
Journal of Information Systems Engineering and Management
2025, 10(23s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Analyzing ChatGPT's Problem-solving Capabilities in

Arabic-Based Software tasks

Hani Al-Bloush, Laith Al Shehab, Ashraf A.Odeh

 Faculty of Information Technology, Middle East University, Amman, 11831, JORDAN

halbloush@meu.edu.jo

, Faculty of Information Technology, Middle East University, Amman, 11831, JORDAN

 Lshehab@meu.edu.jo

, Faculty of Information Technology, Middle East University, Amman, 11831, JORDAN

Aodeh@meu.edu.jo

Corresponding author: halbloush@meu.edu.jo

ARTICLE INFO ABSTRACT

Received: 16 Dec 2024

Revised: 02 Feb 2025

Accepted: 20 Feb 2025

This study investigates the problem of ChatGPT’s performance in generating and
optimizing Python code in both English and Arabic, addressing the challenges of low-
resource languages. The objective is to compare how ChatGPT versions 3.5 and 4.0
handle standard algorithms-Linear Search, Binary Search, and Quick Sort in terms of
code generation, optimization, and readability. Using a comparative experimental
design, key performance metrics such as time complexity, execution speed, and error
rates were analyzed. The results reveal substantial disparities between the two
languages: English exhibited efficient code generation, minimal errors, and improved
optimization, while Arabic encountered higher error rates, slower execution, and
limited performance gains despite optimization. These findings highlight the
limitations of AI models in low-resource linguistic environments, underscoring the
need for fine-tuning to enhance global applicability. This study contributes to
advancing the understanding of AI coding tools and their ability to support diverse
linguistic contexts, particularly in underrepresented languages like Arabic.
Keywords: ChatGPT, Software Problem-solving, Arabic text, Natural Language
Processing.

1.INTRODUCTION:

AI-based code generation tools, such as ChatGPT, have gained significant attention for

streamlining coding tasks. The evolution of AI in coding can be traced back to early attempts at

automating code generation in the 1990s, with basic rule-based systems that provided limited

assistance to developers [1]. With advancements in machine learning and the availability of vast

datasets, AI has evolved to support more complex tasks, leading to the development of largescale

language models [2]. The introduction of models like OpenAI's GPT series marked a significant leap in

AI's ability to understand and generate natural language text, including code. GPT-3, in particular,

showcased the potential of using AI to assist in various coding-related activities [3]. GPT-3's success

paved the way for more advanced iterations like GPT-3.5 and GPT-4, which exhibit even greater

proficiency in understanding user prompts and generating accurate code snippets [4, 5].

These developments have positioned tools like ChatGPT at the forefront of AI-assisted coding

solutions. These tools use largescale language models trained on vast amounts of text data to assist

developers in generating code snippets, debugging, and providing documentation [6, 7]. Tools like

Code-Compose have demonstrated the practical impact of LLMs on an industrial scale. However,

mailto:halbloush@meu.edu.jo
mailto:Lshehab@meu.edu.jo
mailto:Aodeh@meu.edu.jo
mailto:halbloush@meu.edu.jo

689

J INFORM SYSTEMS ENG, 10(23s)

challenges persist, particularly around code security, as AI-generated code may introduce bugs or

vulnerabilities requiring human validation. Additionally, the performance of models like ChatGPT and

Bing AI varies depending on specific use cases, underscoring the need for contextual evaluation [8].

The advancements in artificial intelligence (AI) and natural language processing (NLP) hold

immense potential to address global disparities in access to technology and education, aligning with the

Sustainable Development Goals (SDGs)[9]. Specifically, SDG 4 (Quality Education) emphasizes the

need for inclusive and equitable education, which can be achieved by democratizing access to

programming literacy through AI tools like ChatGPT. By improving ChatGPT's capabilities in low-

resource languages such as Arabic, this research facilitates the creation of localized educational

resources and tools that empower underrepresented communities to participate in the digital

economy[10]. Furthermore, SDG 9 (Industry, Innovation, and Infrastructure) underscores the

importance of fostering innovation and building resilient technological infrastructures [11]. This study

fills a critical gap in the existing literature by addressing the underperformance of AI tools like ChatGPT

in low-resource languages, particularly Arabic, a challenge that has been underexplored in prior studies.

By systematically evaluating and comparing GPT-3.5 and GPT-4, this study not only provides a nuanced

understanding of their capabilities in multilingual contexts but also highlights the specific challenges

posed by low-resource languages in code generation, optimization, and readability. This study

addresses the technological gaps in low-resource linguistic environments by enhancing AI's ability to

generate, optimize, and debug code in Arabic. Such advancements support localized innovation and

contribute to a more inclusive and equitable global technology landscape.

Current research heavily emphasizes the capabilities of these models in high-resource

languages like English, which benefit from extensive programming literature and datasets [12]. While

GPT-3, GPT-3.5, and GPT-4 have made significant advancements in high-resource languages, adapting

these models for low-resource languages such as Arabic has proven challenging. Zhang et al. (2023) [13]

demonstrated that these models effectively support developers in high-resource environments by

generating accurate code snippets and facilitating API exploration. However, their application in low-

resource languages reveals significant performance gaps. Lin, Murakami, and Ishida (2020) [14]

emphasized that the lack of high-quality training data and coding repositories in languages like Arabic

significantly hampers developer productivity. Research has explored strategies like transfer learning

and zero-shot modeling to adapt models to new tasks without explicit training, but these approaches,

primarily focused on natural language generation (NLG), have not fully addressed the complexities in

code generation for low-resource languages [15]. Sontakke et al. (2023) found that transferring coding

models from high-resource to low-resource languages yields only limited improvements, suggesting

that the inherent complexity of Arabic and its lack of comprehensive datasets remain significant

obstacles[16].

