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Detection Systems (IDS) play a critical role in safeguarding networks against cyber 

attacks. However, selecting the most effective machine learning model for intrusion 

detection is challenging due to varying dataset characteristics. This research 

investigates the performance of multiple machine learning models, including SVM 

(Linear, Poly, RBF, and Sigmoid), LightGBM, XGBoost, and CatBoost, across two 

widely used datasets: CICIDS2017 and NF-UNSW-NB15. The primary problem is the 

inconsistency in model performance across different datasets, affecting the reliability 

of IDS solutions. To address this, we used SMOTE for balancing class distributions 

and PCA for dimensionality reduction. Each model was evaluated based on accuracy, 

precision, sensitivity, and F-measure. The results show that LightGBM, XGBoost, and 

CatBoost consistently outperform the SVM models across both datasets, with 

accuracy levels above 98%. In contrast, the SVM models exhibited significant 

variation, performing better on the NF-UNSW-NB15 dataset than on CICIDS2017. 

Ensemble models are more suitable for intrusion detection due to their higher and 

more stable performance across different datasets, making them preferable for real-

world applications. 

Keywords: Detection Systems , Machine Learning , SVM , XGBoost , CatBoost , 

CICIDS2017 , NF-UNSW-NB15. 

1. INTRODUCTION 

In today's increasingly interconnected world, cyberattacks are more prevalent than ever, with 

organizations facing constant threats from various malicious actors. Intrusion Detection Systems (IDS) 

have become a critical component in the security infrastructure of modern networks. IDSs are designed 

to monitor network traffic and detect unauthorized access or malicious activities, allowing 

organizations to protect sensitive data and infrastructure. While IDS solutions have been around for 

decades, advancements in machine learning (ML) have enabled the development of more intelligent 

and efficient IDSs capable of identifying novel attacks in real time.  

Selecting the most appropriate ML model for an IDS remains a challenging task, as the performance of 

these models can vary significantly depending on the characteristics of the dataset used. 

Traditional ML models, such as Support Vector Machines (SVM), have long been used for intrusion 

detection due to their robustness in handling classification tasks. However, the advent of ensemble 

models such as LightGBM, XGBoost, and CatBoost has revolutionized the field, offering superior 

performance through a combination of multiple weak learners into a stronger predictive model. These 

ensemble models are particularly effective at handling complex, high-dimensional datasets, making 

them well-suited for intrusion detection tasks. This study aims to explore the efficacy of ensemble 
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models for IDS by incorporating Principal Component Analysis (PCA) for dimensionality 

reduction and Synthetic Minority Over-sampling Technique (SMOTE) to address the common 

issue of imbalanced datasets in network traffic data. 

1.1.Novel Contributions of this paper 

The novel contributions of this paper are: 

1) This research applies PCA and SMOTE in con-junction with various ML models to evaluate their 

performance on two widely-used intrusion detection datasets: CICIDS2017 and NF-UNSW-NB15. PCA 

is employed to reduce the dimensionality of the data while retaining the most important features that 

capture the majority of the variance. This not only simplifies the dataset but also helps in mitigating the 

risk of over fitting. SMOTE, on the other hand, is used to balance the class distribution by generating 

synthetic samples for the minority class, ensuring that the model receives a more balanced 

representation of both normal and malicious traffic. 

2) We compare the performance of several models,including traditional SVM variants (Linear, Poly,RBF, 

Sigmoid) and more modern ensemble modelssuch as LightGBM, XGBoost, and CatBoost. 

Theperformance metrics used for evaluation are accuracy, precision, sensitivity, and F-measure, all of 

which provide a comprehensive understanding ofhow well each model performs in identifying 

andclassifying intrusions. 

3) The CICIDS2017 and NF-UNSW-NB15 datasetsare used for this research. CICIDS2017 is a 

comprehensive dataset that includes both normal network traffic and various types of attacks such 

asDoS, brute force, and botnet attacks. NF-UNSW-NB15 is a modern dataset that captures real-

worldnetwork traffic with a variety of attack scenarios,making it an excellent benchmark for 

evaluatingIDS models. Both datasets include a wide range ofnetwork features, making them suitable 

for dimensionality reduction techniques like PCA. 

