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This study investigates the problem of ChatGPT’s performance in generating and 
optimizing Python code in both English and Arabic, addressing the challenges of low-
resource languages. The objective is to compare how ChatGPT versions 3.5 and 4.0 
handle standard algorithms-Linear Search, Binary Search, and Quick Sort in terms of 
code generation, optimization, and readability. Using a comparative experimental 
design, key performance metrics such as time complexity, execution speed, and error 
rates were analyzed. The results reveal substantial disparities between the two 
languages: English exhibited efficient code generation, minimal errors, and improved 
optimization, while Arabic encountered higher error rates, slower execution, and 
limited performance gains despite optimization. These findings highlight the 
limitations of AI models in low-resource linguistic environments, underscoring the 
need for fine-tuning to enhance global applicability. This study contributes to 
advancing the understanding of AI coding tools and their ability to support diverse 
linguistic contexts, particularly in underrepresented languages like Arabic. 
Keywords: ChatGPT, Software Problem-solving, Arabic text, Natural Language 
Processing. 

1.INTRODUCTION: 

AI-based code generation tools, such as ChatGPT, have gained significant attention for 

streamlining coding tasks. The evolution of AI in coding can be traced back to early attempts at 

automating code generation in the 1990s, with basic rule-based systems that provided limited 

assistance to developers [1]. With advancements in machine learning and the availability of vast 

datasets, AI has evolved to support more complex tasks, leading to the development of largescale 

language models [2]. The introduction of models like OpenAI's GPT series marked a significant leap in 

AI's ability to understand and generate natural language text, including code. GPT-3, in particular, 

showcased the potential of using AI to assist in various coding-related activities [3]. GPT-3's success 

paved the way for more advanced iterations like GPT-3.5 and GPT-4, which exhibit even greater 

proficiency in understanding user prompts and generating accurate code snippets [4, 5]. 

These developments have positioned tools like ChatGPT at the forefront of AI-assisted coding 

solutions. These tools use largescale language models trained on vast amounts of text data to assist 

developers in generating code snippets, debugging, and providing documentation [6, 7]. Tools like 

Code-Compose have demonstrated the practical impact of LLMs on an industrial scale. However, 
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challenges persist, particularly around code security, as AI-generated code may introduce bugs or 

vulnerabilities requiring human validation. Additionally, the performance of models like ChatGPT and 

Bing AI varies depending on specific use cases, underscoring the need for contextual evaluation [8].  

The advancements in artificial intelligence (AI) and natural language processing (NLP) hold 

immense potential to address global disparities in access to technology and education, aligning with the 

Sustainable Development Goals (SDGs)[9]. Specifically, SDG 4 (Quality Education) emphasizes the 

need for inclusive and equitable education, which can be achieved by democratizing access to 

programming literacy through AI tools like ChatGPT. By improving ChatGPT's capabilities in low-

resource languages such as Arabic, this research facilitates the creation of localized educational 

resources and tools that empower underrepresented communities to participate in the digital 

economy[10]. Furthermore, SDG 9 (Industry, Innovation, and Infrastructure) underscores the 

importance of fostering innovation and building resilient technological infrastructures [11]. This study 

fills a critical gap in the existing literature by addressing the underperformance of AI tools like ChatGPT 

in low-resource languages, particularly Arabic, a challenge that has been underexplored in prior studies. 

By systematically evaluating and comparing GPT-3.5 and GPT-4, this study not only provides a nuanced 

understanding of their capabilities in multilingual contexts but also highlights the specific challenges 

posed by low-resource languages in code generation, optimization, and readability.  This study 

addresses the technological gaps in low-resource linguistic environments by enhancing AI's ability to 

generate, optimize, and debug code in Arabic. Such advancements support localized innovation and 

contribute to a more inclusive and equitable global technology landscape. 

Current research heavily emphasizes the capabilities of these models in high-resource 

languages like English, which benefit from extensive programming literature and datasets [12]. While 

GPT-3, GPT-3.5, and GPT-4 have made significant advancements in high-resource languages, adapting 

these models for low-resource languages such as Arabic has proven challenging. Zhang et al. (2023) [13] 

demonstrated that these models effectively support developers in high-resource environments by 

generating accurate code snippets and facilitating API exploration. However, their application in low-

resource languages reveals significant performance gaps. Lin, Murakami, and Ishida (2020) [14] 

emphasized that the lack of high-quality training data and coding repositories in languages like Arabic 

significantly hampers developer productivity. Research has explored strategies like transfer learning 

and zero-shot modeling to adapt models to new tasks without explicit training, but these approaches, 

primarily focused on natural language generation (NLG), have not fully addressed the complexities in 

code generation for low-resource languages [15]. Sontakke et al. (2023) found that transferring coding 

models from high-resource to low-resource languages yields only limited improvements, suggesting 

that the inherent complexity of Arabic and its lack of comprehensive datasets remain significant 

obstacles[16]. 

