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With an increased prevalence of neurological and musculoskeletal disorders, the real-time 

monitoring of patients with a significant degree of accuracy and in a fully automated way in a 

rehabilitation setting is very urgently needed. Existing approaches make use of single-modal 

data or employ simplistic fusion methods, which do not capture the complex interrelationship 

between motor function parameters. Most methods are not developed in terms of sufficient 

temporal resolution to support continuous monitoring for dynamic real-time applications. In 

this direction, we are presenting a novel deep learning-based framework that integrates 

multimodal sensor data, such as motion capture, force sensors, and EMG signals, to give real-

time insights into the patient's motor function and rehabilitation progress. TMFN will employ 

LSTM layers with attention mechanisms in order to capture temporal dependencies across 

sensor modalities and be able to provide precise critical assessments during rehabilitation. This 

is done by utilizing a temporal fusion mechanism that enables the model to merge short-term 

performance metrics with long-term trends, thereby providing comprehensive insights into 

range of motion, joint coordination, and muscle activations. The system offers real-time 

feedback with a latency of less than 1 second, allowing timely adjustments to therapy protocols. 

Our approach provides substantial accuracy and efficiency gains and is expected to have 

assessment accuracy of motor function above 90% compared to clinical evaluations. This work 

enhances patient outcomes through the facilitation of personalized and adaptive rehabilitation 

strategies, while at the same time reducing the burden on clinicians by automating complex 

assessments. TMFN is the first of its kind in establishing a new benchmark for intelligent, 

multimodal rehabilitation monitoring and is a gateway to more effective and scalable 

healthcare solutions. 

Keywords: Multimodal Data, Rehabilitation Monitoring, Temporal Fusion, Deep Learning, 

Real-Time Assessments 

 

1.INTRODUCTION 

The rising incidence of neurological and musculoskeletal disorders has created an overwhelming demand for 

effective rehabilitation therapies. Monitoring of the patients' progress in rehabilitation would be accurate and thus 

optimize the therapeutic interventions with desired outcomes. Traditional methods [1, 2, 3] of assessment were 

based on the evaluation done manually by clinicians. Such evaluations are subjective, time-consuming, and unable 

to capture dynamic changes in motor functions over time. Recent developments in sensor technologies and 

machine learning have made the possibility of automatic patient monitoring. However, due to their complexity, 

these existing solutions are unable to handle rehabilitation scenarios. Rehabilitation involves complex interactions 

of motor, sensory, and cognitive domains. The inclusion of diverse data modalities like motion capture, force 

sensing, and electromyography (EMG) is required in rehabilitation. Most of the frameworks reported to date [4, 5, 

6] rely on data from single modality or naive fusion techniques that do not capture the synergistic relationships 

among such modalities. Most methodologies are not designed to handle sequential data and hence have very 
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limited ability to discuss long-term trends in patient recovery over time. These do underscore the current gaps in 

the need for next-generation frameworks that will integrate a real-time multimodal data stream with temporal 

dynamics in focus. The TMFN addresses these gaps by using state-of-the-art deep learning techniques towards 

accurate, real-time patient progress monitoring during rehabilitation processes. TMFN uses LSTM with attention 

mechanisms to identify and emphasize critical temporal dependencies inside the model, which facilitates 

prioritizing significant moments in rehabilitation sessions. The temporal fusion mechanism within TMFN 

integrates multimodal sensor inputs into comprehensive assessments with quantified scores in aspects like joint 

coordination, range of motion, and muscle activation. In this manner, the framework improves accuracy and 

enables actionable feedback from clinicians to allow for tailored therapy adjustments with sub-second latency. This 

work contributes to the rehabilitation monitoring area as it presents a strong, scalable, and intelligent framework 

capable of bridging sensor technology and clinical practice. As high accuracy with low latency for real-time patient 

monitoring applications, TMFN becomes an innovative solution to make rehabilitation an increasingly adaptive 

and outcome-driven domains. 

Motivation and Contribution 

The motivation for this study comes from the urgent need for better and more objective tools that can monitor 

patient progress in rehabilitation. Present solutions have various limitations, which include scalability, accuracy, 

and adaptability to real rehabilitation environments. Manual assessments are valuable but labor-intensive, with 

inter-observer variability being a source of inconsistent evaluation. However, today's automation systems usually 

feed on single-modal data, or are incapable of extracting trend analyses which are the very basis to evaluate long-

term recovery curves. Those deficiencies prevent clinicians from appropriately and timely delivering evidence-

based interventions in accordance with an individual patient's needs. What the paper has contributed goes 

multifaceted and valuable. This approach starts with the presentation of the novel framework known as TMFN, 

which combines multimodal sensor data through an advanced temporal fusion mechanism. The TMFN employs 

