
Journal of Information Systems Engineering and Management 
2025, 10(3s) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/ Research Article  

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Reducing Redundancy in Software Testing: A K-Means 

Clustering Approach to Test Case Minimization 
 

Sanjay Sharma1, Jitendra Choudhary2 

1Schoool of Computers and Electronics, IPS Academy, Indore, 

1,2Department of Computer Science, Medicaps University, Indore 

1sanjaysharmaips61@gmail.com, 2jitendra.choudhary@medicaps.ac.in 

 

ARTICLE INFO ABSTRACT 

Received: 07 Oct 2024 

Revised: 05 Dec 2024 

Accepted: 19 Dec 2024 

 

This study explores a clustering-based approach using k-means clustering to optimize test case 

minimization, a crucial aspect of enhancing software testing efficiency. Traditional methods 

often fail to cope with the complexity and scale of modern systems, leading to excessive 

redundancy and resource consumption. By employing k-means clustering, we effectively group 

similar test cases into clusters, enabling a reduction in the number of test cases while 

maintaining adequate test coverage. This approach offers several benefits, including reduced 

testing time, improved resource utilization, and enhanced fault detection capabilities. Our 

method ensures that critical areas of software functionality are thoroughly tested, even with 

fewer test cases, leading to cost savings and efficient resource allocation. The results 

demonstrate that this clustering-based test case minimization technique is both scalable and 

practical, making it suitable for large-scale software testing environments  

Keywords:  Software testing, optimization, clustering, resource utilization, algorithms, test 

cases 

 

INTRODUCTION 

Software testing is one of the critical phases of the development lifecycle, validating the reliability and functionality 

of systems. However, the whole process is often challenged by large, complex datasets with resource constraints. 

Conventional test case minimization techniques face such difficulties more often, resulting in inefficiencies like 

redundant test cases, increased testing times, and greater resource consumption. As a response, this paper presents 

a clustering-based approach using the k-means clustering technique toward the minimization of test cases. 

Grouping similar test cases under one set of clusters has in fact reduced redundancy while ensuring adequate 

coverage over the critical functions of the software. This alone saves testing time and improved resource utilization, 

coupled with the enhancement of the fault-detection capability. The k-means clustering method addresses the scale 

and complexity of the modern software systems, making it an effective and practical solution for the large projects 

requiring effective and efficient testing strategies. 

The rest of the paper is organized as follows: Section II describes the methodology adopted in this study, detailing 

the clustering-based approach for test case minimization, the experimental setup, and the technical 

implementation. Section III focuses on the results and discussion, analyzing the performance of the proposed 

approach using key metrics such as accuracy, precision, recall, and fault detection efficiency. Finally, Section IV 

concludes the paper by summarizing the key findings, highlighting the contributions of the study, and providing 

directions for future research. 

K-means is one of the most used clustering algorithms in practice; however, it is often suffering from the a priori 

choice of the number of clusters and initializations. Thus, one can say that its unsupervised nature is somewhat 

limited. In [1], an unsupervised k-means (U-k-means) clustering algorithm was proposed that automatically 

determines the optimal number of clusters without any initialization or parameter selection, resulting in big 

improvements in clustering performance. A second contribution was the K-means Optimizer (KO), developed using 



187  

 
 

Sanjay Sharma et al. / J INFORM SYSTEMS ENG, 10(3s) 

the k-means algorithm to generate the centroid vector and combined movement heuristics to balance exploration 

and exploitation in optimization problems. The new approach performed very well in benchmark and structural 

damage identification problems, outperforming other optimization algorithms [2]. Another study applied k-means 

and k-medoids clustering in order to improve test case prioritization in regression testing. This improved the 

efficiency of fault detection compared to random prioritization methods [3]. Another modification of noise-based k-

means clustering algorithm has been done towards establishing solutions for urban congestion through the 

automatic choice of number of clusters and initialization of cluster centers, which performed better in clustering for 

multiple urban datasets [4].K-means clustering algorithm is one of the popular algorithms in most clustering tasks 

that are often used because of their simplicity and efficiency, but it is limited. For example, it is sensitive to the 

centers' initialization and finding the optimal number of clusters. A suggested algorithm was a kind of iterative 

improvement of k-means by eliminating and splitting clusters, which led to significantly improved and even better 

accuracy than k-means++ [5]. Another study applied a hybrid of k-means algorithm with the elbow method to 