This focus on English overlooks challenges faced in coding tasks conducted in lower-source 

languages like Arabic, where limited data availability affects AI models' performance [17]. The 

effectiveness of ChatGPT in code optimization and readability presents additional challenges in low-

resource languages. Liu et al. (2023) noted that in high-resource languages, careful prompt crafting 

enhances ChatGPT’s ability to generate optimized code snippets [18]. However, these techniques alone 

do not fully address the unique challenges in Arabic coding contexts. further studies observed that 

ChatGPT’s performance in generating simple and readable code in Arabic impacts long-term project 

sustainability. Additionally, debugging and defect detection are particularly problematic. Yan et al. 

(2023) and Liu et al. (2023) found that when tackling complex coding problems in Arabic, ChatGPT 

often produces incorrect outputs that require extensive human intervention [18, 19]. Peng et al. (2023) 

highlighted that ChatGPT’s translation capabilities in non-English languages are hindered by 

insufficient training data, creating challenges in debugging and refining code in Arabic[20]. Robinson 

et al. (2023) underscored these issues, emphasizing ChatGPT’s struggles with code optimization and 

debugging in low-resource languages[21]. 

Early versions of ChatGPT exhibited varying levels of success depending on the specificity and 

clarity of user prompts, which spurred research into how prompt design could be optimized for better 

outcomes [22]. Yet, there is limited research exploring ChatGPT's effectiveness in lower-resource 

languages like Arabic, despite its growing importance in the global software development community. 
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The recurring underperformance of ChatGPT in Arabic underscores the need for focused research to 

improve its capabilities in low-resource languages. Al-Thubaity et al. (2023) [23] demonstrated that 

ChatGPT has limited capabilities in generating high-quality dialectal Arabic text, while smaller models 

fine-tuned for Arabic often outperform ChatGPT in producing readable and maintainable code. These 

findings highlight the limitations of ChatGPT in handling various aspects of Arabic coding and 

underline the need for optimization in these environments. Although these studies outline general 

challenges, no comprehensive research has directly compared GPT-3.5 and GPT-4 in Arabic-specific 

coding tasks, a gap this study aims to address. 

Although GPT-3.5 and GPT-4 have been extensively compared in high-resource languages, 

limited research exists on their performance in Arabic coding contexts. Alyafeai et al. (2023) [24] 

demonstrated that GPT-4 outperforms GPT-3.5 in several Arabic natural language processing tasks, 

laying the groundwork for further exploration in software-related applications. This study aims to 

directly compare GPT-3.5 and GPT-4 in generating Python code for standard algorithms in Arabic, 

utilizing new performance metrics specifically tailored to low-resource language contexts. These metrics 

will provide a nuanced evaluation of how effectively these models handle the unique challenges posed 

by Arabic’s linguistic features, addressing broader issues in low-resource language coding. 

Early evidence suggests that ChatGPT underperforms in Arabic natural language processing 

tasks compared to smaller models tailored for Arabic. This raises critical questions about ChatGPT's 

ability to handle code generation, repair, and summarization in Arabic, a language that presents unique 

challenges due to its complex structure and limited coding literature. Current evaluations of AI models 

often prioritize functional code generation while neglecting aspects like code optimization and 

simplicity. Although ChatGPT shows potential in creating modular and efficient code, challenges 

remain in handling complex coding scenarios, indicating a need to explore how ChatGPT balances 

tradeoffs between code simplicity, readability, and performance. Moreover, the emergence of newer 

ChatGPT versions, such as GPT-3.5 and GPT-4, has introduced enhanced capabilities and expanded use 

cases for AI-based coding tools [25]. While there are indications of improvements in newer versions, 

comprehensive comparisons between GPT-3.5 and GPT-4 in coding contexts, particularly in Arabic, are 

sparse. Understanding how these versions perform in generating, optimizing, and rewriting code in 

Arabic remains unclear and is a key focus of this study [26, 27]. 

Additionally, the literature points to maintainability issues in ChatGPT-generated code, 

emphasizing the importance of readability for long-term code management [28]. Yet, the extent to 

which ChatGPT can streamline code while preserving performance remains unclear, necessitating 

further exploration. This study aims to fill this gap by evaluating how ChatGPT performs in coding 

tasks within a low-resource linguistic environment, with a focus on Arabic. Addressing this gap is 

crucial for improving AI coding tools' accessibility and utility worldwide, particularly for developers 

working in diverse linguistic contexts. The findings from this study could serve as a foundation for 

developing more effective multilingual AI tools by identifying actionable strategies to improve their 

performance in underrepresented languages. By addressing both technical and linguistic challenges, 

this research can inform the creation of more inclusive, scalable AI coding solutions tailored to diverse 

linguistic needs. 

These gaps lead to the following key research questions: 

● R1: How effective is ChatGPT (versions 3.5 and 4.0) in generating Python code for standard 

algorithms, and how do these versions compare in terms of time complexity and execution 

speed? 

● R2: What are the differences in ChatGPT's performance when generating and optimizing code 

in English versus Arabic, and what impact do these differences have on coding efficiency? 

● R3: How does ChatGPT balance code simplicity, readability, and performance when prompted 

to optimize or rewrite code more concisely? 