This focus on English overlooks challenges faced in coding tasks conducted in lower-source

languages like Arabic, where limited data availability affects AI models' performance [17]. The

effectiveness of ChatGPT in code optimization and readability presents additional challenges in low-

resource languages. Liu et al. (2023) noted that in high-resource languages, careful prompt crafting

enhances ChatGPT’s ability to generate optimized code snippets [18]. However, these techniques alone

do not fully address the unique challenges in Arabic coding contexts. further studies observed that

ChatGPT’s performance in generating simple and readable code in Arabic impacts long-term project

sustainability. Additionally, debugging and defect detection are particularly problematic. Yan et al.

(2023) and Liu et al. (2023) found that when tackling complex coding problems in Arabic, ChatGPT

often produces incorrect outputs that require extensive human intervention [18, 19]. Peng et al. (2023)

highlighted that ChatGPT’s translation capabilities in non-English languages are hindered by

insufficient training data, creating challenges in debugging and refining code in Arabic[20]. Robinson

et al. (2023) underscored these issues, emphasizing ChatGPT’s struggles with code optimization and

debugging in low-resource languages[21].

Early versions of ChatGPT exhibited varying levels of success depending on the specificity and

clarity of user prompts, which spurred research into how prompt design could be optimized for better

outcomes [22]. Yet, there is limited research exploring ChatGPT's effectiveness in lower-resource

languages like Arabic, despite its growing importance in the global software development community.

690

J INFORM SYSTEMS ENG, 10(23s)

The recurring underperformance of ChatGPT in Arabic underscores the need for focused research to

improve its capabilities in low-resource languages. Al-Thubaity et al. (2023) [23] demonstrated that

ChatGPT has limited capabilities in generating high-quality dialectal Arabic text, while smaller models

fine-tuned for Arabic often outperform ChatGPT in producing readable and maintainable code. These

findings highlight the limitations of ChatGPT in handling various aspects of Arabic coding and

underline the need for optimization in these environments. Although these studies outline general

challenges, no comprehensive research has directly compared GPT-3.5 and GPT-4 in Arabic-specific

coding tasks, a gap this study aims to address.

Although GPT-3.5 and GPT-4 have been extensively compared in high-resource languages,

limited research exists on their performance in Arabic coding contexts. Alyafeai et al. (2023) [24]

demonstrated that GPT-4 outperforms GPT-3.5 in several Arabic natural language processing tasks,

laying the groundwork for further exploration in software-related applications. This study aims to

directly compare GPT-3.5 and GPT-4 in generating Python code for standard algorithms in Arabic,

utilizing new performance metrics specifically tailored to low-resource language contexts. These metrics

will provide a nuanced evaluation of how effectively these models handle the unique challenges posed

by Arabic’s linguistic features, addressing broader issues in low-resource language coding.

Early evidence suggests that ChatGPT underperforms in Arabic natural language processing

tasks compared to smaller models tailored for Arabic. This raises critical questions about ChatGPT's

ability to handle code generation, repair, and summarization in Arabic, a language that presents unique

challenges due to its complex structure and limited coding literature. Current evaluations of AI models

often prioritize functional code generation while neglecting aspects like code optimization and

simplicity. Although ChatGPT shows potential in creating modular and efficient code, challenges

remain in handling complex coding scenarios, indicating a need to explore how ChatGPT balances

tradeoffs between code simplicity, readability, and performance. Moreover, the emergence of newer

ChatGPT versions, such as GPT-3.5 and GPT-4, has introduced enhanced capabilities and expanded use

cases for AI-based coding tools [25]. While there are indications of improvements in newer versions,

comprehensive comparisons between GPT-3.5 and GPT-4 in coding contexts, particularly in Arabic, are

sparse. Understanding how these versions perform in generating, optimizing, and rewriting code in

Arabic remains unclear and is a key focus of this study [26, 27].

Additionally, the literature points to maintainability issues in ChatGPT-generated code,

emphasizing the importance of readability for long-term code management [28]. Yet, the extent to

which ChatGPT can streamline code while preserving performance remains unclear, necessitating

further exploration. This study aims to fill this gap by evaluating how ChatGPT performs in coding

tasks within a low-resource linguistic environment, with a focus on Arabic. Addressing this gap is

crucial for improving AI coding tools' accessibility and utility worldwide, particularly for developers

working in diverse linguistic contexts. The findings from this study could serve as a foundation for

developing more effective multilingual AI tools by identifying actionable strategies to improve their

performance in underrepresented languages. By addressing both technical and linguistic challenges,

this research can inform the creation of more inclusive, scalable AI coding solutions tailored to diverse

linguistic needs.

These gaps lead to the following key research questions:

● R1: How effective is ChatGPT (versions 3.5 and 4.0) in generating Python code for standard

algorithms, and how do these versions compare in terms of time complexity and execution

speed?

● R2: What are the differences in ChatGPT's performance when generating and optimizing code

in English versus Arabic, and what impact do these differences have on coding efficiency?

● R3: How does ChatGPT balance code simplicity, readability, and performance when prompted

to optimize or rewrite code more concisely?

2. MATERIAL AND METHODS:

This study evaluates ChatGPT's ability to solve software problems with a focus on Arabic language

processing. Using an iterative approach [29, 30], the study assesses ChatGPT's performance in code

691

J INFORM SYSTEMS ENG, 10(23s)

generation, repair, and summarization. The process is outlined in five key steps, as depicted in Figure

1.

Three Python Algorithms-Linear Search, Binary Search, and Quick-Sort-were chosen to represent

varying levels of complexity, from easy to complex. The tasks were translated into Arabic and

validated through expert feedback. Errors were identified, logged, and corrected through multiple

iterations. Performance was measured using key metrics such as accuracy, precision, recall, and code

readability to evaluate ChatGPT's effectiveness in these tasks. The study concludes by discussing

ChatGPT's strengths and limitations in handling Arabic-based software problems, offering insights into

potential improvements for its application in low-resource languages. The iterative process, supported

by expert feedback, ensures a comprehensive evaluation of ChatGPT's capabilities.