select the number of clusters. It efficiently improved the performance of k-means in SME customer mapping by 

choosing the most appropriate number of clusters corresponding to the lowest values of SSE [6]. Another research 

attempt has been made into a data-driven approach for automatic finding of optimal numbers of clusters for k-

means, based on cluster symmetry analysis, which was tested over real-world datasets such as satellite images and 

indicated the achievement of improved accuracy and lesser values of root mean square error in comparison with the 

traditional methods [7]. Such progress in k-means clustering testifies to the continuous attempt to overcome its 

inherent lack and thus apply it to each possible domain: from ordinary customer profiling to the analysis of data 

from satellites.The multiple explorations of k-means clustering and its variants across different domains highlight 

strength in versatility as well as disadvantages, including sensitivity to initialization and the determination of the 

optimal number of clusters. These findings are somehow combined by comparing with a Table 1 below 

summarizing the key studies, their methodologies, datasets, evaluation metrics, and results, offering a broader view 

of the advancements in k-means clustering and applications. 

Table 1: Comparative Analysis of K-Means Clustering Variants and Applications across Different Domains 

Study Method/Algorithm Focus 

Area/Problem 

Addressed 

Dataset 

Used 

Evaluation 

Metrics 

Key 

Techniques/Approach 

Key 

Findings/Results 

[8] K-Means with SVM Data stream 

mining, concept 

drift 

Testbed, 

NSL-KDD, 

CIDDS-2017 

Accuracy, 

Precision, 

Recall, F1 

Score, Kappa 

Statistics 

Sliding window, drift 

detection, SVM retraining 

Achieved improved 

accuracy (93.52%, 

99.80%, 91.33%) and 

precision with SVM 

using drift detection 

techniques. 

[9] K-Means with Elbow 

and Silhouette 

Cluster 

determination, 

distance metrics 

Synthetic 

dataset 

SSE, Elbow 

method, 

Silhouette score 

Comparison of 

Manhattan, Euclidean, 

and Minkowski distances 

Manhattan distance 

showed the most 

variance; K 

determination 

remains challenging. 

[10] Maxmin and K-

Means++ 

Improving K-

Means 

initialization 

Clustering 

benchmark 

Accuracy, 

Cluster Quality 

(Error Rates) 

Furthest point heuristic 

(Maxmin), Repeated 

initialization 

Maxmin reduces 

erroneous clusters 

from 15% to 6%; 

repeated K-Means 

reduces errors to 1%. 

[11] K-Means in Education 

Data 

Student 

performance 

analysis 

Educational 

datasets 

Cluster 

Performance 

(Prediction 

Accuracy) 

K-Means, Decision Trees K-Means effectively 

groups students based 

on performance, 

improving educational 

outcomes. 

[12] K-Means and K-

Medoids with 

Transformation 

Medical data 

clustering 

Local 

medical data 

Accuracy, 

Cluster 

Robustness 

Yeo-Johnson 

transformation, SEV 

distance function 

Transformed data 

significantly improves 

clustering accuracy; 

Yeo-Johnson method 

is best for accuracy. 

[13] KNSMOTE with K-

Means 

Imbalanced 

medical data 

8 UCI 

datasets 

Sensitivity, 

Specificity 

Synthetic Minority 

Oversampling Technique 

(SMOTE) with K-Means 

KNSMOTE improves 

sensitivity (99.84%) 

and specificity 

(99.56%) in medical 



188  

 
 

Sanjay Sharma et al. / J INFORM SYSTEMS ENG, 10(3s) 

datasets. 

[14] Multiple Kernel 

Clustering (MKC) 

Incomplete 

kernel matrices 

13 

Benchmark 

datasets 

Clustering 

Accuracy, Time 

Complexity 

Joint imputation and 

clustering, kernel subset 

selection 

Superior clustering 

performance, 

particularly with high 

missing data ratios. 

[15] Hierarchical K-Means 

and Cubist Algorithm 

(HKM-CA) 

Blast-induced 

Peak Particle 

Velocity (PPV) 

prediction 

Open-pit 

mine data 

RMSE, R², 

MAE 

Hybrid HKM-CA model, 

Cubist model for 

prediction 

HKM-CA outperforms 

other models with 

RMSE of 0.475 and R² 

of 0.995. 

[16] Joint Clustering and 

Representation 

Learning 

Clustering and 

representation 

learning 

Various 

datasets 

Clustering 

Accuracy, Data 

Representation 

Continuous 

reparametrization of 

clustering objective 

Improved clustering 

performance by jointly 

learning data 

representations. 