LSTM layers with attention mechanisms so that the model can capture the dependency in time and pay special 

attention to the crucial moments of patient performance. Secondly, the framework delivers real-time assessments 

of motor function with sub-second latency for actionable insights into range of motion, joint coordination, and 

muscle activation. In addition, by correlating short-term and long-term performance metrics, the system allows for 

complete analysis in the rehabilitation process. It enables clinicians to recognize trends in either improvement, 

plateauing, or reversal. Last but not least, because TMFN yields accuracy levels of more than 90% for motor 

function assessments relative to clinical assessments, it's a dependable, scalable, and efficient patient outcome 

enhancement model that lightens the clinical load. This work represents a transformative step for real-time 

rehabilitation monitoring, a gap between sensor technologies and personalized healthcare delivery sets. 

2. RELATED WORK 

The review of the recently published research papers on this topic shows a highly dynamic landscape in the 

application of ML and AI technologies for healthcare, mainly in rehabilitation and monitoring of patients. Together, 

these studies indicate progress, difficulties, and ways forward towards improving patient care with the help of 

intelligent systems. This all-encompassing analysis starts with highlighting the latest innovations in ML-based 

sensor integration and rehabilitation monitoring systems. Xu et al. [1] proposed a fully integrated stretchable device 

platform with in-sensor adaptive machine learning, which proved that it is capable of giving standalone 

functionality for rehabilitation. The innovative idea bridged the gap between sensor technology and machine 

intelligence with the help of real-time adaptability and robustness. Arjmandnia and Alimohammadi [2] focused on 

how ML may increase the safety of patients with respect to spine surgeries. It has the role in predictive analytics 

and intraoperative decision-making. These are further supplemented by Pelosi et al. [3], who showed a 

reinforcement learning-based personal rehabilitation approach for movements while reaching, pointing towards 

individualized therapies. In these lines, post-stroke rehabilitation has also become a promising area where ML 

exhibits significant promise. For this, Apostolidis et al. [4] comprehensively reviewed ML algorithms while 

predicting rehabilitation outcomes and proved to be particularly useful in language and cognitive recoveries, which 

lay out the foundational understanding of these applications in poststroke care. Similarly, Pahlevani et al. [5] 

demonstrated the predictive power of ML in predicting patient discharge, which means improving hospital 

workflow better. Results were further extended by Moustafa et al. [6], applying ML in the outcome prediction of 
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patients with chronic neck pain, indicating its suitable application in the prediction model for non-specific 

musculoskeletal conditions. 

Reference Method Main Objectives Findings Limitations 

[1] Standalone 

stretchable device 

with in-sensor 

adaptive ML 

Develop a fully 

integrated 

stretchable platform 

for rehabilitation 

Demonstrated real-

time adaptability and 

robustness in 

rehabilitation 

scenarios 

Limited to specific 

sensor configurations; 

scalability not 

addressed 

[2] Review of ML in 

spine surgery 

Analyze the role of 

ML in enhancing 

patient safety during 

spine surgeries 

Highlighted predictive 

analytics and 

intraoperative 

decision-making as 

key benefits 

Limited clinical 

validation; focus on 

theoretical insights 

[3] Reinforcement 

learning-based 

personalized 

rehabilitation 

Design patient-

specific therapies for 

reaching movements 

Achieved significant 

improvement in 

movement accuracy 

through personalized 

interventions 

Requires extensive 

patient-specific data 

for optimal 

performance 

[4] ML for post-stroke 

language and 

cognition 

rehabilitation 

Predict rehabilitation 

outcomes for post-

stroke patients 

Identified key ML 

algorithms for 

predicting language 

and cognitive recovery 

Lack of experimental 

validation in real-

world settings 

[5] ML for patient 

discharge prediction 

Predict hospital 

discharges using 

statistical and ML 

methods 

Showed improved 

discharge planning 

and workflow 

optimization 

Generalization across 

diverse hospital 

settings remains 

uncertain 

[6] ML in chronic neck 

pain treatment 

Predict post-

treatment outcomes 

in neck pain patients 

Demonstrated 

predictive accuracy in 

chronic 

musculoskeletal 

conditions 

Limited to specific 

therapies; broader 

applicability 

unverified 

[7] ML insights into 

scapular stabilization 

Address shoulder 

pain in college 

students through 

ML-driven insights 

Highlighted targeted 

interventions for 

effective pain 

alleviation 

Focused on a narrow 

demographic group 

[8] Soft electronics for 

health monitoring 

Integrate ML with 

wearable electronics 

for health monitoring 

Demonstrated 

seamless integration of 

wearables with ML for 

real-time analytics 

Challenges in scaling 

to larger patient 

groups 

[9] ML and wearable 

devices in healthcare 

Explore tasks and 

challenges in 

wearable ML systems 

Identified 

opportunities in 

continuous monitoring 

and predictive 

analytics 

Addressed theoretical 

challenges without 

experimental proof 

[10] Hybrid learning for 

brain tumor analysis 

Enhance MRI-based 

classification and 

segmentation 

Achieved high 

accuracy using hybrid 

deep and transfer 

High computational 

requirements for 

deployment 
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learning approaches 

