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Electric Vehicles (AEVs) may play an essential role in the future of transportation as the use of 

electric vehicles grows and new transportation network services evolve. AEVs can automatically 

plan their routes, park at charging stations, and provide vehicle-to-grid (V2G) services. However, 

V2G services may disappoint customers due to work delays. EVs hold massive promise for future 

transportation systems, and effective charge scheduling tactics are vital to growing EV 

profitability. Two difficulties arise when charging/discharging EVs: how to reduce load and 

charging costs. The goal is to discover the most convenient EV charging station using VANET. 

This paper uses Monarch Butterfly African Vulture Optimization Algorithm (MBAVOA) for 

charge scheduling in EVs. The initial stage is to simulate EVs in the Vehicular Ad-hoc Network 

(VANET) model. Here, the shifting requests from EVs and accessible charging stations are 

identified. In addition, the load is computed using a Quantum Genetic Algorithm (QGA). 

Moreover, the multi-objective fitness parameters, like distance, charging cost, and user 

preference is considered for a charge or discharging schedule. The QGA-MBAVOA outperformed 

with the lowest charging cost of 66%, fitness of 0.010, and user convenience of 0.779. 

Keywords: Monarch Butterfly optimization, Charging or discharging scheduling, Quantum 

Genetic Algorithm, Electric Vehicle, Energy Management. 

 
1. Introduction 

The use of electric vehicles (EVs) is a possible solution to transportation exhaust gas emission problems. With the 

integration of large-scale renewable sources into power grids, more clean energy utilized by EVs might significantly 

cut exhaust gas emissions from electricity generation. Other advantages of electric vehicles include less noise. In this 

scenario, the use of EVs has increased fast in recent years [1. EVs use electricity from the grid to meet power demands, 

and idle EVs can discharge electricity back into the grid to enable vehicle-to-grid (V2G) services [9][3]. The upcoming 

V2G services can assist the power grid to minimize power costs and to improve power system stability [10][3]. As the 

number of EVs on the road increases, more Charging Stations (CS) are being designed to address the EV charging 

problem. Some renewable energy CS, such as solar and wind, have been created to increase the use of green energy. 

EV behavior is challenging to predict accurately, which impedes electric vehicle charging optimization [3][11]. 
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The platform of power distribution networks needs to be improved to accommodate the massive spread of EVs. The 

first requirement, however, is a thorough understanding of EV charging over a distributed network. The paradigm 

shift in load profile occurs when distribution networks are regarded to acquire EV penetration. The unstable three- 

phase load and flow simulation of microgrids is adapted for analyzing system performance with EV charging loads 

[12]. Even though the EV is regarded as a well-known technology capable of solving a million problems, there are still 

some battery-related issues. EV have short driving range, which is limited due to poor battery technologies, reducing 

their dependability and efficiency. Second, there were remarkably few charging bases, which were unevenly 

distributed [13]. As the number of EVs on the road increases, controlling their charging and discharging becomes 

increasingly complex quickly. Uncoordinated EV integration into the network may pose problems with the power 

system's control, management, and operation, putting its stability at risk by creating a new peak demand. As a result, 

various studies have been undertaken to date on managing EV charging and discharging for optimal network 

integration, and this topic continues to pique academics' interest [15][14]. 

In addition to generating money, EVs can effectively promote the usage of renewable energy sources in the power 

grid by charging during off-peak times when renewable energy output is high and discharging during peak hours [14]. 

Drivers and power grid operators must handle EV charging optimally. Several studies have recently been conducted 

on EV charging and smart charging technologies. The majority of techniques concentrated on EV charging methods, 

both controlled and uncontrolled. Uncontrolled EV charging exacerbates grid issues such as power losses, voltage 

variations, and substation overload. Synchronized charging systems are designed to address difficulties with existing 

approaches such as centralized and distributed control and time of use (TOU) [16][3]. In [17], the EV level is 

optimized, and the coordinated scheduling of wind power and EV charging is examined. The model, on the other 

hand, considers node voltage and transmission power into account when charging electric vehicles. 

The goal is to find the appropriate charging station for EVs using VANET. The goal is to develop a model that focuses 

on scheduling the charging outlets of electric vehicles. Initially, the EV is simulated using the VANET model. Here, 

charging requests from EVs and accessible charging stations are detected. The charge scheduling algorithm is then 

called to schedule the EV, a newly created charge scheduling technique MBAVOA. The MBAVOA was developed by 

combining MBO with AVOA. A new multi-objective fitness function has been designed, with factors including 

charging cost, user preference, remaining power, and distance parameters. 

