of 

algorithm 

 

31 QL And  

DQL 

ROS Quantitative 

comparison of 

algorithms in 

terms of run time 

in dynamic 

environment 

Control facilities 

like voice 

control, lane 

identification 

can be added 

using advanced 

algorithms 

 

From above table it is observed that various RL algorithm are implemented successfully for path planning in static 

as well as in dynamic environment. Earlier algorithm implemented were value based. Later policy based algorithm 



235    

 

J INFORM SYSTEMS ENG, 10(23s) 

were preferred where continuous action space was required.  Implementation in simulated environment is 

preferred. Robot Operating System (ROS) is commonly used for simulation. MATLAB is used for result 

comparison. Python is also used in some papers. 

TABLE 2: QUANTITATIVE COMPARISION OF PROMINANTLY IMPLEMENTED RL ALGORITHMS BASED ON DIFFERENT 

PARAMETERS LIKE PATH EFFICIENCY, COMPUTATIONAL EFFICIENCY AND ROBUSTNESS. 

Algorithm 

 

Succe-ss 

Rate (%) 

Path 

Efficiency 

(Avg. Path 

Length) 

Training 

Time 

(Hours) 

Computat-

ional 

Efficiency 

(FPS) 

Robustness 

(Dynamic 

Obstacles) 

Q-Learning 85 
1.2x optimal 

path 
50 30 Moderate 

Deep Q-

Network 

(DQN) 

90 
1.1x optimal 

path 
100 25 High 

Proximal 

Policy 

Optimizatio

n (PPO) 

95 
1.05x optimal 

path 
120 40 Very High 

Trust Region 

Policy 

Optimizatio

n (TRPO) 

92 
1.08x optimal 

path 
110 35 High 

Advantage 

Actor-Critic 

(A2C) 

93 
1.07x optimal 

path 
90 45 Very High 

Deep 

Deterministi

c Policy 

Gradient 

(DDPG) 

94 
1.06x optimal 

path 
95 50 Very High 

 

Table 2 highlights that while simpler algorithms like Q-learning can be effective in static or less complex 

environments, more advanced algorithms like PPO, A2C, and DDPG offer superior performance across most 

parameters. These advanced algorithms are particularly suitable for dynamic and complex environments where 

high success rates, path efficiency, and robustness are critical. 

FUTURE DIRECTIONS AND CONCLUDING REMARKS: 

In summary, this review paper investigates use of DRL in enhancing robotic path planning. By categorizing RL 

algorithms, addressing challenges, exploring strategies, and presenting case studies, this paper offers a 

comprehensive understanding of the field's current state. The integration of reinforcement learning into path 

planning great potential to reshape the capabilities of autonomous robots, enabling them to navigate complex and 

dynamic environments with unprecedented intelligence and adaptability. 

Through a systematic, this review has showcased the versatility of DRL in addressing the intricacies of path 

planning.  Moreover, the paper emphasized the successful transferability of learned policies across different robotic 

platforms and environments suggests the potential for creating adaptable and versatile navigation systems with 

broad applicability. 
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