[17] K-Means based Co-

Clustering (kCC) 

Enhancing K-

Means clustering 

Standard 

datasets 

SSE, Cluster 

Assignment 

Accuracy 

Co-clustering, 

neighborhood walk 

statistics 

kCC significantly 

improves clustering 

accuracy over baseline 

K-Means. 

[18] Clustering and 

Genetic Algorithm 

Regression 

testing time 

minimization 

Software 

test suites 

Execution Time 

Reduction 

Test suite reduction, 

parallel execution 

Reduced regression 

testing time by 75%, 

preserving code 

coverage. 

[19] ATM (AST-based Test 

Case Minimizer) 

Test case 

minimization 

using AST 

similarity 

Dataset of 16 

Java 

projects 

Fault Detection 

Rate, Execution 

Time 

AST-based similarity 

measures, genetic 

algorithms 

Achieved a 0.82 

average fault detection 

rate, outperforming 

FAST-R (0.61) and 

random minimization 

(0.52) with 50% test 

cases. 

[20] Cluster-Based 

Adaptive Test Case 

Prioritization 

Real-time 

adaptive TCP 

Java 

programs (1 

open-source, 

3 industrial-

grade) 

APFD 

Improvement 

Rate 

Pre-prioritization, 

adaptive adjustment 

algorithm 

Median APFD 

improvement of 

17.08% (step=2), 

significantly 

outperforming other 

TCP techniques. 

[21] Clue (Test Reduction 

for SPL Systems) 

Test reduction 

for software 

product lines 

Dataset of 6 

SPL systems 

Fault Detection, 

Fault 

Localization 

Clustering tests, 

prioritization by feature 

interactions 

Reduced testing effort 

by up to 88% while 

maintaining fault 

localization 

performance; detected 

most bugs using 50% 

of the original test 

suites. 

 

Wireless Sensor Networks (WSNs) consist of distributed sensor nodes that sense and disseminate environmental 

data with problems such as redundant broadcast storms, energy inefficiency, and security vulnerabilities. In this 

respect, a novel Cluster-based Secured Data dissemination Protocol (CSDP) is proposed based on energy-efficient 

and secure communication. CSDP includes digital signature authentication, trust-based security, encryption for key 

management, and an Intelligent Fuzzy-based Unequal Clustering algorithm for effective clustering and intruder 

detection [22]. This ensures strong security, efficient routing, and minimal energy usage as it uses cryptographic 

key generation, computation of the trust score, and the prevention of malicious nodes. CSDP was tested using NS2-

based simulations for packet delivery, network throughput, and delay. Moreover, optimizations to kernel-based 

clustering by the selection of an optimal subset of the kernel and redundancy reduction improve the clustering 

efficiency and performance, which was validated through extensive experiments [23], [24]. 

METHODOLOGY 

The study is about optimization of software testing in order to minimize redundant test cases so that no redundancy 

occurs in their usage with saving of time as well as cost incurred while never compromising on the effectiveness of 

fault detection. The paper evaluates traditional optimization approaches, such as genetic algorithms, and the 

research study introduces K-Means clustering, which might be used for better minimization of test cases. K-Means 

is the approach proposed for handling large suites more efficiently when scalability and complex features of the test 



189  

 
 

Sanjay Sharma et al. / J INFORM SYSTEMS ENG, 10(3s) 

cases pose problems. Metrics in this regard would be test suite reduction, code coverage, and execution time. Thus, 

it will give an insight into how the approach can enhance software testing.This section reports the technical 

approach on effective software testing using a K-Means clustering-based test case minimization algorithm. In 

contrast, the study focuses on machine learning based source code analysis techniques rather than traditional 

methods. The setup and execution of the original and minimized test suites are conducted in a test environment 

followed by comparison using key performance metrics such as test execution time, rate of fault detection, and 

other factors affecting resource usage. The proposed method systematically manages redundancy reduction, test 

selection, and performance evaluation to improve software quality while lowering the time and resources for 

testing. 