The paper's primary contributions are: 

• The charge scheduling algorithm is called to schedule the EV, and it was built utilizing the MBAVOA. The 

MBAVOA was developed by combining MBO with AVOA. In addition, the load is computed using QGA. 

• The multi-objective fitness function is newly modeled utilizing specific parameters, such as charging cost, 

user preference, and distance parameters. 

The remainder of the sections are organized as follows: Section 2 covers the traditional charge scheduling algorithm. 

Section 3 describes the system paradigm for EV charge scheduling. Section 4 discusses the MBAVOA for charge 

scheduling. Section 5 calculates the QGA_MBAVOA efficiency compared to classical methodologies. Section 6 

presents the conclusion. 

2. Literature survey 

Shaofeng Lu et al. [1] introduced two multi-objective optimization approaches to model the economic relationship 

between aggregator profit and EV owners' charging fees. Moreover, an EV charging and discharging approach was 

employed to establish a settlement price between the aggregator and owners, enabling involvement from both EV 

owners and stakeholders in energy markets. Here, the aggregator maximizes profits while minimizing economic 

inconsistency among stakeholders. However, this approach could have avoided from high storage costs. 

Haozhe Xu et al. [2] have developed a Multi-Objective Particle Swarm optimization (MOPSO) to solve the multi- 

objective Stackelberg problem and analyze optimization outcomes for varied preferences. In addition, the Stackelberg 

game is offered to mitigate the negative impact of large-scale EV charging on the power grid. Participating in V2G 

can minimize expenses for electric vehicles, while the grid can guide charging and discharging to achieve peak 

reduction and valley filling. However, the economy is the worst. 

To handle the nonconvex optimization problem, Yongsheng Cao et al. [3] created a suboptimal charging method with 

some constraints (SCAC) using the Lyapunov optimization technique to strike a balance between overall cost and 
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consumer discontent. Furthermore, to obtain a worldwide charging schedule, the SCAC algorithm's criterion was 

used as a priori knowledge to create a Charge Scheduling Reinforcement-Learning (CSRL) algorithm, which was 

more efficient than a reinforcement learning (RL) technique with no specific criterion. However, the system failed to 

account for other practical charging waiting lists. 

Vishu Gupta et al. [4] have presented a multi-aggregator, mobility-aware, and collaborative EV charging scheduling 

system for a PV-supported charging station (PVCS) with BS. Collaborative scheduling and PV/Battery support for 

energy supply were introduced to maximize aggregator revenues. In addition, the CS can use solar energy or connect 

to the grid as needed. Here, increased PV energy generation leads to higher earnings but fails to consider variations 

in aggregator profits when implementing various penalty functions. 

James Dixon et al. [5] have developed a model for coordinated EV charging to reduce CO2 emissions using grid 

carbon intensity (gCO2/kWh). The method used time-coupled linearized optimum power to absorb high wind 

generation while reducing carbon intensity. The Schedules were created with accurate half-hourly grid intensity data 

and carbon intensity. Distribution restrictions, such as thermal and voltage, may limit the flexibility of transmission 

systems. 

Sean Anderson and Vineet Nair [6] have introduced a technique for optimally scheduling the charging of long-range 

battery EVs (BEVs) across highway networks to reduce the aggregate cost of the entire system employing utilities and 

other platforms. As a result, the problem was modeled utilizing a hybrid systems approach. However, the system 

failed to use real roadway networks for additional investigation. 

Hwei-Ming Chung et al. [7] have devised a fee scheduling issue for EV charging on a microgrid scale. The problem 

involved a group of CS managed by a central aggregator. The primary stakeholder is the charging station operator, 

motivated to lower charging station costs, and the secondary stakeholder is the vehicle owner, who wants to charge 

the vehicle fully. Here, an online centralized scheduling strategy is developed to reduce the data transmission rate 

and the system's computing complexity. Although, the centralized scheduling strategy provides good performance, it 

suffers from high storage costs. 

Riccardo Iacobucci et al. [8] devised a technique for optimizing EV charging in parallel, considering optimal 

relocation and routing. The approach was developed for charge optimization. By taking predictive control into 

account, the model maximized transport service and billing across different time scales. The strategy effectively 

optimized both system function parameters. The problem was tackled using a mixed-integer linear program. 

However, the approach failed to explore the services using global optimization. 