 

2. MATERIAL AND METHODS: 

This study evaluates ChatGPT's ability to solve software problems with a focus on Arabic language 

processing. Using an iterative approach [29, 30], the study assesses ChatGPT's performance in code 
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generation, repair, and summarization. The process is outlined in five key steps, as depicted in Figure 

1. 

 

Three Python Algorithms-Linear Search, Binary Search, and Quick-Sort-were chosen to represent 

varying levels of complexity, from easy to complex. The tasks were translated into Arabic and 

validated through expert feedback. Errors were identified, logged, and corrected through multiple 

iterations. Performance was measured using key metrics such as accuracy, precision, recall, and code 

readability to evaluate ChatGPT's effectiveness in these tasks. The study concludes by discussing 

ChatGPT's strengths and limitations in handling Arabic-based software problems, offering insights into 

potential improvements for its application in low-resource languages. The iterative process, supported 

by expert feedback, ensures a comprehensive evaluation of ChatGPT's capabilities. 

2.1. Task Complexity Grading:  

The selected algorithms are classified into three complexity levels-easy, intermediate, and complex 

to evaluate ChatGPT's adaptability across varying tasks. The selection of these algorithms is specifically 

tailored to assess ChatGPT’s performance in low-resource coding contexts, such as Arabic, by examining 

how well the model handles diverse linguistic and computational challenges. 

● Linear Search: Classified as easy, this algorithm iterates through a list to find a target value. 

With a linear time, complexity of 0(𝑛), it is simple and suitable for beginners [31]. In the context 

of Arabic, Linear Search serves as a baseline for testing ChatGPT’s ability to handle 

straightforward algorithms while accounting for Arabic-specific challenges, such as accurate 

syntax generation and semantic clarity in translated prompts. 

● Binary Search: An intermediate-level algorithm, binary search requires an ordered list and uses 

a divide-and-conquer approach. It offers a time complexity of O (log n), making it more efficient 

than linear search for large datasets [31]. This algorithm is particularly relevant to Arabic 

because it tests ChatGPT’s ability to manage hierarchical logic and ordered data structures in a 

linguistically complex setting, where accurate interpretation of sorted data and conditional 

logic may be influenced by language-specific nuances. 

● Quick-Sort: This complex algorithm employs a divide-and-conquer strategy to sort lists. It has 

an average time complexity of O (n log n), though it can degrade to O(n^2) in the worst case 

due to its recursive partitioning technique [31]. Quick-Sort evaluates ChatGPT’s proficiency in 

handling advanced computational tasks involving recursion and modularization, both of which 

are challenging in low-resource languages like Arabic due to their linguistic complexity and 

limited training data. Recursive algorithms, in particular, provide insight into the model’s 

ability to generate efficient and readable code in such contexts. 

 

By including these three algorithms, the study captures a comprehensive range of computational tasks 

to systematically explore ChatGPT’s performance in addressing the unique linguistic and computational 

challenges of low-resource languages, such as Arabic. This selection ensures that the findings are 

representative of real-world coding scenarios encountered in underrepresented linguistic 

environments. These algorithms form the basis for systematically exploring ChatGPT’s performance in 

software problem-solving. 
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2.2. Iterative Interaction with ChatGPT (Revised with Additions for Feedback Cycle) 

This step involves an iterative process of translation, expert validation, task processing, and 

error analysis. The experimental design is uniquely original, developed to address the linguistic and 

computational challenges posed by low-resource languages like Arabic. Unlike conventional 

frameworks used for high-resource languages, this design incorporates innovative adjustments that 

account for Arabic's structural complexity and linguistic nuances. 

Arabic instructions are designed with domain-specific terminology to ensure clarity and avoid 

ambiguities. The process combines translation refinement, linguistic validation, and iterative prompt 

adjustments, reflecting a pioneering approach to evaluating AI performance in underrepresented 

languages. To tackle issues such as structural complexity, lack of direct equivalences for technical terms, 

and dialectal variations, domain-specific terminology was iteratively refined and validated by experts. 

This ensured that prompts were both linguistically accurate and computationally viable. 

The translation phase, facilitated by ChatGPT, was followed by expert review to ensure fluency, 

coherence, and technical correctness. Translation accuracy was improved through iterative 

modifications until the desired precision was achieved. Additionally, error analysis accounted for 

linguistic nuances affecting Arabic programming syntax, including adjustments for deviations from 

standard programming conventions caused by literal translations. This adaptation helped identify and 

address model limitations in Arabic-specific contexts, improving its coding performance. 

Systematic error analysis tracked various error types (syntax, logic, runtime), logging details 

such as the prompt, error encountered, and iterations needed for correction. The framework specifically 

focused on errors unique to low-resource languages, such as ambiguities in linguistic constructs and 

difficulties in interpreting Arabic-specific task descriptions. By identifying these errors, the framework 

provided actionable insights into enhancing AI models for underrepresented linguistic environments. 

A scoring system evaluated the severity of errors, and expert feedback guided adjustments to 

reduce mistakes. The iterative process continued for a maximum of five cycles, with performance 

metrics (accuracy, readability) monitored until a predefined threshold (90% correctness) was reached 

or improvements plateaued. This threshold accounted for the additional complexity of achieving high 

accuracy in low-resource languages, where sparse datasets and linguistic diversity required more 

iterations than typically needed for high-resource languages. Performance tracking was logged using 

version control systems to document code evolution and measure ChatGPT’s progress over time. 