2.1. Task Complexity Grading:

The selected algorithms are classified into three complexity levels-easy, intermediate, and complex

to evaluate ChatGPT's adaptability across varying tasks. The selection of these algorithms is specifically

tailored to assess ChatGPT’s performance in low-resource coding contexts, such as Arabic, by examining

how well the model handles diverse linguistic and computational challenges.

● Linear Search: Classified as easy, this algorithm iterates through a list to find a target value.

With a linear time, complexity of 0(𝑛), it is simple and suitable for beginners [31]. In the context

of Arabic, Linear Search serves as a baseline for testing ChatGPT’s ability to handle

straightforward algorithms while accounting for Arabic-specific challenges, such as accurate

syntax generation and semantic clarity in translated prompts.

● Binary Search: An intermediate-level algorithm, binary search requires an ordered list and uses

a divide-and-conquer approach. It offers a time complexity of O (log n), making it more efficient

than linear search for large datasets [31]. This algorithm is particularly relevant to Arabic

because it tests ChatGPT’s ability to manage hierarchical logic and ordered data structures in a

linguistically complex setting, where accurate interpretation of sorted data and conditional

logic may be influenced by language-specific nuances.

● Quick-Sort: This complex algorithm employs a divide-and-conquer strategy to sort lists. It has

an average time complexity of O (n log n), though it can degrade to O(n^2) in the worst case

due to its recursive partitioning technique [31]. Quick-Sort evaluates ChatGPT’s proficiency in

handling advanced computational tasks involving recursion and modularization, both of which

are challenging in low-resource languages like Arabic due to their linguistic complexity and

limited training data. Recursive algorithms, in particular, provide insight into the model’s

ability to generate efficient and readable code in such contexts.

By including these three algorithms, the study captures a comprehensive range of computational tasks

to systematically explore ChatGPT’s performance in addressing the unique linguistic and computational

challenges of low-resource languages, such as Arabic. This selection ensures that the findings are

representative of real-world coding scenarios encountered in underrepresented linguistic

environments. These algorithms form the basis for systematically exploring ChatGPT’s performance in

software problem-solving.

F

i

g

u

r

e

S

E

Q

F

i

g

u

r

e

\

*

A

R

A

B

I

C

1

:

O

v

e

r

v

i

e

w

o

f

t

h

e

M

e

t

h

o

d

o

l

o

g

y

f

o

r

E

v

a

l

692

J INFORM SYSTEMS ENG, 10(23s)

2.2. Iterative Interaction with ChatGPT (Revised with Additions for Feedback Cycle)

This step involves an iterative process of translation, expert validation, task processing, and

error analysis. The experimental design is uniquely original, developed to address the linguistic and

computational challenges posed by low-resource languages like Arabic. Unlike conventional

frameworks used for high-resource languages, this design incorporates innovative adjustments that

account for Arabic's structural complexity and linguistic nuances.

Arabic instructions are designed with domain-specific terminology to ensure clarity and avoid

ambiguities. The process combines translation refinement, linguistic validation, and iterative prompt

adjustments, reflecting a pioneering approach to evaluating AI performance in underrepresented

languages. To tackle issues such as structural complexity, lack of direct equivalences for technical terms,

and dialectal variations, domain-specific terminology was iteratively refined and validated by experts.

This ensured that prompts were both linguistically accurate and computationally viable.

The translation phase, facilitated by ChatGPT, was followed by expert review to ensure fluency,

coherence, and technical correctness. Translation accuracy was improved through iterative

modifications until the desired precision was achieved. Additionally, error analysis accounted for

linguistic nuances affecting Arabic programming syntax, including adjustments for deviations from

standard programming conventions caused by literal translations. This adaptation helped identify and

address model limitations in Arabic-specific contexts, improving its coding performance.

Systematic error analysis tracked various error types (syntax, logic, runtime), logging details

such as the prompt, error encountered, and iterations needed for correction. The framework specifically

focused on errors unique to low-resource languages, such as ambiguities in linguistic constructs and

difficulties in interpreting Arabic-specific task descriptions. By identifying these errors, the framework

provided actionable insights into enhancing AI models for underrepresented linguistic environments.

A scoring system evaluated the severity of errors, and expert feedback guided adjustments to

reduce mistakes. The iterative process continued for a maximum of five cycles, with performance

metrics (accuracy, readability) monitored until a predefined threshold (90% correctness) was reached

or improvements plateaued. This threshold accounted for the additional complexity of achieving high

accuracy in low-resource languages, where sparse datasets and linguistic diversity required more

iterations than typically needed for high-resource languages. Performance tracking was logged using

version control systems to document code evolution and measure ChatGPT’s progress over time.

2.3. Analysis and Performance Metrics

The outputs ChatGPT generates in response to Arabic instructions in Step 3 are analyzed to

assess the accuracy and reliability of these responses within the original software-related tasks. To

accomplish this, a set of specific performance metrics is employed, providing a robust framework to

measure ChatGPT's aptitude in solving Arabic-based software problems, including code generation,

repair, and summarization. The metrics include accuracy, precision, recall, and a detailed grading

rubric, which allow a comprehensive assessment of ChatGPT's performance across different tasks.

Code Generation Accuracy: The accuracy of the code generated by ChatGPT will be

benchmarked using automated code testing frameworks, such as unit tests, to validate the correctness

of the generated code against expected outcomes. The tests will cover edge cases, typical use cases, and

error handling to ensure comprehensive evaluation. Additionally, accuracy will be assessed based on

the logical structure of the generated code in alignment with the algorithm's intended functionality.