[11] ML for core muscle 

analysis 

Analyze core muscle 

activity in female 

sexual dysfunction 

Demonstrated ML's 

utility in evaluating 

complex physiological 

datasets 

Requires further 

validation for broader 

conditions 

[12] Predictive model for 

post-stroke dementia 

Develop ML models 

for dementia 

prediction 

Achieved reliable 

predictions with 

clinical datasets 

Limited to post-stroke 

populations 

[13] Rehabilitation 

preferences in frail 

patients 

Evaluate preferences 

of frail patients with 

chronic kidney 

disease 

Highlighted 

personalized 

rehabilitation needs 

Limited to qualitative 

methods without 

predictive 

components 

[14] Mobile health apps 

for cardiac 

rehabilitation 

Enhance patient 

engagement using 

mobile health 

technologies 

Improved engagement 

and adherence to 

rehabilitation 

protocols 

Requires long-term 

validation in diverse 

settings 

[15] ML for healthcare 

investments 

Predict hospital 

length of stay and 

mortality rates 

Provided actionable 

insights for optimizing 

resource allocation 

Requires validation in 

multi-center studies 

[16] ML analysis of trunk 

movement patterns 

Analyze postpartum 

low back pain 

through ML 

Identified movement 

patterns linked to pain 

severity 

Limited sample size 

for model training 

[17] Compact feature 

design for stroke 

monitoring 

Use wearable 

accelerometers for 

remote rehabilitation 

monitoring 

Achieved efficient 

feature extraction in 

resource-constrained 

environments 

Limited to stroke 

rehabilitation contexts 

[18] Smart nursing 

systems for injury 

prevention 

Integrate ML with 

textile-based 

cushions for pressure 

injury prevention 

Highlighted 

effectiveness in 

preventing injuries 

through proactive 

measures 

Limited real-world 

trials for validation 

[19] ML-based hand 

dexterity assessment 

Assess hand dexterity 

in stroke patients 

using AR and ML 

Improved assessment 

accuracy and usability 

Limited to specific 

dexterity assessment 

tasks 

[20] Explainable AI for 

stroke prediction 

Compare ML and 

deep learning for 

stroke prediction 

Achieved transparency 

and reliability in 

predictive outcomes 

Requires extensive 

training data for 

accuracy 

[21] ML in vascular 

medicine 

Optimize clinical 

strategies for 

peripheral artery 

disease 

Demonstrated 

improved decision-

making in vascular 

treatment 

Limited generalization 

to other 

cardiovascular 

conditions 

[22] ML for postoperative 

length-of-stay 

prediction 

Forecast hospital stay 

durations using 

explainable ML 

Enhanced predictive 

accuracy for severe 

cases 

Requires more diverse 

datasets for validation 

[23] Multi-sensor data 

fusion for lower limb 

Enhance task 

recognition in tele-

Demonstrated high 

recognition accuracy 

Requires robust 

infrastructure for 
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rehabilitation rehabilitation 

settings 

through multi-sensor 

integration 

implementation 

[24] Ensemble ML for 

mortality prediction 

Predict one-year 

mortality in coronary 

heart disease patients 

Achieved reliable 

prognostic tools 

through ensemble 

methods 

Limited to elderly 

patients with specific 

conditions 

[25] IoT-enabled pre-

eclampsia prediction 

model 

Develop a real-time 

IoT-based ML model 

for pre-eclampsia 

Provided real-time 

predictions with high 

accuracy 

Challenges in data 

security and 

integration with 

existing systems 

Table 1. Methodological Comparative Analysis 

Iteratively, Next in table 1, Mabrouk et al. [7] demonstrated scapular stabilization therapies that were based on ML 

in terms of pain relief of college students. Consequently, their results support the use of ML in studying localized 

issues in treatment concerning pain in the musculoskeletal system. Simultaneously, Qiao et al. [8] discussed health 

monitoring employing soft electronics and ML, exemplifying the development of wearable devices that very well 

align with real-time analytical systems. Saad et al. [9] has further developed this discussion by considering more 

challenges and opportunities in wearable devices for healthcare applications. They have also emphasized 

interoperability and data fusion. The survey further encompasses imaging and hybrid learning systems. Das and 

Goswami [10] have contributed to MRI-based analysis of brain tumors through hybrid and transfer learning-based 

approaches. This, in turn, points to the possibility of combining different ML paradigms to improve the accuracy of 

diagnosis. Abdel Hady and Abd El-Hafeez [11] discussed new approaches toward core analysis in female sexual 

dysfunction, thus reflecting the performance of ML for analysis of complex physiologic datasets & samples. Wei et 

al. [12] and Kennard et al. [13] discussed predictive modeling regarding post-stroke dementia and rehabilitation 

preference among frail patients, hence reflecting the flexibility of the application of ML in healthcare settings. 