2.3. Analysis and Performance Metrics  

The outputs ChatGPT generates in response to Arabic instructions in Step 3 are analyzed to 

assess the accuracy and reliability of these responses within the original software-related tasks. To 

accomplish this, a set of specific performance metrics is employed, providing a robust framework to 

measure ChatGPT's aptitude in solving Arabic-based software problems, including code generation, 

repair, and summarization. The metrics include accuracy, precision, recall, and a detailed grading 

rubric, which allow a comprehensive assessment of ChatGPT's performance across different tasks. 

Code Generation Accuracy: The accuracy of the code generated by ChatGPT will be 

benchmarked using automated code testing frameworks, such as unit tests, to validate the correctness 

of the generated code against expected outcomes. The tests will cover edge cases, typical use cases, and 

error handling to ensure comprehensive evaluation. Additionally, accuracy will be assessed based on 

the logical structure of the generated code in alignment with the algorithm's intended functionality. 

2.4. Code Repair Evaluation (Precision and Recall): 

Clarifying Use of Precision and Recall: While precision and recall are typically used in 

classification tasks, they can be adapted to code repair by measuring the correctness of ChatGPT's 

responses. In this context: 

Precision will be calculated as the ratio of correct code fixes suggested by ChatGPT to the total number 

of suggestions provided. It measures how many of the suggested repairs are actually correct. Recall will 

be used to measure the proportion of errors in the original code that ChatGPT successfully identifies 

and rectifies. It reflects how many of the total existing errors were correctly addressed by ChatGPT. 

These metrics will be benchmarked against a set of predefined correct solutions vetted by experts to 

ensure consistency and relevance in the evaluation. 
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2.5. Code Readability and Complexity (Grading Rubric): 

A detailed grading rubric will assess the readability of ChatGPT-generated code, focusing on 

criteria such as adherence to coding standards (consistent naming, variable use, PEP 8 compliance), 

effective commenting, logical code structure, and modularization for maintainability. Code complexity 

will be measured using cyclomatic complexity to assess independent paths through the code. The goal 

is to ensure the code is both simple and maintainable. Summarization quality will be evaluated based 

on precision and recall, ensuring key elements are captured concisely. Experts will score the code and 

summaries on clarity, conciseness, and relevance, providing a quantitative assessment. 

 

3. EXPERIMENTS 

3.1. Experiment 1: English Coding Performance on ChatGPT 3.5 

We prompted ChatGPT to generate Python code for three algorithms-Linear Search, Binary 

Search, and Quick Sort-using the standardized phrase: "Write a simple Python code for [Algorithm 

Name]." The experiment was conducted with Python 3.9 using default settings to replicate general-use 

conditions. The generated code was evaluated using a grading rubric based on readability, including 

criteria such as commenting, code structure, adherence to Python's PEP 8 standards, and 

modularization. The time complexity of each algorithm was then analyzed based on the generated code. 

Table 1: Result for Query Number One 

Algorithm Time Complexity 

Linear 

Search O(n) 

Binary 

Search O (log n) 

Quick Sort 

O (n log n) on average, O(n²) in the worst 

case 

Experiment Evaluation: Binary Search was the most efficient algorithm due to its logarithmic 

complexity. The generated code adhered to proper commenting and Python standards, showing good 

readability and modularization. The time complexity of each algorithm was then analyzed based on the 

generated code, as shown in Table 1. 

3.2. Experiment 1: Performance of ChatGPT 4.0 in english Coding Tasks 

The experiment on ChatGPT 4.0 used the prompt: "Provide a simple Python code for 

[Algorithm Name]," ensuring consistency with previous trials. Python 3.9 was used for evaluation, and 

the generated code was reviewed using a grading rubric assessing readability, including criteria such as 

commenting, structure, adherence to coding standards, and proper modularization. For Linear Search, 

the time complexity was O(n), as the algorithm iterates through the list until the target element is found.  

Binary Search resulted in a more complex time evaluation with a combined complexity of O(n 

log n + m log m + n log m), influenced by sorting and binary search operations. Quick Sort had a time 

complexity of O(n log n), attributed to its recursive, divide-and-conquer strategy. Table 2 provides a 

summary of the time complexities for these algorithms. The generated code demonstrated effective 

readability, with proper use of comments, adherence to Python's best practices, and a well-structured, 

modularized approach. 