 

Fig.1Comprehensive flowchart of the proposed model 

A set of test cases is designed for the newly developed model in addition to existing general test cases. The goal is to 

determine the optimal order for applying these test cases to rapidly detect faults through efficient pre-processing 

techniques. To establish this order, the test case suite is predicted and split into training and testing sets. Clustering 

is then applied to the training data based on factors inherent in the test suite, prioritizing the test cases according to 

performance evaluation. The proposed algorithm, begins with data collection, including regression and edge test 

cases, followed by generating test cases using combinatorial test design as shown in Fig.1. Pre-processing the data 

involves structuring 664 attributes across 12 columns for clustering. Next, the data is split into 80% for training and 

20% for testing, after which the K-Means clustering algorithm groups the test cases based on Clustering Criteria 

(CC attributes), such as accuracy, precision, recall, and F1-score. These metrics are critical for evaluating clustering 

effectiveness and ensuring optimized grouping of test cases for enhanced testing efficiency.  

The methodology involves the publicly available N_BaIoT dataset, taken from Kaggle to further enhance analysis 

and then estimate the potential for automating intrusion detection in IoT networks. Four releases of test cases for 

AuthZ microservices are utilized in this study as test data to validate the proof of concept. AuthZ, an authorization 

microservice within the HP Cloud Print Platform, is specifically implemented using the OAuth2 standard. While 

OAuth2 is a general protocol for authorization, AuthZ represents a tailored application of this protocol, designed to 

manage access control across systems and microservices. Currently, testing of selected tests happens in the HP 

Cloud Print Platform. This process will be followed by a release manifest, versioned items, configuration settings, 

and descriptions of issues in each release, using tools such as managing the projects in JIRA, a Service 

Functionality Mapping File for reporting impacted functionalities, and Test Rail for test management. The SME will 

refer to the manifest of the release, refer to the reports in JIRA for stories and bugs, and then use the functionality 

mapping to determine the affected areas. The SME then selects the appropriate test cases from Test Rail by using 

Test case 

dataset 

Data Processing: 

664 records and 

12 columns  

 

Prediction for test 

suites 

 

Data Splitting 

Training Data (80%) 

 

Testing Data (20%) 

  

Train through Clustering 

Algorithm  
K-Mean Clustering 

method 

 

Formulated Test 

suite  
Prioritize Order 

of Test Case 

Performance 

Evaluate 

 



190  

 
 

Sanjay Sharma et al. / J INFORM SYSTEMS ENG, 10(3s) 

the data available and aggregated. The dataset includes columns such as unique identifiers for each record, release 

IDs, test case types, descriptions, error-prone test cases, automation status, defects, JIRA bug IDs, bug 

descriptions, GIT commit messages, and binary classifications for selecting test cases. 

RESULTS AND DISCUSSION 

The machine learning model was trained on Google Colab using TensorFlow and Keras, with 80% of the dataset for 

training and 20% for testing. It trained for over 100 epochs using the Adam optimizer with a 0.0001 learning rate 

on a Tesla P100-PCIE GPU. The main contributions of this work include investigating the efficiency of clustering 

algorithms for test case minimization and demonstrating the effectiveness of K-Mean Clustering in identifying 

Centroids using the Silhouette Visualizer. It also provides key parameter values for achieving high detection 

accuracy with K-Means. Additionally, the research advances the implementation of the K-Mean algorithm using 

Google TensorFlow and Python. The heat-map given in Fig.2 plots the correlation matrix for a set of variables. In 

this matrix, each cell is the correlation coefficient between two different variables. These coefficients range from -1 

(dark blue) for a strong negative correlation to 1, which represents a strong positive correlation, bright green and 

yellow. The diagonal is all perfect correlations at 1, as any variable is perfectly correlated with itself. Important 

correlations comprise a strong negative correlation of Id and ReleaseID (-0.97), a moderate positive correlation 

between Type of Test Case and Any Defect (0.26) and between Automation Status and Error Prone Test Cases 

(0.30). 

 

Fig.2: Correlation heat map for evaluating accuracy, sensitivity, and specificity in test case minimization 

The correlation heatmap, highlighting relationships that suggest SMEs/Test Engineers may not currently be 

considering certain features or columns when selecting test cases. However, we strongly recommend that these 

features be taken into account, as they directly or indirectly influence release and qualification cycles.This research 

work emphasizes the improvement of test case minimization accuracy by using clustering and classification 

algorithms. Classification algorithms can predict the class labels of new samples and are further divided into both 

binary and multiclass algorithms. Logistic regression, developed by David Cox, gives output between 0 and 1 using 

a sigmoid function but fails to perform well when the data is noisy. On the other hand, the Gaussian Naive Bayes 

classifier is fast, accurate, and effective in the case of large datasets. It can effectively deal with noise and missing 

data. Both these models are very important in optimization to make a suitable choice of test cases to enhance the 