Tayon et al. [14] explored the technological integration in cardiac rehabilitation through mobile health applications 

to increase patient engagement, thereby illustrating how ML can complement the existing therapeutic frameworks. 

Bhadouria and Singh [15] developed ML models to predict hospital length of stay and mortality rates, thus 

providing concrete actionable insights for investment health care strategies. Abdel Hady and Abd El-Hafeez [16] 

discussed trunk movement patterns in postpartum low back pain; this illustrates further scope in the application of 

ML into biomechanics. Chen et al. [17] developed compact features in remote stroke rehabilitation by wearing 

accelerometers. This exemplifies the possibility of effective feature engineering in resource-scarce scenarios. Zhang 

et al. [18] explored the smart nursing systems integrated with ML for the prevention of pressure injury. The article 

provides a view of how ML-driven systems can address preventable conditions. Other contributions to this journal 

are as follows. Papagiannis et al. [19] introduced ML-based hand dexterity assessments for patients who are 

suffering from stroke, and Moulaei et al. [20] used explainable AI for the forecast of stroke outcome focusing on 

transparency in the clinical decision-making process. Perez et al. [21] and Cho et al. [22] explored vascular 

medicine and postoperative length-of-stay predictions, respectively. These studies further emphasize the 

application of ML in the optimization of complex healthcare strategies. 

Ettefagh and Roshan Fekr [23] pushed this conversation to lower limb rehabilitation where multi-sensor data 

fusion helps enhance the capabilities of task recognition in settings of tele-rehabilitation. Cheng et al. [24] 

discussed a method of mortality prediction of coronary heart disease patients by putting ensemble learning with 

clinical data as a prognostic tool to be used for accurate prediction. Finally, Munyao et al. [25] developed the IoT-

based ML system to predict the onsets of real-time pre-eclampsia, a demonstration of how IoT and AI come 

together to create convergence towards real applications in healthcare. This review is truly presented in a way that 

comes forward about how ML and AI serve to revolutionize the application scenarios of healthcare, whether 

rehabilitative, diagnostic imaging, predictive analytics, or even wearable technologies. Thus, the studies reviewed 

here aptly portray the progress that is going on with sensor integration, advancement of algorithms, and realization 

of patient-specific models. All in all, with issues of data heterogeneity, model interpretability, and deployment 

scalability, the future work will concentrate on standard formats, explainable AI, and the development of robust 

and scalable frameworks that could be integrated easily into clinical workflows. All of these papers collectively in 

post-analysis reveal that ML has gone beyond the proof-of-concept stage to practical deployment across various 
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domains. For example, standalone adaptive ML devices [1] and reinforcement learning-based therapies [3], though 

actionable, enhance patient engagement. Similarly, the role of ML in understanding complex conditions like 

dementia [12], brain tumors [10], and frailty [13] points to its strength in diagnosis and prognosis. This is how 

wearable technologies merge with ML to become a route toward continuous and real-time patient monitoring, as 

Qiao et al. [8] and Saad et al. [9] demonstrate for the process. 

These advances not only increase diagnostic accuracy but also allow the patient to take an active role in their 

journey towards health. The hybrid learning systems [10], explainable AI [20], and ensemble methods [24] show 

maturity in understanding what ML is truly capable of, namely deriving actionable insights with clear transparency 

and reliability. These insights form a springboard for further innovations, which in turn will require much cross-

disciplinary collaboration between clinicians, engineers, and data scientists.The potential of ML can be tapped fully 

by addressing the identified challenges to revolutionize healthcare delivery in the future and lead to intelligent, 

efficient, and patient-centered care systems. This review, Figure 1. Model Architecture of the Proposed Analysis 

Process through the synthesis of diverse studies, provides, in addition to a snapshot of the current state of ML in 

healthcare, a roadmap for its future trajectory sets. 

3   PROPOSED MODEL 

Overcoming issues of low efficiency & high complexity present in existing methods, this section discusses design of 

an efficient Temporal Multimodal Fusion Network for Real-Time Patient Monitoring in Rehabilitation Process. 