2.4. Code Repair Evaluation (Precision and Recall):

Clarifying Use of Precision and Recall: While precision and recall are typically used in

classification tasks, they can be adapted to code repair by measuring the correctness of ChatGPT's

responses. In this context:

Precision will be calculated as the ratio of correct code fixes suggested by ChatGPT to the total number

of suggestions provided. It measures how many of the suggested repairs are actually correct. Recall will

be used to measure the proportion of errors in the original code that ChatGPT successfully identifies

and rectifies. It reflects how many of the total existing errors were correctly addressed by ChatGPT.

These metrics will be benchmarked against a set of predefined correct solutions vetted by experts to

ensure consistency and relevance in the evaluation.

693

J INFORM SYSTEMS ENG, 10(23s)

2.5. Code Readability and Complexity (Grading Rubric):

A detailed grading rubric will assess the readability of ChatGPT-generated code, focusing on

criteria such as adherence to coding standards (consistent naming, variable use, PEP 8 compliance),

effective commenting, logical code structure, and modularization for maintainability. Code complexity

will be measured using cyclomatic complexity to assess independent paths through the code. The goal

is to ensure the code is both simple and maintainable. Summarization quality will be evaluated based

on precision and recall, ensuring key elements are captured concisely. Experts will score the code and

summaries on clarity, conciseness, and relevance, providing a quantitative assessment.

3. EXPERIMENTS

3.1. Experiment 1: English Coding Performance on ChatGPT 3.5

We prompted ChatGPT to generate Python code for three algorithms-Linear Search, Binary

Search, and Quick Sort-using the standardized phrase: "Write a simple Python code for [Algorithm

Name]." The experiment was conducted with Python 3.9 using default settings to replicate general-use

conditions. The generated code was evaluated using a grading rubric based on readability, including

criteria such as commenting, code structure, adherence to Python's PEP 8 standards, and

modularization. The time complexity of each algorithm was then analyzed based on the generated code.

Table 1: Result for Query Number One

Algorithm Time Complexity

Linear

Search O(n)

Binary

Search O (log n)

Quick Sort

O (n log n) on average, O(n²) in the worst

case

Experiment Evaluation: Binary Search was the most efficient algorithm due to its logarithmic

complexity. The generated code adhered to proper commenting and Python standards, showing good

readability and modularization. The time complexity of each algorithm was then analyzed based on the

generated code, as shown in Table 1.

3.2. Experiment 1: Performance of ChatGPT 4.0 in english Coding Tasks

The experiment on ChatGPT 4.0 used the prompt: "Provide a simple Python code for

[Algorithm Name]," ensuring consistency with previous trials. Python 3.9 was used for evaluation, and

the generated code was reviewed using a grading rubric assessing readability, including criteria such as

commenting, structure, adherence to coding standards, and proper modularization. For Linear Search,

the time complexity was O(n), as the algorithm iterates through the list until the target element is found.

Binary Search resulted in a more complex time evaluation with a combined complexity of O(n

log n + m log m + n log m), influenced by sorting and binary search operations. Quick Sort had a time

complexity of O(n log n), attributed to its recursive, divide-and-conquer strategy. Table 2 provides a

summary of the time complexities for these algorithms. The generated code demonstrated effective

readability, with proper use of comments, adherence to Python's best practices, and a well-structured,

modularized approach.

Table 2: Result for Query Number One

Algorithm Time Complexity

Linear

Search O(n)

Binary

Search O (n log n + m log m + n log m)

Quick Sort

O (n log n) on average, O(n²) in the worst

case

694

J INFORM SYSTEMS ENG, 10(23s)

3.3. Experiment 1: Performance of ChatGPT 3.5 in Arabic Coding Tasks

We prompted ChatGPT in Arabic to generate Python code for three algorithms: Linear Search,

Binary Search, and Quick Sort, to solve a document similarity problem. For Linear Search, the prompt

used was: "المستندات الخطي لحل مشكلة فحص تشابه البحث بايثون لخوارزمية لغة باستخدام resulting in a time ",برنامج بسيط

complexity of O(m + n), where m and n represent the lengths of the documents. This algorithm utilized

set operations to calculate document similarity, producing code that adhered to Python standards with

proper comments and modular functions. Binary Search was prompted with: " برنامج بسيط باستخدام لغة بايثون

 yielding a time complexity of O(log m), where m denotes ",لخوارزمية البحث الثنائي لحل مشكلة فحص تشابه المستندات

the number of words in the document. The algorithm operated on a sorted list of words, and the

generated code demonstrated clear variable usage, proper structuring, and comprehensive comments.

 For Quick Sort, the prompt: " تشابه فحص مشكلة لحل السريع الفرز لخوارزمية بايثون لغة باستخدام بسيط برنامج

 .resulted in a time complexity of O(n log n) on average, with a worst-case complexity of O(n²) "المستندات

The implementation followed the standard Quick-Sort approach with modularization and detailed

commenting to enhance readability. Table 3 summarizes the time complexities for the three algorithms.

Binary Search was evaluated as the most efficient algorithm due to its O(log m) complexity. Overall, the

generated code met readability standards with clear comments, good structure, and proper

modularization.

Table 3: Arabic Result for Query Number One

Algorithm Time Complexity

Linear

Search

O (m + n), where m and n are the lengths of the input

documents

Binary

Search

O (log m), where m is the number of words in the

document

Quick Sort O (n log n) on average, O(n²) in the worst case

3.4. Experiment 1: Performance of ChatGPT 4.0 in Arabic Coding Tasks

We prompted ChatGPT in Arabic to generate Python code for Linear Search, Binary Search,

and Quick Sort to solve document similarity problems. For Linear Search, the prompt was: " برنامج بسيط

 .and it resulted in a time complexity of O(n) ",باستخدام لغة بايثون لخوارزمية البحث الخطي لحل مشكلة فحص تشابه المستندات

The algorithm calculates cosine similarity between the target and each document, iterating through the

collection linearly. For Binary Search, the prompt: " ث الثنائي لحل مشكلة برنامج بسيط باستخدام لغة بايثون لخوارزمية البح

المستندات تشابه yielded a time complexity of O(n log n), as the algorithm sorts similarities in "فحص

descending order and uses binary search to efficiently find matches above the threshold.