4) Our initial findings show that ensemble models,particularly LightGBM, XGBoost, and 

CatBoost,outperform traditional SVM models across all keyperformance metrics. When PCA and 

SMOTE areapplied, the ensemble models consistently achieveaccuracy levels above 98%, with strong 

performance in precision, sensitivity, and F-measure aswell. In contrast, the performance of the SVM 

models improves significantly when applied to the NF-UNSW-NB15 dataset, though they still lag 

behindthe ensemble models. 

5) In this research paper, divided into seven sections, the study begins with a Literature Reviewon 

intrusion detection techniques, followed by theProposed Architecture and Proposed Algorithmfor the 

IDS. Implementation details are provided,leading to a thorough Result analysis, and the paper 

concludes with key insights in the Conclusionsection. 

2. RELATED PRIOR RESEARCH 

Logeswari et al. (2023): Software Defined Networking (SDN) enhances network flexibility and 

management but also increases vulnerability to attacks. To address this, the authors propose a novel 

Hybrid Feature Selection-LightGBM (HFS-LGBM) Intrusion Detection System (IDS) for SDN. Their 

method applies a two-phase feature selection process followed by LightGBM for attack classification, 

achieving superior performance on the NSL-KDD dataset in terms of accuracy, precision, recall, and F-

measure [1]. 

Musleh et al. (2023): With the rise of IoT devices, securing these networks has become a challenge. 

This study introduces a machine learning-based IDS for IoT using feature extraction methods and 

various ML models. Combining VGG-16 with a stacking model yielded the best results, achieving 98.3% 

accuracy on the IEEE Dataport dataset, demonstrating the importance of effective feature extraction 

and model selection [2]. 

Chaganti et al. (2023): As IoT devices become more widespread, so do IoT-based attacks. This paper 

proposes an LSTM-based intrusion detection system (IDS) for SDN-IoT networks. The proposed system 

effectively detects and classifies attacks with an accuracy of 0.971, demonstrating the efficacy of LSTM 

in handling multiclass classification for IoT-based attacks [3]. 
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Kasongo (2023): The increasing data flow in modern networks has heightened security 

vulnerabilities. This study implements an IDS framework using various Recurrent Neural Networks 

(RNNs) combined with XGBoost for feature selection. The best results were achieved using XGBoost-

LSTM, with a test accuracy of 88.13% on NSL-KDD, demonstrating the framework’s effectiveness 

compared to traditional methods [4]. 

Verma and Ranga (2023): In an era of massive data generation, securing networks is crucial. The 

authors emphasize the importance of high-quality datasets for effective intrusion detection. They 

analyze the CIDDS-001 dataset using various machine learning techniques, showing its complexity and 

the importance of modern datasets for better intrusion detection, as older datasets like NSL-KDD and 

KDD 99 are outdated for modern attack scenarios [5]. 

Alotaibi and Rassam (2023): The paper discusses how traditional IDS approaches struggle with 

novel attacks, leading to high false alarms. To address this, machine learning (ML) techniques are 

recommended. However, adversarial machine learning (AML) can exploit IDS vulnerabilities. The 

paper surveys AML strategies, highlighting attack types and defense mechanisms, and outlines future 

research directions [6]. 

Pinto et al. (2023): Industrial control systems (ICS), SCADA, and DCS, which are critical 

infrastructures (CI), face increasing cyber threats. This paper surveys ML-based IDS techniques used 

to protect CI, focusing on zero-day attacks. It reviews the security datasets and explores recent 

advancements in IDS for CI protection [7]. 

Henry et al. (2023): This study addresses the cybersecurity challenges posed by the growing number 

of IoT devices, particularly focusing on zero-day attacks. The authors propose a combined CNN-GRU 

IDS model using the CICIDS-2017 dataset. The results show high detection accuracy of 98.73%, with an 

improved False Positive Rate (FPR) of 0.075, indicating the model’s efficacy [8]. 

Azam et al. (2023): The paper reviews IDS techniques, discussing challenges such as false positives 

and detecting new threats. ML and DL techniques are explored as potential solutions for improving 

IDS. The decision tree model is proposed for detecting anomalies, and the paper emphasizes the need 

for robust methodologies and dataset selection [9]. 

Awajan (2023): With the rise in IoT-based attacks, the author proposes a deep learning-based IDS 

for IoT. The system uses a four-layer fully connected architecture to detect various attacks, achieving 

an average accuracy of 93.74% and demonstrating effective real-time intrusion detection for IoT devices 

[10]. 