191  

 
 

Sanjay Sharma et al. / J INFORM SYSTEMS ENG, 10(3s) 

performance of the system.The Multinomial Naive Bayes classifier is a probabilistic learning algorithm commonly 

used in Natural Language Processing (NLP). It predicts the label of a text, such as an email or article, by calculating 

the probability of each possible tag and selecting the one with the highest likelihood. This classifier is particularly 

effective for discrete features, like word counts in text classification, and can also handle fractional counts such as 

tf-idf. Meanwhile, the K-means clustering algorithm is an unsupervised learning model designed to group data into 

k non-overlapping clusters by minimizing the distance between each data point and its corresponding cluster 

centroid. The algorithm begins by initializing random centroids, assigning data points to the closest centroid based 

on a distance metric (typically Euclidean distance), and then updating the centroids by recalculating the mean of 

the data points in each cluster. This process is repeated until cluster assignments stabilize or a set number of 

iterations is reached. K-means is widely used in various fields for its simplicity and effectiveness in identifying 

patterns in data. 

 

Fig 3: K-means Clustering of Test Cases 

 

Fig.4: K-means Clustering with Centroid of Test Cases 

 



192  

 
 

Sanjay Sharma et al. / J INFORM SYSTEMS ENG, 10(3s) 

 

Fig 5: K-means Clustering with Centroid of Test Cases 

In a nutshell, the reason for using K-means clustering is to better select and categorize test cases for testing 

software. In other words, K-means clustering aids in grouping similar test cases through common characteristics, 

hence optimizing the testing process by lessening redundancy and increasing efficiency. The graph in Fig.3 

illustrates an initial clustering of the test cases; data points have been collected together based on their IDs and 

target labels that point to where the clusters lie. Fig. 4 further expands this visualization by overlaying an asterisk 

on top of each centroid and using color-coding in the illustration to better show which clusters are separated and at 

what central point’s they are centred. This describes how the test cases are spread in the clusters and how these 

cluster centres are calculated. Fig. 5 shows the evaluation of clustering performance using silhouette analysis. The 

silhouette plot on the left side computes cohesion vs separation among all clusters with a red dashed line that 

indicates the average silhouette score, indicating the general quality of the cluster. To the right, the clustered data is 

shown in feature space, how clusters of test cases are spatially organized relative to their centroids. These figures 

together portray the application and effectiveness of K-means clustering in organizing as well as improving the 

choice of test cases in the testing of software. Table 2 reports accuracy, precision, recall, F1 score, and support for 

four algorithms: Logistic Regression, Gaussian Naive Bayes, Multinomial Naive Bayes, and K-Means Clustering. 

These metrics can help to understand the efficiency and reliability of each algorithm with respect to test case 

classification and clustering. 

Table 2: Performance Metrics for Various Algorithms 

Algorithm Accuracy Precision 

(Weighted 

Avg) 

Recall 

(Weighted 

Avg) 

F1 Score 

(Weighted 

Avg) 

Support 

Logistic 

Regression 

0.84 0.84 0.84 0.84 133 

Gaussian 

Naive Bayes 

0.78 0.88 0.78 0.80 133 

Multinomial 

Naive Bayes 

0.78 0.88 0.78 0.80 133 

K-Means 

Clustering 

1.00 1.00 1.00 1.00 6 

 



193  

 
 

Sanjay Sharma et al. / J INFORM SYSTEMS ENG, 10(3s) 

 

Fig 6: Accuracy Comparison of Classification and Clustering Models 

 

Fig. 7: Comparing Classification and Clustering Models regarding Precision  

 

Fig. 8: Comparison of Recall and F1 Score (Weighted Average) Across Different Models 

The accuracy of four distinct models—Gaussian Naive Bayes, Multinomial Naive Bayes, K-Means Clustering, and 

Logistic Regression—is shown in Figure 6. The K-Means Clustering algorithm is the model that performs the best 

out of all of them, exceeding the others by a significant margin with 100% accuracy. Then comes 84% accurate 

Logistic Regression, and 78% accurate Gaussian and Multinomial Naive Bayes models. The outstanding results of 