 Quick Sort, prompted with: " تشابه فحص مشكلة لحل السريع الفرز لخوارزمية بايثون لغة باستخدام بسيط برنامج

 also had a time complexity of O(n log n), where the algorithm applied quick sort to organize ",المستندات

similarities, followed by binary search to find relevant matches. Table 4 summarizes the time

complexities of the algorithms generated by ChatGPT 4.0 in response to Arabic prompts. Linear Search

operates with a linear time complexity, while Binary Search and Quick Sort exhibit logarithmic

complexities, making them more efficient for larger datasets.

Table 4: Arabic Result for Query Number One (ChatGPT 4.0)

Algorithm Time Complexity

Linear

Search O(n)

Binary

Search O (log n)

Quick Sort

O (n log n) on

average

4. RESULTS

This section presents the statistical outcomes of experiments conducted using ChatGPT 3.5 and

4.0 for generating, optimizing, and minimizing Python code for three algorithms: Linear Search, Binary

Search, and Quick Sort. The results are summarized in tables showing lines of code and execution time

for each query type (initial, optimized, and concise) in both English and Arabic.

695

J INFORM SYSTEMS ENG, 10(23s)

4.1 ChatGPT 3.5 Experiments

The experiments on ChatGPT 3.5 evaluated its performance in generating and optimizing

Python code for three algorithms: Linear Search, Binary Search, and Quick Sort. The results were

analyzed based on query types, lines of code, and execution time to assess the efficiency and impact of

optimization. When tasked with generating Python code in Arabic, ChatGPT 3.5 faced distinct

challenges arising from the structural and linguistic complexities of the language. For example, the

accuracy of translations was often impacted by literal interpretations of terms, leading to outputs that

occasionally required human intervention for correction. Arabic's unique syntactic structure and lack

of direct equivalence for certain technical terms posed additional difficulties, resulting in patterns of

errors such as mismatched variables or unclear loop constructions. These challenges were most

pronounced in tasks involving algorithms like Quick Sort, where recursion and partitioning logic

required precise terminology.

Table 5: Results of ChatGPT 3.5 for English Linear Search, Binary Search, and Quick

Sort.

Algorithm Query Type

Lines of

Code

Execution Time

(seconds)

Linear

Search

Initial Query 9 0.002

Optimized

Query 9 0.003

Concise Query 2 0

Binary

Search

Initial Query 18 0.367

Optimized

Query 18 0.412

Concise Query 18 0.005

Quick Sort

Initial Query 8 0.002

Optimized

Query 14 0.008

Concise Query 8 0.003

Table 5 summarizes ChatGPT 3.5’s results for generating and optimizing Python code in

English. Execution times vary slightly, especially for Binary Search, while concise versions reduce code

length and improve execution time for Linear Search, highlighting optimization.

Table 6: Results of ChatGPT 3.5 for Arabic Linear Search, Binary Search, and Quick

Sort.

Algorithm Query Type

Lines of

Code

Execution Time

(seconds)

Linear

Search

Initial Query 12 0.002

Optimized

Query 12 0.003

Concise Query 7 0

Binary

Search

Initial Query 18 0.367

Optimized

Query 19 0.005

Concise Query 18 0.005

Quick Sort

Initial Query 8 0.002

Optimized

Query 12 0.008

Concise Query 8 0.003

696

J INFORM SYSTEMS ENG, 10(23s)

Table 6 highlights the results of Arabic code generation tasks, where issues such as inconsistent

handling of Arabic-specific input and unclear error messages emerged during the testing process. For

example, in the case of Binary Search, the model occasionally misinterpreted sorted Arabic inputs,

affecting its ability to correctly execute comparisons. This highlights the need for iterative prompt

adjustments and enhanced Arabic-specific datasets to mitigate these errors. Additionally, Linear Search

tasks saw increased lines of code due to ChatGPT 3.5's inability to condense repetitive logic effectively

in Arabic compared to its English counterpart.

4.2 ChatGPT 4.0 Experiments

The experiments on ChatGPT 4.0 focused on its ability to generate and optimize Python code

for Linear Search, Binary Search, and Quick Sort in both English and Arabic. The results were analyzed

for query types, code length, and execution time, highlighting ChatGPT 4.0's advancements in

optimization and efficiency across languages. A notable observation is the stark differences in execution

speeds between English and Arabic outputs. For example, while Linear Search in English exhibited an

execution time of 0.003 seconds in its initial query, the same task in Arabic required 2.335 seconds, as

shown in Table 8. These disparities are largely attributable to the inherent complexities of processing

Arabic text, such as its right-to-left script and the additional computational overhead needed to handle

structural and syntactic nuances. Similarly, Binary Search and Quick Sort in Arabic also demonstrated

longer execution times compared to their English counterparts, despite comparable lines of code in

some cases.

Table 7: Results of ChatGPT 4.0 for English Linear Search, Binary Search, and Quick

Sort.

Algorithm Query Type

Lines of

Code

Execution Time

(seconds)

Linear

Search

Initial Query 17 0.003

Optimized

Query 16 0.004

Concise Query 13 0.009

Binary

Search

Initial Query 26 0.007

Optimized

Query 21 0.005

Concise Query 13 0.008

Quick Sort

Initial Query 21 0.008

Optimized

Query 16 0.004

Concise Query 7 0.003

Table 7 shows ChatGPT 4.0's results for generating and optimizing Python code in English for

Linear Search, Binary Search, and Quick Sort. Linear Search shows reduced lines of code but a slight

increase in execution time. Binary Search demonstrates a significant reduction in code length with

minor improvements in execution time. Quick Sort optimizes both code length and execution time,

reflecting ChatGPT 4.0's ability to streamline code across algorithms. When addressing linguistic

complexities, ChatGPT 4.0 exhibited notable improvements over 3.5 but still encountered similar

challenges. For instance, while Arabic outputs for Quick Sort showed better modularization and fewer

syntax errors than 3.5, structural mismatches and overly literal translations persisted in tasks like

Binary Search. These issues often stemmed from the model’s inability to adapt pre-trained coding

conventions for high-resource languages to Arabic’s unique linguistic features. Despite these challenges,

ChatGPT 4.0 demonstrated superior adaptability in Arabic-specific contexts, particularly in reducing

redundant logic and improving readability across optimized queries.