Santhosh Kumar et al. (2023): The Internet of Things (IoT) enables smart objects to communicate 

and transmit data, revolutionizing various sectors. This study focuses on improving IoT security 

through an IDS based on a fuzzy CNN. The proposed system efficiently detects denial-of-service (DoS) 

attacks, improves detection accuracy, and reduces false positives by analyzing network security 

metrics[11]. 

Hnamte and Hussain (2023): The increasing shift to cyber environments has led to new network 

vulnerabilities. The authors propose an intelligent network intrusion detection system (NIDS) using 

deep learning, trained on CICIDS2018 and Edge_IIoT datasets. The system achieves near-perfect 

accuracy, with 100% and 99.64% in multiclass classification tasks, making it highly effective in network 

security[12]. 

Hossain and Islam (2023): Traditional IDSs struggle with unknown sophisticated attacks. This 

research proposes an ensemble-based ML technique for IDS, using algorithms like Random Forest, 

Gradient Boosting, and XGBoost. Evaluated on public datasets, the approach exceeds 99% accuracy and 

offers robust performance in metrics like precision, recall, F1-score, and Cohen's Kappa [13]. 

Shah et al. (2023): IoT systems are vulnerable to various security threats. The authors propose an 

AI-based security system that uses binary classification to detect malicious users and blockchain 
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technology for tamper-proof data storage. Deep learning algorithms classify malicious smart contracts, 

offering a comprehensive security solution for IoT networks[14]. 

Venkatesan (2023): With the rise of cyber-attacks, this paper explores machine learning algorithms 

like SVM, Random Forests, and Decision Trees to detect vulnerabilities. Using the NSL-KDD dataset, 

the study compares the effectiveness of these algorithms in identifying attacks, aiming to determine the 

best-performing algorithm for intrusion detection[15]. 

Hidayat et al. (2023): The rise of big data and cloud technologies has increased network attack 

threats. This research proposes a hybrid feature selection method combining Pearson correlation and 

random forest, utilizing decision trees, AdaBoost, and KNN for machine learning, and MLP and LSTM 

for deep learning on the TON_IoT dataset. Decision trees and MLP demonstrated optimal performance 

with reduced false positives and negatives[16]. 

Jose and Jose (2023): The increasing use of intelligent devices and network systems leads to more 

cyberattacks. This study evaluates machine learning and deep learning models on the UNSW-NB15 and 

NSL-KDD datasets, achieving up to 98.6% accuracy. The results affirm ML techniques as effective for 

intrusion detection in both two-class and multi-class classification scenarios[17]. 

Issa and Albayrak (2023): With the proliferation of smart devices, securing them from intruders is 

critical. This study compares deep learning techniques, including deep neural networks, CNN, and 

LSTM, using the CIC-IDS 2017 dataset for intrusion detection. The research highlights the effectiveness 

of these AI models in protecting resource-constrained devices[18]. 

Maesaroh et al. (2022): DDoS attacks pose significant security threats. This study proposes a deep 

learning model combining CNN and LSTM, achieving 99.20% accuracy on the NSL-KDD dataset. The 

seven-layer model outperforms traditional methods, proving its effectiveness in detecting DDoS 

attacks[19]. 

Ullah et al. (2022): Denial of Service (DoS) attacks threaten network security. This study suggests a 

WIDS approach using Linux, Snort, and Iptables to detect and mitigate DoS attacks in wireless 

networks. The tests in WAN configurations show effective identification and prevention of network 

attacks[20]. 

Saba et al. (2022): The shift to online communication during the COVID-19 pandemic necessitated 

secure systems. This study proposes an IDS for Apache web servers using the Naive Bayes algorithm, 

trained on an IEEE dataset. The system achieves a cross-validation accuracy of 98.6%, ensuring secure 

and effective communication between vendors and customers[21]. 

Naseri and Gharehchopogh (2022): IoT devices enhance lives but face significant security threats. 

This research introduces a CNN-based anomaly detection IDS for IoT environments. Tested on the NID 

and BoT-IoT datasets, the proposed model achieves 99.51% and 92.85% accuracy, respectively, 

demonstrating deep learning’s effectiveness in anomaly detection[22]. 

Kumar et al. (2022): As cyberattacks increase, this study presents a binary Farmland Fertility 

Algorithm (BFFA) for feature selection in IDS classification. Tested on NSL-KDD and UNSW-NB15 

datasets, the BFFA combined with classifiers outperforms traditional methods in accuracy, precision, 

and recall, improving runtime in feature selection operations[23].Lo et al. (2022): IoT systems face 

security and privacy issues, exacerbated by centralized storage architectures. This paper proposes a 

distributed IDS using fog computing to detect DDoS attacks in blockchain-enabled IoT networks. 