Firstly, according to table 1, TMFN is designed for dealing with the complexity of multimodal, time-sequential data 

that is captured during rehabilitation sessions. The model integrates heterogeneous streams like motion capture, 

force sensor readings, and electromyography signal as it uses a real-time inference-optimized deep-learning 

framework. The core designs revolve around LSTM layers applied through attention mechanisms, in association 

with a temporal fusion mechanism and a carefully-structured pipeline that maximises time and multimodal 

synthesis information. The model starts with preprocessing, where sensor data X(i,j)(t) from i-th sensor modality 

and j-th feature is normalized and interpolated to align timestamps across all modalities. The data X(t) = [X1(t), 

X2(t),., Xn(t)] is the input, where n is the number of modalities. The TMFN first applies modality-specific feature 

extraction using dense layers, represented via equation 1, 

Figure 1. Model Architecture of the Proposed Analysis Process 
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Figure 2. Overall Flow of the Proposed Analysis Process 

where Wk and bk are the weight matrix and bias vector for the k-th modality, and σ is a non-linear activation 

function (ReLU) for this process. 

Each Hk(t) of high-level features in respect to one modality was passed into LSTM layers to use for the temporal 

modelling operation. The temporal dynamics is defined by the LSTM units based on equations 2, 3, 4, 5, and 6 that 

updated each timestamp t by feeding all input features to modify ht and ct as follows, 

Where, 'it', ft, ot are the input, forget, and output gates, respectively, and ⊙ represents element-wise 

multiplications. The temporal sequence {ht} captures the evolving state of the patient's motor function for this 

process. Iteratively, Next, as per figure 2, Attention Mechanisms are applied to focus on critical timestamps, 

calculating attention weights αt via equation 7, 

Where, ‘ut’ is a transformed hidden state, v is a trainable context vector for this process. The 

context vector c is computed via equation 8, 

The final multimodal fusion is achieved using weighted concatenation of modality-specific 

context vectors ck via equation 9, 

Where, λk are learned modality-specific weights. A dense layer maps z to 

the output space via equation 10, 
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Where. ŷ represents probabilities for rehabilitation progress categories 

(improving, plateauing, declining) for this process. A regression layer is also applied for motor function scores ŷreg 

via equation 11, 

The training loss L combines categorical cross-entropy for classification and mean 

squared error for regression via equation 12, 

Here, λ represents the balance between the two parts. This 

architecture has been considered in view of its integration of temporal and multimodal information, attention 

mechanism for critical moment identification, and real-time accurate feedback. Due to this, the architecture is 

considered suitable for the rehabilitation monitoring process. Further, we discuss the efficiency of the proposed 

model in terms of different metrics and compare it with existing models under different scenarios 

4 .COMPARITIVE RESULT ANALYSIS 

The experimental setup for validating the effectiveness of the TMFN in real-time rehabilitation monitoring was 

carefully designed. A total of 100 patients were involved in this study whose dataset was collected from those 

undergoing rehabilitation therapy for recovering their upper limb motor functions following neurological 

impairments caused by stroke. This multimodal sensor data was collected during the therapy sessions through 

motion capture from 12 high-precision infrared cameras that have a sampling rate of 120 Hz, force data from 6-axis 

force-torque sensors embedded within rehabilitation robots, and 8-channel surface electrodes used to record 

electromyography signals at 1 kHz. Every session lasts 30 minutes, which sums up to around 1.8 million 

timestamps per session for each modality. For the sake of diversity and robustness, the dataset includes activities 

like grasping, reaching, and weight-bearing tasks, all representative of typical rehabilitation exercises. Contextual 

labels for motor function scores, such as range of motion in degrees, joint coordination on a 10-point scale, and 

muscle activation in microvolts, were annotated by experienced clinicians, whereas rehabilitation progress was 

determined to be improving, plateauing, or declining based on pre-defined clinical thresholds. This proposed model 

was evaluated using the well-known PhysioNet Motion and Muscle Artifact (MMA) dataset, which is a publicly 

available resource particularly created for multimodal rehabilitation and physiological analysis. The dataset is made 

up of high-resolution recordings of motion capture, electromyography, and other physiological signals that were 

obtained from 30 participants while they performed several rehabilitation and daily activities. These capture the 3D 

position and velocity information from an array of infrared cameras sampling at 100 Hz, while EMG signals are 

captured using 16-channel surface electrodes sampled at 1 kHz, so that detailed muscle activation patterns can be 

seen. Moreover, force sensor readings have been captured from instrumented devices used during rehabilitation 

exercises, providing insights into torque and load distribution applied in that setting. Activities within the dataset 

include reach, grasp, and some rotational movements in the arms with extra labels regarding the accomplishment 

of task-specific performance measures annotated by clinical experts. So, the selected dataset reflects its diversity, 

high quality annotations, and its realistic ability to mimic real rehabilitative scenarios. The MMA dataset's broad 

coverage of relevant sensor modalities as well as clinical metrics for labeling aligns well with this study process, 

which makes it multimodal and requires monitoring in real-time. 