Table 2: Result for Query Number One 

Algorithm Time Complexity 

Linear 

Search O(n) 

Binary 

Search O (n log n + m log m + n log m) 

Quick Sort 

O (n log n) on average, O(n²) in the worst 

case 
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3.3. Experiment 1: Performance of ChatGPT 3.5 in Arabic Coding Tasks 

We prompted ChatGPT in Arabic to generate Python code for three algorithms: Linear Search, 

Binary Search, and Quick Sort, to solve a document similarity problem. For Linear Search, the prompt 

used was: "المستندات الخطي لحل مشكلة فحص تشابه  البحث  بايثون لخوارزمية  لغة  باستخدام   resulting in a time ",برنامج بسيط 

complexity of O(m + n), where m and n represent the lengths of the documents. This algorithm utilized 

set operations to calculate document similarity, producing code that adhered to Python standards with 

proper comments and modular functions. Binary Search was prompted with: "  برنامج بسيط باستخدام لغة بايثون

 yielding a time complexity of O(log m), where m denotes ",لخوارزمية البحث الثنائي لحل مشكلة فحص تشابه المستندات

the number of words in the document. The algorithm operated on a sorted list of words, and the 

generated code demonstrated clear variable usage, proper structuring, and comprehensive comments. 

 For Quick Sort, the prompt: " تشابه فحص  مشكلة  لحل  السريع  الفرز  لخوارزمية  بايثون  لغة  باستخدام  بسيط  برنامج 

 .resulted in a time complexity of O(n log n) on average, with a worst-case complexity of O(n²) "المستندات

The implementation followed the standard Quick-Sort approach with modularization and detailed 

commenting to enhance readability. Table 3 summarizes the time complexities for the three algorithms. 

Binary Search was evaluated as the most efficient algorithm due to its O(log m) complexity. Overall, the 

generated code met readability standards with clear comments, good structure, and proper 

modularization. 

Table 3: Arabic Result for Query Number One 

Algorithm Time Complexity 

Linear 

Search 

O (m + n), where m and n are the lengths of the input 

documents 

Binary 

Search 

O (log m), where m is the number of words in the 

document 

Quick Sort O (n log n) on average, O(n²) in the worst case 

3.4. Experiment 1: Performance of ChatGPT 4.0 in Arabic Coding Tasks 

We prompted ChatGPT in Arabic to generate Python code for Linear Search, Binary Search, 

and Quick Sort to solve document similarity problems. For Linear Search, the prompt was: "  برنامج بسيط

 .and it resulted in a time complexity of O(n) ",باستخدام لغة بايثون لخوارزمية البحث الخطي لحل مشكلة فحص تشابه المستندات

The algorithm calculates cosine similarity between the target and each document, iterating through the 

collection linearly. For Binary Search, the prompt: " ث الثنائي لحل مشكلة  برنامج بسيط باستخدام لغة بايثون لخوارزمية البح 

المستندات تشابه   yielded a time complexity of O(n log n), as the algorithm sorts similarities in "فحص 

descending order and uses binary search to efficiently find matches above the threshold. 

 Quick Sort, prompted with: " تشابه فحص  مشكلة  لحل  السريع  الفرز  لخوارزمية  بايثون  لغة  باستخدام  بسيط  برنامج 

 also had a time complexity of O(n log n), where the algorithm applied quick sort to organize ",المستندات

similarities, followed by binary search to find relevant matches. Table 4 summarizes the time 

complexities of the algorithms generated by ChatGPT 4.0 in response to Arabic prompts. Linear Search 

operates with a linear time complexity, while Binary Search and Quick Sort exhibit logarithmic 

complexities, making them more efficient for larger datasets. 

Table 4: Arabic Result for Query Number One (ChatGPT 4.0) 

Algorithm Time Complexity 

Linear 

Search O(n) 

Binary 

Search O (log n) 

Quick Sort 

O (n log n) on 

average 

4. RESULTS 

This section presents the statistical outcomes of experiments conducted using ChatGPT 3.5 and 

4.0 for generating, optimizing, and minimizing Python code for three algorithms: Linear Search, Binary 

Search, and Quick Sort. The results are summarized in tables showing lines of code and execution time 

for each query type (initial, optimized, and concise) in both English and Arabic. 
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4.1 ChatGPT 3.5 Experiments 

The experiments on ChatGPT 3.5 evaluated its performance in generating and optimizing 

Python code for three algorithms: Linear Search, Binary Search, and Quick Sort. The results were 

analyzed based on query types, lines of code, and execution time to assess the efficiency and impact of 

optimization. When tasked with generating Python code in Arabic, ChatGPT 3.5 faced distinct 

challenges arising from the structural and linguistic complexities of the language. For example, the 

accuracy of translations was often impacted by literal interpretations of terms, leading to outputs that 

occasionally required human intervention for correction. Arabic's unique syntactic structure and lack 

of direct equivalence for certain technical terms posed additional difficulties, resulting in patterns of 

errors such as mismatched variables or unclear loop constructions. These challenges were most 

pronounced in tasks involving algorithms like Quick Sort, where recursion and partitioning logic 

required precise terminology. 

Table 5: Results of ChatGPT 3.5 for English Linear Search, Binary Search, and Quick 

Sort. 

Algorithm Query Type 

Lines of 

Code 

Execution Time 

(seconds) 

Linear 

Search 

Initial Query 9 0.002 

Optimized 

Query 9 0.003 

Concise Query 2 0 

Binary 

Search 

Initial Query 18 0.367 

Optimized 

Query 18 0.412 

Concise Query 18 0.005 

Quick Sort 

Initial Query 8 0.002 

Optimized 

Query 14 0.008 

Concise Query 8 0.003 

 

Table 5 summarizes ChatGPT 3.5’s results for generating and optimizing Python code in 

English. Execution times vary slightly, especially for Binary Search, while concise versions reduce code 

length and improve execution time for Linear Search, highlighting optimization. 