The following are the issues experienced in the relevant job, 

One of the most challenging components of modeling future electrified transportation scenarios is the impact of 

human behavior, such as how people determine when to charge their vehicles. However, the scheduling problem 

presents two fundamental obstacles. First, it is difficult to identify the globally optimal scheduling method that 

minimizes total cost. Second, creating a distributed scheduling mechanism capable of handling a significant 

population and EV arrivals at random is challenging. The large number of EVs results in high-dimensional scheduling 

optimization variables, frequently leading to the 'curse of dimensionality'; fluctuations within the energy system and 

the uncertainty of EV user demand make accurate models challenging to establish, limiting the algorithm's control 

effectiveness and performance. 

3. System model 

Effective battery charging is becoming a big issue because of the large number of electric vehicles on the road. 
Coordinated charging is generally preferred over uncoordinated charging, as it can negatively impact the power grid 
by increasing peak load and overall expenses. Here, a coordinated charging procedure is examined, in which a central 
aggregator controls a large number of parking stations. A sub-aggregator (SA) is installed in the charging station to 
exchange information with the CA. The CA is responsible for EV charge scheduling by managing charging prices and 
monitoring charging start and finish times. The scheduling is carried out by gathering the necessary information, 
such as charge demands, time of arrival, and deadlines set by SA. 

 
Let us assume K , which indicates the number of CS. In addition, J is the number of EVs in a microgrid, whereas 

G represents the number of SAs for CSs and a CA for managing SA. The time slots are denoted as s = 1,2,…, S. 
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The charge level of an EV y where xth EV under under yth CS is designated as SOC y , which ranges from [0, 1], 

with 1 representing a full battery and 0 representing an empty battery. The arrival time y relates to EV y arrival 

time, the EV y deadline is q y , the battery capacity of EV y is Dcap , the initial battery energy level at arrival time is 
x x x x, y 

Dini , and the battery energy level at finish time is stated as D fin . The starting battery energy level at arrival time is 

calculated as follows: 

Dini = SOC y   Dcap 

x, y x,s x, y (1) 

 

The fit factor value g y is presented as follows: 
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Figure 1 shows the system paradigm for EV charging scheduling. 

 

 

 

 
Figure 1. EV Charging scheduling system model 

 
4. Proposed Methodology 

The main purpose is to develop a technique for scheduling EV charging stations. First, the VANET model is used to 

simulate the EV, and then the changing EV requests and available charging stations are detected here. The charge 

scheduling algorithm constructed using MBAVOA, is then invoked to schedule the EV. Here, the MBAVOA combines 
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AVOA [1] and MBO [2]. In addition, a multi-objective fitness function is created using specific criteria, such as 

charging cost, user preference, and distance parameters. The EVs are then assigned to a CS based on the scheduling 

approach. The EV charging scheduling model parameters will then be tweaked to demonstrate the method's efficacy. 

Figure 2 depicts the architecture of the MBAVOA, and the EV charging scheduling technique. 
 

 
Figure 2. EV charging scheduling architecture based on MBAVOA 

 
4.1. Steps to schedule EV charging/discharging 

1. Network simulation based on electric vehicles and computation load 

2. Finding the available CS and the charging request from the EV 

3. Call charge/discharging scheduling technique with MBAVOA 

4. Allocate EVs to CS’s using MBAVOA 

5. Update SOC y and energy 

 
The stages are briefly described below. 

A network is run as a linked graph B = (F , G, H ) , where F = {1,…, E} representing a non-empty set of E nodes 

that discloses intersection of road and capable site of EV charging station, G represents a set of edges that reflect 

length of road segment, and H represents an adjacency matrix that indicates if nodes are associated. The term 

ak ,n  0 represents a positive-weighted transition from node k to node n for a collection of edges. The graph 

represents a highway, with traffic expected to flow in both directions without sacrificing generality. 

4.2. Load computation 

If the charging station's load is unknown, a forecasting technique can be used to improve scheduling performance by 

ensuring that the load generated at each instance is not exceeded. Thus, load forecasting is required, which is utilized 

to improve the accuracy and performance of scheduling techniques. The preliminary SOC values are generated 

arbitrarily and uniformly in the range [0, 1], with the SOC target set to 1. The base load information is created based 

on the results of the load forecast. Thus, the unit of base load is changed by, 
 
 

 

base Afore  Apeak 

As = s 

maxs (Afore )  

(5) 



J INFORM SYSTEMS ENG, 10(23s) 
598 

 

 

where, the peak load under various EV configurations is denoted as Apeak , and the forecasted load is represented by 

Afore, in which the forecasted load is determined using Quantum Genetic algorithm. 