Evaluated on the BoT-IoT dataset, XGBoost outperforms in binary attack detection, while Random 

Forest excels in multi-attack detection with faster training and testing times on fog nodes[24]. 
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Table 1. Comparison With Existing Literature 

Reference no. Technique Accuracy (%) 

Musleh [?] Feature extraction 98.62 

Chaganti[?] Multiclass classification 97.1 

Kasongo [?] Feature Selection 88.13 

Henry [?] Feature Optimization 98.73 

Awajan [?] Feature extraction and network classification 93.74 

Hossain [?]Trust-

based 

Ensemble-based ML technique for IDS 

 

99 

This paper Trust-based  

 

3. PROPOSED ARCHITECTURE 

 

Figure 1. Comprehensive workflow for training and evaluating machine learning models on the 

CICIDS2017 and NF-UNSW-NB15 datasets 

The figure 1 provides a comprehensive workflow for training and evaluating machine learning models 

on the CICIDS2017 and NF-UNSW-NB15 datasets. The process begins with data preprocessing, a 

crucial step that prepares the raw data for further analysis by cleaning and formatting it for model 

training. This ensures the datasets are suitable for feature extraction and selection. 

Next, the workflow moves to feature selection, where two methods are used: Recursive Method 

(RM) and Lasso Regression. RM systematically selects important features by recursively eliminating 

the least significant ones, while Lasso Regression is used to penalize large coefficients, effectively 

reducing feature complexity and enhancing generalization. Both methods ensure that only the most 

relevant features are retained for the models, optimizing their predictive performance. 

Following feature selection, PCA (Principal Component Analysis) is applied for dimensionality 

reduction. PCA transforms the selected features into a smaller set of uncorrelated components, 
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reducing the overall dimensionality of the data while preserving variance. This step mitigates the risk 

of overfitting and accelerates the training process by simplifying the input data. 

The data is then split into train and test subsets. The training phase utilizes three machine learning 

models: LightGBM, XGBoost, and CatBoost. Each model undergoes independent training on the 

processed and reduced data to learn the underlying patterns. 

After the training phase, the trained models proceed to the model evaluation stage. The performance 

of each model is evaluated using several key metrics: accuracy, precision, recall, and F1-score 

(both the individual and average F1-score). These metrics provide insight into the effectiveness of each 

model in identifying true positives, minimizing false positives, and achieving a balance between 

precision and recall. 

Principal Component Analysis (PCA) and Synthetic Minority Over-sampling Technique 

(SMOTE) are two powerful techniques that can significantly improve the performance of machine 

learning models, particularly when dealing with high-dimensional data and class imbalance. Here's how 

each contributes to improving model performance: 

1. Principal Component Analysis (PCA) 

PCA is a dimensionality reduction technique that transforms the input data into a set of uncorrelated 

variables called principal components. The goal of PCA is to reduce the number of input features while 

retaining as much variance in the data as possible. Here's how PCA improves model performance: 

• Reduces Overfitting: High-dimensional datasets often lead to overfitting, where the model learns 

noise and irrelevant patterns in the data rather than the true underlying relationships. PCA mitigates 

this risk by reducing the number of input features, helping the model generalize better to unseen data. 

• Improves Computational Efficiency: High-dimensional datasets require more computational 

resources, which can slow down model training and inference. By reducing the number of features 

through PCA, the model becomes faster and more efficient to train, especially for algorithms that do not 

scale well with large feature sets (e.g., Support Vector Machines). 

• Decreases Multicollinearity: In many datasets, features are highly correlated, which can negatively 

impact the performance of models, particularly linear models like Logistic Regression. PCA eliminates 

this multicollinearity by converting correlated features into uncorrelated principal components, leading 

to better model performance. 

• Focuses on Important Variance: PCA ranks the new components by the amount of variance they 

capture, allowing the model to focus on the most informative features. This helps improve predictive 

accuracy by retaining only the most important parts of the data. 