 

Table 6: Results of ChatGPT 3.5 for Arabic Linear Search, Binary Search, and Quick 

Sort. 

Algorithm Query Type 

Lines of 

Code 

Execution Time 

(seconds) 

Linear 

Search 

Initial Query 12 0.002 

Optimized 

Query 12 0.003 

Concise Query 7 0 

Binary 

Search 

Initial Query 18 0.367 

Optimized 

Query 19 0.005 

Concise Query 18 0.005 

Quick Sort 

Initial Query 8 0.002 

Optimized 

Query 12 0.008 

Concise Query 8 0.003 
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Table 6 highlights the results of Arabic code generation tasks, where issues such as inconsistent 

handling of Arabic-specific input and unclear error messages emerged during the testing process. For 

example, in the case of Binary Search, the model occasionally misinterpreted sorted Arabic inputs, 

affecting its ability to correctly execute comparisons. This highlights the need for iterative prompt 

adjustments and enhanced Arabic-specific datasets to mitigate these errors. Additionally, Linear Search 

tasks saw increased lines of code due to ChatGPT 3.5's inability to condense repetitive logic effectively 

in Arabic compared to its English counterpart. 

4.2 ChatGPT 4.0 Experiments 

The experiments on ChatGPT 4.0 focused on its ability to generate and optimize Python code 

for Linear Search, Binary Search, and Quick Sort in both English and Arabic. The results were analyzed 

for query types, code length, and execution time, highlighting ChatGPT 4.0's advancements in 

optimization and efficiency across languages. A notable observation is the stark differences in execution 

speeds between English and Arabic outputs. For example, while Linear Search in English exhibited an 

execution time of 0.003 seconds in its initial query, the same task in Arabic required 2.335 seconds, as 

shown in Table 8. These disparities are largely attributable to the inherent complexities of processing 

Arabic text, such as its right-to-left script and the additional computational overhead needed to handle 

structural and syntactic nuances. Similarly, Binary Search and Quick Sort in Arabic also demonstrated 

longer execution times compared to their English counterparts, despite comparable lines of code in 

some cases. 

Table 7: Results of ChatGPT 4.0 for English Linear Search, Binary Search, and Quick 

Sort. 

Algorithm Query Type 

Lines of 

Code 

Execution Time 

(seconds) 

Linear 

Search 

Initial Query 17 0.003 

Optimized 

Query 16 0.004 

Concise Query 13 0.009 

Binary 

Search 

Initial Query 26 0.007 

Optimized 

Query 21 0.005 

Concise Query 13 0.008 

Quick Sort 

Initial Query 21 0.008 

Optimized 

Query 16 0.004 

Concise Query 7 0.003 

 

Table 7 shows ChatGPT 4.0's results for generating and optimizing Python code in English for 

Linear Search, Binary Search, and Quick Sort. Linear Search shows reduced lines of code but a slight 

increase in execution time. Binary Search demonstrates a significant reduction in code length with 

minor improvements in execution time. Quick Sort optimizes both code length and execution time, 

reflecting ChatGPT 4.0's ability to streamline code across algorithms. When addressing linguistic 

complexities, ChatGPT 4.0 exhibited notable improvements over 3.5 but still encountered similar 

challenges. For instance, while Arabic outputs for Quick Sort showed better modularization and fewer 

syntax errors than 3.5, structural mismatches and overly literal translations persisted in tasks like 

Binary Search. These issues often stemmed from the model’s inability to adapt pre-trained coding 

conventions for high-resource languages to Arabic’s unique linguistic features. Despite these challenges, 

ChatGPT 4.0 demonstrated superior adaptability in Arabic-specific contexts, particularly in reducing 

redundant logic and improving readability across optimized queries. 
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Table 8: Results of ChatGPT 4.0 for Arabic Linear Search, Binary Search, and Quick 

Sort. 

Algorithm Query Type 

Lines of 

Code 

Execution Time 

(seconds) 

Linear 

Search 

Initial Query 27 2.335 

Optimized 

Query 23 1.892 

Concise Query 11 0.005 

Binary 

Search 

Initial Query 35 1.078 

Optimized 

Query 36 0.002 

Concise Query 28 0.004 

Quick Sort 

Initial Query 41 0.001 

Optimized 

Query 36 0.003 

Concise Query 25 0.004 

 

Table 8 summarizes ChatGPT 4.0’s performance in Arabic code generation for Linear Search, 

Binary Search, and Quick Sort. Linear Search shows a significant reduction in execution time and lines 

of code in the concise query. Binary Search improves execution time (0.002 seconds) despite a slight 

increase in code length. Quick Sort consistently reduces both lines of code and execution time, 

highlighting ChatGPT 4.0's ability to optimize performance across tasks. These findings suggest that 

ChatGPT 4.0’s ability to handle Arabic linguistic complexities was enhanced compared to 3.5, but 

persistent issues with translation accuracy and computational overhead underscore the need for further 

refinement in Arabic-specific datasets and model tuning. 