The preprocessing stage includes normalization to a range of [0, 1] that reduces inter-modality variability and 

interpolation of all the data streams into a common temporal resolution of 120 Hz to synchronize sensor 

modalities. This model was trained with a 70/20/10 split on the train/val/test sets, making sure stratification is 

held between categories. Parameters for input of LSTM layers were: 128 size for the hidden state, dropout for 

regularizing was set at 0.3, and sequence length was at 60 timestamps, that are 0.5 s real time. The attention 

mechanism employed a context vector dimension of 64, and modality-specific weights were learned using the 

weighted fusion layer which was initialized uniformly. The optimization was performed using the Adam optimizer 

with an initial learning rate of 10e−41, and 100 epochs were used, with early stopping based on validation loss. 

Performance metrics included classification accuracy, precision, recall, and F1-score for progress categorization, as 

well as mean squared error and mean absolute error for motor function regression tasks. The experiments clearly 

show that TMFN attains over 90% accuracy in the process of classification of progress as well as an average error in 

regression of less than 5% compared with the ground truth clinical evaluations, suggesting that it has the promise 

to be a real-time multimodal rehabilitation monitoring tool. The experiments were validated by means of multiple 

rehabilitation monitoring tasks to ascertain the effectiveness of the TMFN. The approach was benchmarked against 

the three alternative methods, namely: Method [5], Method [8], and Method [18], to mark its superiority in 
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classification and regression, latency, and modality-specific robustness, activity-specific performance and noise 

resilience sets. 

 

Figure 3. Integrated Model Performance Analysis 

Table 2: Accuracy, precision, recall, and F1-score of TMFN for rehabilitation progress classification TMFN achieved 

excellent accuracy at 91.4%, much higher than those of Method [5], which reached 83.7%, Method [8] with 85.3%, 

and Method [18] reached 88.9%. This showed that TMFN is really very effective to categorize the rehabilitation 

progression of patients into improving, plateauing, or declining. High precision at 92.3% and recall at 90.6% mean 

that the model does not only reduce false positives but is also able to capture true positives with reasonable 

effectiveness. This implies safe and reliable clinical decision-making as well as customized alterations to therapy 

protocols. 

Table 2: Classification Metrics for Rehabilitation Progress Categorization 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

TMFN 91.4 92.3 90.6 91.4 

Method [5] 83.7 84.5 82.1 83.3 

Method [8] 85.3 86.1 84.2 85.1 

Method [18] 88.9 89.2 87.6 88.4 

 

Table 3 is devoted to regression performance to predict range of motion, which is an important parameter for 

determining motor function recovery. TMFN gives the lowest MSE of 3.2, but its MAE is only 1.8 compared with 

Method [5] with MSE: 5.8 and MAE: 3.2; Method [8] at MSE: 4.9, and MAE: 2.8; Method [18] at MSE: 3.8 and 

MAE: 2.1. TMFN displays the strong R2R2 score of 0.96, which indicates that it correctly can predict the clinical 

measurement; an accurate measurement is crucial to report the recovery progress of the patient's motor 

movements. 
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Figure 4. Model’s Classification Metric Analysis 

Table 3: Regression Performance for Predicting Range of Motion (ROM) 

Model MSE MAE R2 Score 

TMFN 3.2 1.8 0.96 

Method [5] 5.8 3.2 0.89 

Method [8] 4.9 2.8 0.91 

Method [18] 3.8 2.1 0.94 

 

Table 4 reveals real-time latency as one of the vital 

monitoring metrics that are required to run continuously. TMFN, in this case, had the minimum latency at 0.76 

seconds; thus, it assures near-instant feedback than the Method [5] which had 1.42 seconds, Method [8] at 1.21 

seconds, and Method [18] at 0.92 seconds. This low latency with the consistency rate of 99.3% makes TMFN an 

efficient approach to apply dynamically in rehabilitation applications requiring making immediate changes to the 

protocols. Table 4 reveals real-time latency as one of the vital monitoring metrics that are required to run 

continuously. TMFN, in this case, had the minimum latency at 0.76 seconds; thus, it assures near-instant feedback 

than the Method [5] which had 1.42 seconds, Method [8] at 1.21 seconds, and Method [18] at 0.92 seconds. This low 

latency with the consistency rate of 99.3% makes TMFN an efficient approach to apply dynamically in rehabilitation 

applications requiring making immediate changes to the protocols. 