697

J INFORM SYSTEMS ENG, 10(23s)

Table 8: Results of ChatGPT 4.0 for Arabic Linear Search, Binary Search, and Quick

Sort.

Algorithm Query Type

Lines of

Code

Execution Time

(seconds)

Linear

Search

Initial Query 27 2.335

Optimized

Query 23 1.892

Concise Query 11 0.005

Binary

Search

Initial Query 35 1.078

Optimized

Query 36 0.002

Concise Query 28 0.004

Quick Sort

Initial Query 41 0.001

Optimized

Query 36 0.003

Concise Query 25 0.004

Table 8 summarizes ChatGPT 4.0’s performance in Arabic code generation for Linear Search,

Binary Search, and Quick Sort. Linear Search shows a significant reduction in execution time and lines

of code in the concise query. Binary Search improves execution time (0.002 seconds) despite a slight

increase in code length. Quick Sort consistently reduces both lines of code and execution time,

highlighting ChatGPT 4.0's ability to optimize performance across tasks. These findings suggest that

ChatGPT 4.0’s ability to handle Arabic linguistic complexities was enhanced compared to 3.5, but

persistent issues with translation accuracy and computational overhead underscore the need for further

refinement in Arabic-specific datasets and model tuning.

4.3 Comparative Summary

The comparative analysis highlights the performance of ChatGPT 3.5 and 4.0 in generating

concise Python code for Linear Search, Binary Search, and Quick Sort across English and Arabic. The

results examine lines of code and execution time to evaluate trade-offs between conciseness and

performance across the two versions. In particular, Arabic coding tasks introduced unique challenges

not present in English tasks, such as handling linguistic nuances, structural mismatches, and

computational overhead due to the complexity of Arabic syntax. These challenges often resulted in

longer execution times and increased lines of code for Arabic tasks compared to their English

counterparts.

Table 9: Comparative summary of concise versions for ChatGPT 3.5 and ChatGPT 4.0

(in English and Arabic).

Algorithm

Versio

n

Languag

e

Lines of

Code

Execution Time

(seconds)

Linear

Search

3.5 English 2 0

4 English 13 0.009

3.5 Arabic 7 0

4 Arabic 11 0.005

Binary

Search

3.5 English 18 0.005

4 English 13 0.008

3.5 Arabic 18 0.005

4 Arabic 28 0.004

Quick Sort

3.5 English 8 0.003

4 English 7 0.003

3.5 Arabic 8 0.003

4 Arabic 25 0.004

698

J INFORM SYSTEMS ENG, 10(23s)

The trends observed indicate that ChatGPT 4.0 generally produced more concise code,

particularly for Quick Sort, but at times this conciseness came at the expense of execution speed,

especially for Arabic tasks. For example, while Binary Search in Arabic demonstrated improved

modularization and readability under ChatGPT 4.0, it also saw a significant increase in lines of code

compared to 3.5. This suggests that the improvements in code quality and clarity made by 4.0 required

additional computational resources in certain scenarios.

Another notable trend is the improvement in ChatGPT 4.0's ability to handle linguistic

complexities, which allowed it to generate more syntactically accurate Arabic code compared to 3.5.

However, these improvements were not uniform across all tasks. For Linear Search, while 4.0 produced

more structured code in Arabic, it required slightly more lines of code and increased execution time

compared to 3.5. On the other hand, Quick Sort consistently benefited from 4.0's refinements in both

languages, showcasing shorter and more efficient outputs.

4.4. Discussion:

This study provides a novel evaluation of ChatGPT’s performance in Arabic-based coding tasks,

focusing on Python code generation, optimization, and streamlining for algorithms such as Linear

Search, Binary Search, and Quick Sort. By comparing ChatGPT versions 3.5 and 4.0 in both English and

Arabic, our findings reveal significant differences that highlight the challenges of adapting large

language models (LLMs) for low-resource languages like Arabic. The results show that ChatGPT’s

performance in Arabic, while functional, lags behind its English performance in terms of code

complexity and execution speed. GPT-4 demonstrated improvements in generating more concise code,

particularly for Quick Sort, in both languages.

 However, these gains often came at the cost of slower execution times in Arabic. For instance,

although the code for Linear Search was shorter in GPT-4, it took longer to execute in Arabic than in

English. These findings align with prior studies [17, 24] showing that large language models face

performance challenges in low-resource languages due to limited training data and linguistic

complexity.

Our results support earlier research on the limitations of AI-assisted coding tools in low-

resource languages. Previous studies noted that GPT models perform better in high-resource languages

like English, where they benefit from extensive programming data [13]. Conversely, languages like

Arabic, with fewer coding resources, pose greater difficulties for these models. This study builds on

these findings by using an iterative testing framework with expert validation and error analysis. For

example, our results confirm that ChatGPT’s performance in Arabic code generation is less efficient

than in English, with binary search algorithms in Arabic showing higher time complexity in both GPT-

3.5 and GPT-4. The implications of these findings are critical for developing AI-assisted coding tools,

especially in low-resource linguistic environments. While GPT-4 improves on code conciseness and

modularity, its performance in Arabic remains hindered by slower execution and increased complexity,

particularly in tasks like Quick Sort. These trade-offs between code simplicity and performance are

crucial for developers in Arabic-speaking regions. The study highlights that improvements in code

generation for low-resource languages must go beyond syntax correction and modularization. As Liu et

al. (2023) suggested, prompt design and language-specific optimizations are vital to improving LLMs

like ChatGPT in these contexts. Our findings emphasize the need for models that can handle the

structural and grammatical challenges of Arabic without sacrificing efficiency[18].