4.3 Comparative Summary 

The comparative analysis highlights the performance of ChatGPT 3.5 and 4.0 in generating 

concise Python code for Linear Search, Binary Search, and Quick Sort across English and Arabic. The 

results examine lines of code and execution time to evaluate trade-offs between conciseness and 

performance across the two versions. In particular, Arabic coding tasks introduced unique challenges 

not present in English tasks, such as handling linguistic nuances, structural mismatches, and 

computational overhead due to the complexity of Arabic syntax. These challenges often resulted in 

longer execution times and increased lines of code for Arabic tasks compared to their English 

counterparts. 

Table 9: Comparative summary of concise versions for ChatGPT 3.5 and ChatGPT 4.0 

(in English and Arabic). 

Algorithm 

Versio

n 

Languag

e 

Lines of 

Code 

Execution Time 

(seconds) 

Linear 

Search 

3.5 English 2 0 

4 English 13 0.009 

3.5 Arabic 7 0 

4 Arabic 11 0.005 

Binary 

Search 

3.5 English 18 0.005 

4 English 13 0.008 

3.5 Arabic 18 0.005 

4 Arabic 28 0.004 

Quick Sort 

3.5 English 8 0.003 

4 English 7 0.003 

3.5 Arabic 8 0.003 

4 Arabic 25 0.004 
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The trends observed indicate that ChatGPT 4.0 generally produced more concise code, 

particularly for Quick Sort, but at times this conciseness came at the expense of execution speed, 

especially for Arabic tasks. For example, while Binary Search in Arabic demonstrated improved 

modularization and readability under ChatGPT 4.0, it also saw a significant increase in lines of code 

compared to 3.5. This suggests that the improvements in code quality and clarity made by 4.0 required 

additional computational resources in certain scenarios. 

Another notable trend is the improvement in ChatGPT 4.0's ability to handle linguistic 

complexities, which allowed it to generate more syntactically accurate Arabic code compared to 3.5. 

However, these improvements were not uniform across all tasks. For Linear Search, while 4.0 produced 

more structured code in Arabic, it required slightly more lines of code and increased execution time 

compared to 3.5. On the other hand, Quick Sort consistently benefited from 4.0's refinements in both 

languages, showcasing shorter and more efficient outputs. 

4.4. Discussion: 

This study provides a novel evaluation of ChatGPT’s performance in Arabic-based coding tasks, 

focusing on Python code generation, optimization, and streamlining for algorithms such as Linear 

Search, Binary Search, and Quick Sort. By comparing ChatGPT versions 3.5 and 4.0 in both English and 

Arabic, our findings reveal significant differences that highlight the challenges of adapting large 

language models (LLMs) for low-resource languages like Arabic. The results show that ChatGPT’s 

performance in Arabic, while functional, lags behind its English performance in terms of code 

complexity and execution speed. GPT-4 demonstrated improvements in generating more concise code, 

particularly for Quick Sort, in both languages. 

 However, these gains often came at the cost of slower execution times in Arabic. For instance, 

although the code for Linear Search was shorter in GPT-4, it took longer to execute in Arabic than in 

English. These findings align with prior studies [17, 24] showing that large language models face 

performance challenges in low-resource languages due to limited training data and linguistic 

complexity. 

Our results support earlier research on the limitations of AI-assisted coding tools in low-

resource languages. Previous studies noted that GPT models perform better in high-resource languages 

like English, where they benefit from extensive programming data [13]. Conversely, languages like 

Arabic, with fewer coding resources, pose greater difficulties for these models. This study builds on 

these findings by using an iterative testing framework with expert validation and error analysis. For 

example, our results confirm that ChatGPT’s performance in Arabic code generation is less efficient 

than in English, with binary search algorithms in Arabic showing higher time complexity in both GPT-

3.5 and GPT-4. The implications of these findings are critical for developing AI-assisted coding tools, 

especially in low-resource linguistic environments. While GPT-4 improves on code conciseness and 

modularity, its performance in Arabic remains hindered by slower execution and increased complexity, 

particularly in tasks like Quick Sort. These trade-offs between code simplicity and performance are 

crucial for developers in Arabic-speaking regions. The study highlights that improvements in code 

generation for low-resource languages must go beyond syntax correction and modularization. As Liu et 

al. (2023) suggested, prompt design and language-specific optimizations are vital to improving LLMs 

like ChatGPT in these contexts. Our findings emphasize the need for models that can handle the 

structural and grammatical challenges of Arabic without sacrificing efficiency[18].  

Moreover, the deployment of AI coding tools like ChatGPT in Arabic-speaking regions raises 

important ethical and socio-economic considerations. Biases stemming from disparities in training data 

between high-resource and low-resource languages can exacerbate existing inequalities, limiting the 

effectiveness of these tools in diverse linguistic contexts. Addressing these biases requires diversifying 

datasets and enhancing language-specific model tuning to ensure equitable performance. From a socio-

economic perspective, these tools have the potential to democratize access to programming and drive 

localized innovation. However, careful implementation is necessary to avoid over-reliance on English-

based systems and to empower local industries to develop culturally and linguistically relevant software 

solutions that address regional challenges.  These insights provide actionable opportunities for AI 

developers and programmers, particularly those working with Arabic and other low-resource languages. 