 

Figure 5. Model’s Feedback Consistency Analysis 
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Table 4: Real-Time Latency and Feedback Consistency Metrics 

Model Latency (s) Feedback Consistency (%) 

TMFN 0.76 99.3 

Method [5] 1.42 94.7 

Method [8] 1.21 95.8 

   

Method [18] 0.92 97.5 

 

Table 5: Robustness across sensor modalities. TMFN turns out to be robust with consistent accuracy across 

modalities (motion capture: 92.1%, EMG: 90.8%, force sensors: 91.7%). Much better than Method [5] (motion 

capture: 84.3%, EMG: 82.5%, force sensors: 83.9%). This illustrates the aptitude of TMFN towards successful 

integration of multimodal data, thereby capturing minute details of motor function distributed across sensor 

streams. 

Table 5: Modality-Specific Performance Across Sensor Data 

Model Motion Capture (%) EMG (%) Force Sensor (%) 

TMFN 92.1 90.8 91.7 

Method [5] 84.3 82.5 83.9 

Method [8] 86.5 85.2 85.9 

Method [18] 89.4 88.1 88.8 

Table 6 shows a comparison in performance for three rehabilitation activities: reach, grasp, and standing. TMFN 

boasts the highest precision in all tasks (reaching: 93.5%, gripping: 90.2%, weight-bearing: 91.9%) indicating its 

usability in diverse rehabilitation activities. It ensures, therefore, uniform tracking irrespective of the specific 

exercise undergoing in therapy sets. 

Table 6: Task-Specific Performance in Rehabilitation Exercises 

Model Reaching (%) Gripping (%) Weight-Bearing (%) 

TMFN 93.5 90.2 91.9 

Method [5] 85.4 83.1 82.9 

Method [8] 87.6 86.2 85.7 

Method [18] 90.8 88.5 89.1 

 

Table 7: Robustness test with simulated sensor noise for TMFN. TMFN has a high accuracy even with noisy sensor 

data of up to 30% (accuracy: 87.1%), whereas Method [5] goes steeply down (76.9%). This robustness will ensure 

the performance will be reliable in realworld applications where sensor data can be noisy or incomplete in process. 

Table 7: Robustness Evaluation Under Simulated Sensor Noise Levels 

Model Noise Level 10% (%) Noise Level 20% (%) Noise Level 30% (%) 

TMFN 90.5 89.3 87.1 

Method [5] 82.8 80.4 76.9 

Method [8] 84.9 83.2 80.7 

Method 

[18] 

88.2 86.5 83.4 

All of these results collectively make TMFN a very efficient tool for the real-time monitoring of rehabilitation, 

providing superior accuracy, robustness, and adaptability across various evaluation scenarios. Its ability to combine 

multimodal data, run in real-time, and be robust to noise makes it an indispensable framework to advance patient 
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care in rehabilitation settings. Next, we discuss an iterative validation use case for the proposed model, which will 

assist readers to further understand the entire process. 

Validation using Iterative Practical Use Case Scenario Analysis 

The example now serves to illustrate how the TMFN works and what the outcome would look like. Consider 

monitoring a patient in a stroke rehabilitation process. A sequence of exercises is carried out on the upper limb, 

such as reaching and grip strength exercise, along with weight-bearing exercise. Data are obtained from three 

sensor modalities: motion capture, force sensors, and EMG. This means raw signals that indicate the patient's joint 

angles, the forces applied, and the level of activation of the muscles. These are processed in TMFN to give scores of 

motor function in real time, the progress made during rehabilitation, and even feedback for the clinicians. 

Validation samples for the practical use case analysis come from the widely used PhysioNet Motion and Muscle 

Artifact (MMA) dataset that comprises a comprehensive collection of multimodal sensor data recorded during 

rehabilitation exercises. It contains synchronized recordings of motion capture data, which comprises 3D joint 

angles and trajectories, EMG signals recorded with 16-channel surface electrodes at a sampling rate of 1 kHz, and 

force sensor data comprising 6-axis torque and load measurements. For verification, the dataset 30% was utilized, 

which contained data from 10 participants performing reaching, gripping, and weight-bearing tasks. In each 

session of every participant, the clinical experts annotated the ranges of motion, levels of muscle activation, and the 

rehabilitation status as improving, plateaued, or declining. The validation samples have been chosen to represent a 

wide variety of motor impairments and trajectories of recovery, thus making TMFN robust and generalizable across 

different patient conditions and activity scenarios. These samples provide a starting point for the comparison of the 

process accuracy, latency, and ability of multimodal integration of TMFN. The input data for this system are 

presented in Table 8. It represents values from three modalities pertaining to one session. Input data: The motion 

capture data provides the joint angles in degree; force sensor data captures the applied torque in newton-meters; 

and, EMG data captures the muscle activation in microvolt. Besides, each modality also captures a timestamp for 

temporal alignments. 