8
4

7
8

7
8

1
0

0

LO G IS T I C  

R E G R E S S IO N

G A U S S I A N  

N A IV E  B A Y E S

M U LT IN O M I A L  

N A IV E  B A Y E S

K - M E A N S  

C LU S T E R IN G

A
C

C
U

R
A

C
Y

 O
F

 M
O

D
E

L
S

MODELS

75 80 85 90 95 100 105

Logistic Regression

Gaussian Naive Bayes

Multinomial Naive Bayes

K-Means Clustering

Avg. Precision 

M
o

d
el

s

0

20

40

60

80

100

Logistic

Regression

Gaussian

Naive Bayes

Multinomial

Naive Bayes

K-Means

Clustering

V
al

u
es

Various Models Recall (Weighted Avg)

F1 Score (Weighted Avg)



194  

 
 

Sanjay Sharma et al. / J INFORM SYSTEMS ENG, 10(3s) 

K-Means Clustering indicate that it is a useful method for classifying the provided test cases in this 

circumstance. Four models whose weighted average precision is compared in Fig. 7. With an exceptional precision 

of 100%, the K-Means Clustering model demonstrates its exceptional capacity to accurately detect real positives 

while minimizing false positives. About 88% is the precision of the Multinomial Naive Bayes model, and 88% is the 

precision of the Gaussian Naive Bayes model. With a precision score of approximately 84%, Logistic Regression is 

the least precise model studied. It appears from this that the K-Means Clustering model is the most accurate for this 

specific task, while the Naive Bayes models work well but are a little less precise than K-Means.The recall and F1 

score (weighted average) of four models are contrasted in Fig. 8. With 100% perfect ratings for both recall and F1 

score, K-Means Clustering is the best performer. With recall close to 78% and F1 scores around 80%, Gaussian and 

Multinomial Naive Bayes perform similarly to Logistic Regression, which likewise performs well with about 84% for 

both measures. The most successful model overall is K-Means, which is followed by the Naive Bayes and Logistic 

Regression models. 

CONCLUSION 

This study introduced and tested a clustering-based approach based on k-means for clustering, with the aim of 

enhancing the efficiency of the test case minimization which becomes critical in optimized software testing. Most 

traditional methods have been unable to scale with modern systems, which often are heterogeneous and dynamic, 

but our approach meets these requirements: by putting together similar test cases into their respective clusters, we 

managed to remove redundancy whilst ensuring maximum functionality coverage of the software. This approach 

came with several major benefits: It reduced time consumption for testing, lowered resource usage, saved costs, 

and provided better detection of faults. Decreased test cases with quality meant reduced execution time and 

consumption of resources without affecting the quality of the testing process. Moreover, the heterogeneity in the 

clusters also assured that despite reducing the number of test cases, critical application aspects of the software were 

tested time and again. All test cases found by the k-means clustering were able to identify most software defects; 

hence, this method has great application in large-scale projects. Overall, the k-means clustering based test case 

minimization algorithm gives a very practical and efficient manner to optimize the process of software testing. 

REFERENCES 

[1] Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE access, 8, 80716-

80727. 

[2] Minh, H. L., Sang-To, T., Wahab, M. A., &Cuong-Le, T. (2022). A new metaheuristic optimization based on 

K-means clustering algorithm and its application to structural damage identification. Knowledge-Based 

Systems, 251, 109189. 

[3] Chen, J., Zhu, L., Chen, T. Y., Towey, D., Kuo, F. C., Huang, R., & Guo, Y. (2018). Test case prioritization for 

object-oriented software: An adaptive random sequence approach based on clustering. Journal of Systems 

and Software, 135, 107-125. 

[4] Ran, X., Zhou, X., Lei, M., Tepsan, W., & Deng, W. (2021). A novel k-means clustering algorithm with a 

noise algorithm for capturing urban hotspots. Applied Sciences, 11(23), 11202. 

[5] Ismkhan, H. (2018). Ik-means−+: An iterative clustering algorithm based on an enhanced version of the k-

means. Pattern Recognition, 79, 402-413. 

[6] Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., &Satoto, B. D. (2018, April). Integration k-means 

clustering method and elbow method for identification of the best customer profile cluster. In IOP 

conference series: materials science and engineering (Vol. 336, p. 012017). IOP Publishing. 

[7] Ali, I., Rehman, A. U., Khan, D. M., Khan, Z., Shafiq, M., & Choi, J. G. (2022). Model selection using K-

means clustering algorithm for the symmetrical segmentation of remote sensing 

datasets. Symmetry, 14(6), 1149. 