4.2.1. QGA architecture 

To efficiently enhance the global search capabilities of quantum algorithms, QGA leverages the coding mechanism of 

quantum probability vectors, the crossover operator from genetic algorithms and the update method from quantum 

computing. The steps of the QGA are outlined below. 

Step 1: Chromosome representation as a qubit population 

A population of quantum bits, or qubits, represents the chromosomes. A quantum bit is the smallest unit of 

information held in a two-state quantum computer. A qubit can be in the "1" or "0" state or any combination of the 

two. A qubit's state can be represented as 

  =  0 +  1 (6) 

where, the complex numbers  and  indicate the probability of the qubit being in the "0" or "1" states, respectively. 

Step 2: Decoding and encoding strategy 

Quantum bits can represent a linear superposition of solutions in probability, but cannot directly calculate fitness 

values. Consider developing an encoding and decoding system for scheduling process applications in EV. The 

chromosome is denoted as Wu (s) . The chromosomal size refers to the total number of modules in an U -sized batch 

of jobs. Each module will be assigned to nodes 0 through L −1. Wu (s) is derived from the population of qubits Yu (s) 

, where u = 1,2,...,T . Here, T represents the number of chromosomes). If the system has L nodes, each qubit 

population requires v qubits to represent those nodes. The node identifier is defined by its population of individual 

qubits. 

Step 3: Quantum Rotation Gate 

The state of a qubit can be modified using quantum gates. The operation is reversible and represented by a unitary 

operator X . This operator operates on qubit basic states that meet the following condition: X X = XX  . 

Step 4: Generation of dynamic Rotation Angle 

The rotational angle u has two ranges: high for coerce refinement and low for fine refinement. The dynamic 

rotation angle maintains a solution's convergence rate based on changing fitness values. The value of u changes is 

based on the fitness of the current generation's nth objective is compared to the preceding generation. The objective 

function with the most significant percentage change is chosen for adjusting the rotation angle. Initially, the value of 

u is set as previously indicated. As fitness approaches the optimal solution, u changes correspondingly. 

Step 5: NOT Gate (Mutation Operator) 

The NOT gate functions as a quantum mutation operator. Mutation enhances individual diversity and minimizes 

immature convergence. It also improves the capacity to search locally. It prevents the solution from becoming caught 

in local minima. The NOT gate is used to reverse the probabilities of the qubit population, allowing for mutation. 

Step 6: Crowd Comparison Operator 

The crowded-comparison operator is employed in non-dominated sorting to ensure uniformity and diversity in the 

Pareto front. Individuals are selected based on their rank in the front, followed by the crowding distance if they are 

in the same front. If two solutions have differing non-domination ranks based on front value, we prefer the one with 

a lower rank. If both solutions belong to the same front, choose the less packed solution based on crowding distance. 
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4.3. Computation of multi-objective fitness 

The fitness function is illustrated using MBAVOA for charge scheduling. The fitness feature of the MBAVOA is a new 

design for choosing the best charging system. In this case, the fitness function includes user convenience, distance, 

and charging cost, which is expressed as, 

Fit =  Z y + (1−V y )+ Cy  
(7) 

y=1 

x,s x,s x,s 

 
where, the charging cost of EV y is denoted as Z y , the convenience of user is indicated as V y , C y be the distance, 

x x,s x,s x,s 

and the available power is represented as Ry . The charging cost [7] expression is provided by, 
 

Z y  = h (u x, y − Abase)+ h (u x, y
2 

− Abase
2 )  

(8) 
x,s  0 s s 

s=1 

1  s s 

where, h0 and h1 be constants, which is a minimization function. 

The expression of user convenience [7] is, 
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x,s x,s 
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and wy = q y − s , which be the maximization function. 

The expression of distance is, 
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where, the normalizing factor is denoted as g , the CS position be k , and k s be EV y position. It is a minimization 
e x, y x 

function. 

4.4. EV Charging/ discharging scheduling 

Here, the parked EV waits until CS schedules it to charge, which is carried out by the hybrid algorithm MBAVOA, 

which is created by combining MBO [19] and AVOA [20]. The MBO is nature-inspired meta-heuristic optimization, 

which operates by imitating migration behavior. MBO is more effective for parallel processing and producing trade- 

offs between intensification and diversification processes. AVOA is based on the simulation of African vulture 

navigation and foraging habits, which has been customized to find the optimal solution. It can address a various 

engineering design issue, has lower computing complexity, and is more trustworthy than other techniques. 