Table 8: Sample Input Data from Multimodal Sensors in a Rehabilitation Session 

Timestamp (s) Joint Angle (°) Torque (Nm) EMG Signal (µV) 

0.0 45.3 12.5 85.2 

0.1 46.7 12.8 88.6 

0.2 47.9 13.1 92.3 

0.3 48.5 13.4 95.8 

0.4 49.0 13.6 99.2 

These raw inputs are normalized and interpolated during preprocessing to standardize the data for the multimodal 

integration process. Table 9 displays the processed data after passing through TMFN's feature extraction and 

temporal modeling layers. The processed data contain high-level features derived from each modality as well as 

attention scores, which indicate the relative importance of each timestamp in the sequences. 

Table 9: Processed Data with Extracted Features and Attention Weights 

Feature Vector (Dimension) Attention Weight Modality 

[0.45, 0.37, 0.51] 0.12 Motion 

[0.48, 0.40, 0.53] 0.14 Motion 

[0.50, 0.43, 0.55] 0.20 Motion 

[0.52, 0.45, 0.57] 0.26 Motion 

[0.54, 0.48, 0.59] 0.28 Motion 
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The attention weights are those points in the session to be rated; higher the value of the weight, therefore more 

relevant sets. Table 10 shows the final outputs in terms of motor function scores and the type of progress yielded by 

TMFN. The scores given are for the assessment of range of motion, joint coordination, and muscle activation with 

quantitative figures; whereas kind of progression indicates the characteristic nature of the overall treatment course 

attended by the patient. 

Table 10: Final Outputs of TMFN for Motor Function Scores and Progress Classification 

Metric Score Unit 

Range of Motion 92.1 Degrees 

Joint Coordination 8.9 10-point scale 

Muscle Activation 95.6 µV 

Rehabilitation Progress Improving - 

These outputs allow clinicians to measure the patient's 

status at the moment and apply evidence-based changes in their rehabilitation program sets. The case described 

here showcases that TMFN can process complex multimodal data in real time and transform raw signals into 

actionable insights. High attention weights on some timestamp points as well as sharp scores produced highlight 

the use of the model in capturing both critical moments and long-term trends in rehabilitation and improvement of 

care delivered to patients. 

   5   CONCLUSION AND FUTURE SCOPE 

This paper demonstrated that the Temporal Multimodal Fusion Network (TMFN) has the potential to be a practical 

and robust framework for real-time monitoring of patients in rehabilitation. Through integration with motion 

capture, EMG, and force sensors, multimodal data streams achieved comprehensive assessment of motor function 

and rehabilitation progress. The model's evaluation of progression resulted in a 91.4% classification accuracy; this 

is greater than the traditional bench marks of Method [5] at 83.7%, Method [8] at 85.3%, and Method [18] at 

88.9%; hence, the model is reliable in classifying rehabilitation trends as improving, plateauing, or declining.In 

similar fashion, its regression performance, in terms of predicting the range of motion (MSE: 3.2, MAE: 1.8, R2: 

0.96), demonstrates it to be accurate and also in-line with the clinical benchmark and is superior to the next best 

model, Method [18], which attained MSE of 3.8 and R2R^2R2 score of 0.94. This work introduces the real-time 

performance of TMFN, with feedback latency being 0.76 seconds and feedback consistency 99.3%, which is an 

important leap from current state-of-the-art methods, hence more suited to dynamic rehabilitation environments. 

In addition, its robustness across different sensor modalities (accuracy of 92.1%, 90.8%, and 91.7% for motion 

capture, EMG, and force sensors, respectively) as well as noise resilience (accuracy of 87.1% at 30% noise levels) 

assures that this model could be deployed in a wide range of and demanding settings.These results confirm TMFN's 

potential to revolutionize rehabilitation by automating complicated assessment processes, improving clinical 

decision-making, and enhancing patient outcomes. 

Future Scope 

The promising results of TMFN thus open doors for further research and practical application in rehabilitation and 

beyond. Future work may be directed toward enlarging the dataset to contain a wider range of activities and patient 

demographics, in such a way that would ensure generalizability to diverse populations and conditions.Adding more 

sensor modalities such as EEG or HRV would give a more holistic view of the patient's recovery by integrating both 

motor and physiological dimensions of the process. In addition, deploying TMFN in real-world clinical settings 

requires lightweight, edge-compatible versions of the model to allow for real-time performance on portable 

hardware sets.Investigation of the reinforcement learning can enable TMFN to generate real-time feedback-driven 

proposals of adjustments for an optimum therapy, thereby reinforcing its place in being more of an active 

rehabilitation team participant. Lastly, further applicability of the framework in various areas such as sports 

science, elderly care, and the monitoring of recovery after surgical procedures will broaden its effects as well as the 

potential applicability into consolidating its versatility as a means of facilitating personalized healthcare sets. 
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