Moreover, the deployment of AI coding tools like ChatGPT in Arabic-speaking regions raises

important ethical and socio-economic considerations. Biases stemming from disparities in training data

between high-resource and low-resource languages can exacerbate existing inequalities, limiting the

effectiveness of these tools in diverse linguistic contexts. Addressing these biases requires diversifying

datasets and enhancing language-specific model tuning to ensure equitable performance. From a socio-

economic perspective, these tools have the potential to democratize access to programming and drive

localized innovation. However, careful implementation is necessary to avoid over-reliance on English-

based systems and to empower local industries to develop culturally and linguistically relevant software

solutions that address regional challenges. These insights provide actionable opportunities for AI

developers and programmers, particularly those working with Arabic and other low-resource languages.

By leveraging the specific challenges identified in this study, AI developers can focus on refining

699

J INFORM SYSTEMS ENG, 10(23s)

language-specific models that address common pitfalls such as inefficiency in execution time and

increased complexity. This refinement can involve enhancing training datasets with diverse Arabic

dialects and programming contexts, improving transfer learning techniques, and optimizing model

architecture for the syntactic and semantic nuances of Arabic.

For programmers, these findings can inform the development of customized tools for

educational and industrial applications in Arabic-speaking regions. For instance, localized coding

platforms and intelligent tutoring systems could be designed to assist students and professionals by

simplifying complex tasks like algorithm implementation and debugging. Moreover, these tools could

support the creation of real-world applications such as data analytics software and machine learning

pipelines that require region-specific customization, enabling businesses to innovate more effectively

in Arabic-speaking markets.

In addition, the ability to generate concise and efficient code in Arabic could significantly

impact industries such as fintech, healthcare, and e-governance, where localized software solutions are

critical. By improving the adaptability of AI models for Arabic coding tasks, developers can enhance

accessibility, streamline development workflows, and reduce the reliance on English-based systems in

multilingual environments. These advancements could not only democratize programming education

but also empower local industries to leverage cutting-edge AI tools for their unique needs.

The findings of this study highlight the broader implications of enhancing AI coding tools for

low-resource languages, particularly in relation to the Sustainable Development Goals (SDGs). By

addressing the challenges of Arabic-based coding tasks, this research contributes directly to SDG 4 by

enabling equitable access to programming education and fostering technical literacy in Arabic-speaking

regions. The improved performance of ChatGPT in generating and optimizing code in Arabic opens

doors for creating region-specific educational tools and resources that democratize technology

education. Additionally, the study supports SDG 9 by fostering innovation in low-resource linguistic

environments [9]. Enhanced AI capabilities in Arabic coding tasks can drive the development of

localized software solutions, support infrastructure-building efforts, and empower industries in Arabic-

speaking countries to leverage cutting-edge technologies [11]. These contributions not only address the

disparities in access to AI-assisted tools but also promote a more inclusive and sustainable approach to

global technological development.

Several limitations should be acknowledged. The study focused on three algorithms, which may

not fully capture the range of coding challenges developers face. Additionally, the Arabic translations,

although validated, may not reflect the full diversity of dialects or regional terms. This could affect

ChatGPT’s ability to generalize across different coding tasks. Moreover, the study did not address

security or defect detection in AI-generated code, which are important factors for professional software

development. Future studies should incorporate these aspects for a more comprehensive assessment of

ChatGPT’s capabilities. The study’s findings point to several avenues for future research. Improving

ChatGPT’s performance in Arabic will likely require fine-tuning LLMs for low-resource languages by

developing more comprehensive programming datasets and using transfer learning techniques [15].

Expanding the range of coding tasks and algorithms tested, including more complex operations such as

data structures and machine learning models, will further clarify how ChatGPT handles diverse

challenges. Furthermore, exploring collaborative frameworks that integrate AI and human expertise in

multilingual environments could yield more practical and effective solutions for coding challenges in

low-resource languages. This approach would ensure that AI tools remain both functional and

contextually relevant, addressing the diverse needs of developers and industries globally.

5. CONCLUSION

This study advances the understanding of ChatGPT’s performance in low-resource linguistic

environments, specifically in Arabic-based coding tasks. Through a comparative analysis of GPT-3.5

and GPT-4, we have demonstrated the ongoing challenges these models face in generating and

optimizing code in languages with limited training data and coding resources. While GPT-4 shows

improvements in certain areas, such as code conciseness, its performance in Arabic-based tasks is

marked by trade-offs in execution speed and complexity. These findings highlight the need for more

targeted efforts in refining AI models to better accommodate the structural and linguistic complexities

700

J INFORM SYSTEMS ENG, 10(23s)

of low-resource languages. The current disparities in performance between English and Arabic suggest

that the global applicability of AI coding tools remains limited, necessitating a more inclusive approach

to model development. Addressing these gaps is crucial for ensuring that AI technologies serve the

broader software development community, particularly in regions where non-English languages are

predominant.

The implications of this study extend beyond technical performance. As AI-based coding tools

become more integral to software development worldwide, the ability to effectively support multiple

languages will be essential to fostering global inclusivity in the field. Future research should focus on

the development of more comprehensive training datasets, as well as the application of transfer learning

and other advanced techniques to improve performance in low-resource languages. Additionally,

exploring more complex coding challenges will further contribute to the evolution of AI-driven coding

solutions. However, this study lays a critical foundation for enhancing the capabilities of AI tools in

diverse linguistic contexts, providing valuable insights for the continued advancement of inclusive and

effective AI technologies.