Furthermore, it effectively balances variability and resonance and has demonstrated the ability to achieve critical 

aspects in large-scale situations. It has a lower operating time and computational complexity. The algorithmic steps 

for the MBAVOA algorithm are explained below. 

Initialization 

Consider the Cth population with the most monarch butterfly individuals, representing the maximum generation 

Imax . Even though the generation counter is defined as  f = 1 , the number of monarch butterflies in land-1 is 

specified as X1 , the number of monarch butterflies in land-2 is denoted as X 2 , the maximum step is marked as Vmax 

, p represents the butterfly adjustment rate, n represents the migration duration, and the migration ratio is stated 

as. 

K 

V 

Q 

R || k 
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Computation of fitness 

The optimum solution is obtained using the fitness function and is considered as a minimization problem. Thus, the 

solution that produces the least fitness is chosen as the optimal solution. The fitness function has already been 

described in Section 4.3. 

Updating migration operator 

Monarch butterflies are often present in land-1 from April to August and in land-2 from September to March. As a 

result, the number of butterflies in land-1 and land-2 is defined as and, respectively. Monarch butterflies on land-1 

are referred to as subpopulation-1, whereas butterflies on land-2 are known as subpopulation-2. 

Updating butterfly adjusting operator 

The butterfly’s location is updated via an adjusting operator where the butterfly every component m , if 
then update position is, 

Y d +1 = Y d 

ran 1, 

m,r best,r (11) 

where, Y d  is the element r of Y  at d +1generation, which depicts mth butterfly location, and Y d  
be element 

m,r m best,m 

r of Ybest that means optimal butterfly placed in land-1 and 2. If ran  v , then the updated position is, 

 

Y d +1 = Y d 

m,r c 2,r (12) 

where, Y d be element rth of Y , which is chosen randomly from land-2, u2  1,2,..., X . If ran  p, then the 
best 2 

position is updated by, 

Y d+1 = Y d+1 +  (aY − 0.5) 
mr mr r (13) 

Y d+1 = Y d +  (aY − 0.5) 
mr mr r (14) 

The revised equation from AVOA is as follows: 

Y d+1 = U d − R * Z 
mr mr mr (15) 

where, Y d +1 represents the next iteration vulture's position vector, d denotes the best vulture of the current 

iteration, Z be the vulture rate, O means the vultures move randomly to protect their prey from other vultures. 

R
mr 

=| O *U d d 
(16) 

Y d+1 = U d − | O *U d − Y d | *Z 
mr mr mr mr (17) 

Y d+1 = U d − (O *U d − Y d )* Z 
mr mr mr mr (18) 

d Y d+1 −U d 1− OZ 
Ymr =  mr mr 

Z (19) 

The above expression is substituted in equation (14), 

d+1 
= 

Y d+1 −U d 1− OZ 
+  ( − ) 

Ymr 
mr mr 

Z 
aYr 

0.5 
(20) 

U 

| 
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d+1  Z −1 
= 

−U d 1− OZ 
+  ( − ) 

Ymr  Z  Z 
aYr 

0.5  

(22) 

d+1 = 
−U d 1− OZ 

+  ( − ) 
 Z   

Ymr 
mr aYr 0.5   

Z  Z −1 (23) 

Thus, from the above MBAVOA update equation, the EVs are used for charging/discharging schedule. 

Check the feasibility of the solution 

The feasibility of a solution is assessed to determine the optimal solution using the fitness equation. If a new solution 

improves on the prior one, the solution is updated with a new value. 

End 

The processes above are repeated until the optimal solution is achieved. Thus, the integration of MBO with the AVOA 

technique effectively schedules the charging/discharging of EVs. 

5. Results and discussion 

This section describes the GQA+MBAVOA's results and analysis for scheduling EV charging and discharging. The 

efficiency is assessed by comparing charging costs, fitness, and user convenience over 100 vehicles. 

5.1. Experimental setup 

The GQA+MBAVOA is conducted in MATLAB using a Windows 10 operating system with an Intel core processor and 

2GB of RAM. 