By leveraging the specific challenges identified in this study, AI developers can focus on refining 
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language-specific models that address common pitfalls such as inefficiency in execution time and 

increased complexity. This refinement can involve enhancing training datasets with diverse Arabic 

dialects and programming contexts, improving transfer learning techniques, and optimizing model 

architecture for the syntactic and semantic nuances of Arabic. 

For programmers, these findings can inform the development of customized tools for 

educational and industrial applications in Arabic-speaking regions. For instance, localized coding 

platforms and intelligent tutoring systems could be designed to assist students and professionals by 

simplifying complex tasks like algorithm implementation and debugging. Moreover, these tools could 

support the creation of real-world applications such as data analytics software and machine learning 

pipelines that require region-specific customization, enabling businesses to innovate more effectively 

in Arabic-speaking markets. 

In addition, the ability to generate concise and efficient code in Arabic could significantly 

impact industries such as fintech, healthcare, and e-governance, where localized software solutions are 

critical. By improving the adaptability of AI models for Arabic coding tasks, developers can enhance 

accessibility, streamline development workflows, and reduce the reliance on English-based systems in 

multilingual environments. These advancements could not only democratize programming education 

but also empower local industries to leverage cutting-edge AI tools for their unique needs. 

The findings of this study highlight the broader implications of enhancing AI coding tools for 

low-resource languages, particularly in relation to the Sustainable Development Goals (SDGs). By 

addressing the challenges of Arabic-based coding tasks, this research contributes directly to SDG 4 by 

enabling equitable access to programming education and fostering technical literacy in Arabic-speaking 

regions. The improved performance of ChatGPT in generating and optimizing code in Arabic opens 

doors for creating region-specific educational tools and resources that democratize technology 

education. Additionally, the study supports SDG 9 by fostering innovation in low-resource linguistic 

environments [9]. Enhanced AI capabilities in Arabic coding tasks can drive the development of 

localized software solutions, support infrastructure-building efforts, and empower industries in Arabic-

speaking countries to leverage cutting-edge technologies [11]. These contributions not only address the 

disparities in access to AI-assisted tools but also promote a more inclusive and sustainable approach to 

global technological development. 

Several limitations should be acknowledged. The study focused on three algorithms, which may 

not fully capture the range of coding challenges developers face. Additionally, the Arabic translations, 

although validated, may not reflect the full diversity of dialects or regional terms. This could affect 

ChatGPT’s ability to generalize across different coding tasks. Moreover, the study did not address 

security or defect detection in AI-generated code, which are important factors for professional software 

development. Future studies should incorporate these aspects for a more comprehensive assessment of 

ChatGPT’s capabilities. The study’s findings point to several avenues for future research. Improving 

ChatGPT’s performance in Arabic will likely require fine-tuning LLMs for low-resource languages by 

developing more comprehensive programming datasets and using transfer learning techniques [15]. 

Expanding the range of coding tasks and algorithms tested, including more complex operations such as 

data structures and machine learning models, will further clarify how ChatGPT handles diverse 

challenges. Furthermore, exploring collaborative frameworks that integrate AI and human expertise in 

multilingual environments could yield more practical and effective solutions for coding challenges in 

low-resource languages. This approach would ensure that AI tools remain both functional and 

contextually relevant, addressing the diverse needs of developers and industries globally. 

 

5. CONCLUSION 

This study advances the understanding of ChatGPT’s performance in low-resource linguistic 

environments, specifically in Arabic-based coding tasks. Through a comparative analysis of GPT-3.5 

and GPT-4, we have demonstrated the ongoing challenges these models face in generating and 

optimizing code in languages with limited training data and coding resources. While GPT-4 shows 

improvements in certain areas, such as code conciseness, its performance in Arabic-based tasks is 

marked by trade-offs in execution speed and complexity. These findings highlight the need for more 

targeted efforts in refining AI models to better accommodate the structural and linguistic complexities 
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of low-resource languages. The current disparities in performance between English and Arabic suggest 

that the global applicability of AI coding tools remains limited, necessitating a more inclusive approach 

to model development. Addressing these gaps is crucial for ensuring that AI technologies serve the 

broader software development community, particularly in regions where non-English languages are 

predominant. 

The implications of this study extend beyond technical performance. As AI-based coding tools 

become more integral to software development worldwide, the ability to effectively support multiple 

languages will be essential to fostering global inclusivity in the field. Future research should focus on 

the development of more comprehensive training datasets, as well as the application of transfer learning 

and other advanced techniques to improve performance in low-resource languages. Additionally, 

exploring more complex coding challenges will further contribute to the evolution of AI-driven coding 

solutions. However, this study lays a critical foundation for enhancing the capabilities of AI tools in 

diverse linguistic contexts, providing valuable insights for the continued advancement of inclusive and 

effective AI technologies. 
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