[8] Jain, M., Kaur, G., & Saxena, V. (2022). A K-Means clustering and SVM based hybrid concept drift 

detection technique for network anomaly detection. Expert Systems with Applications, 193, 116510. 

[9] Saputra, D. M., Saputra, D., &Oswari, L. D. (2020, May). Effect of distance metrics in determining k-value 

in k-means clustering using elbow and silhouette method. In Sriwijaya international conference on 

information technology and its applications (SICONIAN 2019) (pp. 341-346). Atlantis Press. 

[10] Fränti, P., &Sieranoja, S. (2019). How much can k-means be improved by using better initialization and 

repeats?. Pattern Recognition, 93, 95-112. 



195  

 
 

Sanjay Sharma et al. / J INFORM SYSTEMS ENG, 10(3s) 

[11] Vankayalapati, R., Ghutugade, K. B., Vannapuram, R., & Prasanna, B. P. S. (2021). K-Means algorithm for 

clustering of learners performance levels using machine learning techniques. Rev. 

d'IntelligenceArtif., 35(1), 99-104. 

[12] Abbas, S. A., Aslam, A., Rehman, A. U., Abbasi, W. A., Arif, S., & Kazmi, S. Z. H. (2020). K-means and k-

medoids: Cluster analysis on birth data collected in city Muzaffarabad, Kashmir. IEEE Access, 8, 151847-

151855. 

[13] Xu, Z., Shen, D., Nie, T., Kou, Y., Yin, N., & Han, X. (2021). A cluster-based oversampling algorithm 

combining SMOTE and k-means for imbalanced medical data. Information Sciences, 572, 574-589. 

[14] Liu, X., Zhu, X., Li, M., Wang, L., Zhu, E., Liu, T., ... & Gao, W. (2019). Multiple kernel $ k $ k-means with 

incomplete kernels. IEEE transactions on pattern analysis and machine intelligence, 42(5), 1191-1204. 

[15] Nguyen, H., Bui, X. N., Tran, Q. H., & Mai, N. L. (2019). A new soft computing model for estimating and 

controlling blast-produced ground vibration based on hierarchical K-means clustering and cubist 

algorithms. Applied Soft Computing, 77, 376-386. 

[16] Fard, M. M., Thonet, T., &Gaussier, E. (2020). Deep k-means: Jointly clustering with k-means and learning 

representations. Pattern Recognition Letters, 138, 185-192. 

[17] Hussain, S. F., &Haris, M. (2019). A k-means based co-clustering (kCC) algorithm for sparse, high 

dimensional data. Expert Systems with Applications, 118, 20-34. 

[18] Nagy, S. M., Maghawry, H. A., & Badr, N. L. (2023). An Enhanced Approach for Test Suite Reduction Using 

Clustering and Genetic Algorithms. Journal of Theoretical and Applied Information Technology (Jatit). 

[19] Pan, R., Ghaleb, T. A., & Briand, L. (2023, May). Atm: Black-box test case minimization based on test code 

similarity and evolutionary search. In 2023 IEEE/ACM 45th International Conference on Software 

Engineering (ICSE) (pp. 1700-1711). IEEE. 

[20] Wang, X., & Zhang, S. (2024). Cluster-based adaptive test case prioritization. Information and Software 

Technology, 165, 107339. 

[21] Vo, H. D., & Nguyen, T. T. (2024). CLUE: A CLUSTERING-BASED TEST REDUCTION APPROACH FOR 

SOFTWARE PRODUCT LINES. Journal of Computer Science and Cybernetics, 40(2), 165-185. 

[22] Santhosh Kumar, S. V. N., Palanichamy, Y., Selvi, M., Ganapathy, S., Kannan, A., & Perumal, S. P. (2021). 

Energy efficient secured K means based unequal fuzzy clustering algorithm for efficient reprogramming in 

wireless sensor networks. Wireless Networks, 27, 3873-3894. 

[23] Yao, Y., Li, Y., Jiang, B., & Chen, H. (2020). Multiple kernel k-means clustering by selecting representative 

kernels. IEEE Transactions on Neural Networks and Learning Systems, 32(11), 4983-4996. 

[24] Moubayed, A., Injadat, M., Shami, A., &Lutfiyya, H. (2020). Student engagement level in an e-learning 

environment: Clustering using k-means. American Journal of Distance Education, 34(2), 137-156. 

 

 

 