5.2. Experimental outputs 

 
The simulation results for GQA+MBAVOA are investigated here. Figure 3 depicts the results of the GQA+MBAVOA 

simulation based on the number of vehicles and simulation time. Figure 3 shows red nodes in the network 

representing automobiles going west-east. The simulated model of an EV at different simulation times is shown. CS 

represents a CS where each EV with a battery shortfall battery can recharge its battery at the nearest CS. Figure 3 

shows the VANET model with 100 vehicles and a time interval of 10 seconds. Initially, the CS is idle, and after a few 

seconds, the EV is connected to the appropriate CS to charge its EV. 
 

Figure 4. Experimental Output of GQA+MBAVOA for 100 Vehicles 
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5.3 Performance metrics 

The GQA+MBAVOA performance is measured in terms of charging cost, user fitness, and convenience and the 

metrics are already mentioned in section 4.3. 

5.4. Competing methods 

This section compares the GQA+MBAVOA to other approaches, such as Multi-objective optimization [1], MOPSO 

[2], CSRL [3], and PVCS [4], in terms of performance measures. The comparison is carried out using 100 vehicles. 

Comparative assessment for 100 vehicles 
 

  

a) b) 

 

c) 

Figure 5. Comparative evaluation of GQA+MBAVOA a) Charging Cost, b)Fitness, c) User Convenience 

Figure 5 depicts a comparative examination of GQA+MBAVOA based on the number of iterations and several 

performance measures. Figure 5a) demonstrates charging cost. For 100 iterations, the charging cost assessed by 

Multi-objective optimization, MOPSO, CSRL, PVCS, and GQA+MBAVOA are 30%, 28%, 26%, 24%, and 22%, 

respectively. Figure 5b) shows an assessment of approaches with fitness. The fitness values for Multi-objective 

optimization, MOPSO, CSRL, PVCS, and GQA+MBAVOA for 200 iterations are 0.345, 0.187, 0.167, 0.351, and 0.134, 

respectively. In addition, for 400 iterations, the fitness evaluated by Multi-objective optimization, MOPSO, CSRL, 

PVCS, and GQA+MBAVOA are 0.213, 0.209, 0.1, 0.107, and 0.101. Figure 5c) displays the user convenience of various 

techniques compared to the GQA+MBAVOA. When 100 iterations are considered, the user convenience values of 

Multi-objective optimization are 0.336, MOPSO is 0.342, CSRL is 0.365, PVCS is 0.385, and GQA+MBAVOA is 

0.405. 

5.6. Comparative discussion 

Table 1 compares 100 vehicles based on user convenience, fitness, and charging cost. Using 100 vehicles, the 

GQA+MBAVOA has the lowest % charging cost of 66 %, while Multi-objective optimization, MOPSO, CSRL, and 

PVCS have of 70%, 72%, 70%, and 68%, respectively. The GQA+MBAVOA has the lowest fitness of 0.010, while Multi- 

objective optimization, MOPSO, CSRL, and PVCS have fitness values of 0.116, 0.114, 0.012, and 0.035, respectively. 

The GQA+MBAVOA has the maximum user convenience of 0.779, while Multi-objective optimization, MOPSO, 

CSRL, and PVCS have values of 0.625, 0.682, 0.693, and 0.741, respectively. 
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Table 1. Comparative analysis 

 

Vehicles Metrics Multi- 

objective 

optimization 

MOPSO CSRL PVCS GQA+MBAVOA 

100 

vehicles 

Charging 

cost (%) 
 

70 
 

72 
 

70 
 

68 
 

66 

Fitness 0.116 0.114 0.012 0.035 0.010 

User 

convenience 
 

0.625 
 

0.682 
 

0.693 
 

0.741 
 

0.779 

 
6. Conclusion 

This research presents GQA+MBAVOA for charge scheduling in electric vehicles. The simulation of EV in the VANET 

architecture is the first stage. The detection of changing EV requests and available charging stations occurs here. The 

charge scheduling approach is then called to schedule the EV, with the charge scheduling algorithm newly designed 

utilizing the MBAVOA. The suggested MBAVOA was created by combining MBO and AVOA. Here, charging cost, 

user preference, and distance parameters, regarded as a minimization function are used to create a new model of a 

multiobjective fitness function. According to the scheduling technique, the EVs are assigned to the charging station. 

The EV charging schedule model's parameters are then changed to demonstrate the method's success. The 

GQA_MBAVOA can yield the lowest possible charging cost while minimizing charging time. The GQA_MBAVOA 

showed exceptional performance, with the lowest charging cost of 66%, the lowest fitness of 0.010, and the highest 

user convenience of 0.779. Later on, examining the GQA_MBAVOA flexibility using other sophisticated optimization 

techniques. 
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