 REFERENCES:

1. Ouh, E.L., et al. ChatGPT, Can You Generate Solutions for my Coding

Exercises? An Evaluation on its Effectiveness in an undergraduate Java

Programming Course. in Proceedings of the 2023 Conference on Innovation

and Technology in Computer Science Education V. 1. 2023.

2. Wuisang, M.C., et al. An evaluation of the effectiveness of openai's chatGPT for

automated python program bug fixing using quixbugs. in 2023 International

Seminar on Application for Technology of Information and Communication

(iSemantic). 2023. IEEE.

3. Jalil, S., et al. Chatgpt and software testing education: Promises & perils. in

2023 IEEE international conference on software testing, verification and

validation workshops (ICSTW). 2023. IEEE.

4. Megahed, F.M., et al., How generative AI models such as ChatGPT can be (mis)

used in SPC practice, education, and research? An exploratory study. Quality

Engineering, 2024. 36(2): p. 287-315.

5. Chew, R., et al., LLM-assisted content analysis: Using large language models

to support deductive coding. arXiv preprint arXiv:2306.14924, 2023.

6. Neumann, M., M. Rauschenberger, and E.-M. Schön. “We need to talk about

ChatGPT”: The future of AI and higher education. in 2023 IEEE/ACM 5th

International Workshop on Software Engineering Education for the Next

Generation (SEENG). 2023. IEEE.

7. Murali, V., et al., AI-assisted Code Authoring at Scale: Fine-tuning, deploying,

and mixed methods evaluation. Proceedings of the ACM on Software

Engineering, 2024. 1(FSE): p. 1066-1085.

8. Su, H., et al. An Evaluation Method for Large Language Models’ Code

Generation Capability. in 2023 10th International Conference on Dependable

Systems and Their Applications (DSA). 2023. IEEE.

9. Viberg, O., et al., Advancing equity and inclusion in educational practices with

AI‐powered educational decision support systems (AI‐EDSS). 2024, Wiley

Online Library. p. 1974-1981.

701

J INFORM SYSTEMS ENG, 10(23s)

10. Alsobeh, A. and B. Woodward. AI as a partner in learning: a novel student-in-

the-loop framework for enhanced student engagement and outcomes in

higher education. in Proceedings of the 24th Annual Conference on

Information Technology Education. 2023.

11. Khanuja, S., S. Ruder, and P. Talukdar, Evaluating the Diversity, Equity and

Inclusion of NLP Technology: A Case Study for Indian Languages. arXiv

preprint arXiv:2205.12676, 2022.

12. Chen, E., et al. GPTutor: a ChatGPT-powered programming tool for code

explanation. in International Conference on Artificial Intelligence in

Education. 2023. Springer.

13. Zhang, X., Y. Jiang, and Z. Wang. Analysis of automatic code generation tools

based on machine learning. in 2019 IEEE International Conference on

Computer Science and Educational Informatization (CSEI). 2019. IEEE.

14. Lin, D., Y. Murakami, and T. Ishida, Towards language service creation and

customization for low-resource languages. Information, 2020. 11(2): p. 67.

15. Maurya, K. and M. Desarkar. Towards Low-resource Language Generation

with Limited Supervision. in Proceedings of the Big Picture Workshop. 2023.

16. Sontakke, A., et al., Knowledge Transfer for Pseudo-code Generation from

Low Resource Programming Language. arXiv preprint arXiv:2303.09062,

2023.

17. Rahaman, M.S., et al., From ChatGPT-3 to GPT-4: a significant advancement

in ai-driven NLP tools. Journal of Engineering and Emerging Technologies,

2023. 2(1): p. 1-11.

18. Liu, C., et al., Improving chatgpt prompt for code generation. arXiv preprint

arXiv:2305.08360, 2023.

19. Yan, D., Z. Gao, and Z. Liu. A Closer Look at Different Difficulty Levels Code

Generation Abilities of ChatGPT. in 2023 38th IEEE/ACM International

Conference on Automated Software Engineering (ASE). 2023. IEEE.

20. Peng, K., et al., Towards making the most of chatgpt for machine translation.

arXiv preprint arXiv:2303.13780, 2023.

21. Robinson, N.R., et al., ChatGPT MT: Competitive for high-(but not low-)

resource languages. arXiv preprint arXiv:2309.07423, 2023.

22. Cheng, Y., et al., Prompt sapper: a LLM-empowered production tool for

building AI chains. ACM Transactions on Software Engineering and

Methodology, 2024. 33(5): p. 1-24.

23. Al-Thubaity, A., et al. Evaluating ChatGPT and bard AI on Arabic sentiment

analysis. in Proceedings of ArabicNLP 2023. 2023.

24. Alyafeai, Z., et al., Taqyim: Evaluating arabic nlp tasks using chatgpt models.

arXiv preprint arXiv:2306.16322, 2023.

25. Yang, R., et al., Gpt4tools: Teaching large language model to use tools via self-

instruction. Advances in Neural Information Processing Systems, 2024. 36.

26. West, C.G., AI and the FCI: Can ChatGPT project an understanding of

introductory physics? arXiv preprint arXiv:2303.01067, 2023.

702

J INFORM SYSTEMS ENG, 10(23s)

27. Tiwari, K., et al., ChatGPT usage in the Reactome curation process. bioRxiv,

2023.

28. Chen, E., et al., GPTutor: an open-source AI pair programming tool

alternative to Copilot. arXiv preprint arXiv:2310.13896, 2023.

29. Ma, W., et al., LMs: Understanding Code Syntax and Semantics for Code

Analysis. arXiv preprint arXiv:2305.12138, 2023.

30. Xia, C.S. and L. Zhang, Keep the Conversation Going: Fixing 162 out of 337

bugs for $0.42 each using ChatGPT. arXiv preprint arXiv:2304.00385, 2023.

31. McMillan, M., Data structures and algorithms using C. 2007: Cambridge

University Press.