2. Synthetic Minority Over-sampling Technique (SMOTE) 

SMOTE is a technique used to handle class imbalance in datasets, where one class (usually the minority 

class) has significantly fewer instances than the other(s). Imbalanced datasets often lead to biased 

models that perform poorly on the minority class. Here's how SMOTE helps improve model 

performance: 

• Balances the Dataset: SMOTE generates synthetic samples for the minority class by interpolating 

between existing minority class samples. This helps balance the dataset, reducing the bias toward the 

majority class and allowing the model to learn better decision boundaries for both classes. 

• Improves Recall for the Minority Class: Models trained on imbalanced data often perform poorly 

on the minority class, resulting in low recall (i.e., the ability to correctly identify positive instances). By 

balancing the classes, SMOTE improves recall, leading to better detection of minority class instances, 

which is especially important in applications like fraud detection, medical diagnosis, and anomaly 

detection. 
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• Prevents Overfitting: Unlike random over-sampling (which duplicates minority class instances), 

SMOTE generates synthetic samples, reducing the likelihood of overfitting to repeated samples. This 

helps the model generalize better to unseen data and increases its robustness. 

• Works Well with Decision Trees and Ensembles: Algorithms like Decision Trees, Random 

Forests, and Gradient Boosting (e.g., XGBoost, LightGBM) can benefit significantly from SMOTE, as 

balanced datasets allow them to create more balanced splits and improve overall model performance. 

4. PROPOSED ALGORITHM 

4.1 LightGBM Pseudocode for Intrusion Detection System 

Input: Preprocessed IDS dataset D with N samples, M features 

Output: Trained LightGBM model for Intrusion Detection 

1. Initialize model parameters: 

- Number of trees T 

- Learning rate α 

- Maximum tree depth d 

- Minimum data in leaf l_min 

- Objective: Binary classification (Normal vs Anomalous) 

2. For each tree t from 1 to T do: 

• Compute gradient (first derivative) and hessian (second derivative) of loss function for each data point 

in the dataset. 

• Build a decision tree: 

- For each feature f, sort the data points and calculate the optimal split point. 

- (Split is chosen to maximize the information gain or minimize loss). 

- Grow the tree by recursively splitting nodes until: 

- Maximum depth d is reached, or 

- Number of samples in leaf node < l_min 

• Use a leaf-wise (best-first) approach, splitting the leaf with the largest loss reduction. 

• Update the model with the new tree’s predictions: 

- Update each data point’s predicted value using the learning rate α. 

3. Output the final ensemble model of T trees. 

4. Use the trained model to classify new samples (Normal vs Anomalous) based on the learned 

decision rules. 

4.2 XGBoost Pseudocode for Intrusion Detection System 

Input: Preprocessed IDS dataset D with N samples, M features 

Output: Trained XGBoost model for Intrusion Detection 

• Initialize model parameters: 

• Number of trees T 

• Learning rate α 

• Maximum tree depth d 

• Minimum data in leaf l_min 

• Regularization parameters (λ, γ) 

• Initialize predictions as the base value (log odds of the majority class). 

• For each tree t from 1 to T do: 

- Compute pseudo-residuals (negative gradients) for each data point: 

• residual_i = (true_label_i - predicted_label_i) 

- Construct a new decision tree: 



944  
 

J INFORM SYSTEMS ENG, 10(23s) 

• For each feature f, compute the best split based on: 

• Maximizing the reduction in loss function (binary log loss). 

• Apply regularization (λ, γ) to control model complexity. 

• Grow the tree until: 

• Maximum depth d is reached, or 

• Number of samples in leaf node < l_min 

- Add the new tree's contribution to the overall model prediction: 

• predicted_label_i = previous_predicted_label_i + α * tree_output_i 

- Apply regularization to prune the tree if necessary to avoid overfitting. 

• Output the ensemble of T trees. 

• Use the model to classify new network events into "Normal" or "Anomalous" based on learned patterns. 

4.3 CatBoost Pseudocode for Intrusion Detection System 

Input: Preprocessed IDS dataset D with N samples, M features (including categorical features) 

Output: Trained CatBoost model for Intrusion Detection 

• Initialize model parameters: 

• Number of trees T 

• Learning rate α 

• Maximum tree depth d 

• Categorical feature handling strategy 

• Objective: Binary classification (Normal vs Anomalous) 

• Preprocess categorical features: 

o Apply CatBoost's ordered target statistics or one-hot encoding to handle categorical data: 

• Calculate statistics for each categorical feature based on the order of data points. 

• For each tree t from 1 to T do: 

o Compute the gradient (first derivative) of the loss function for each data point. 

o Build a symmetric decision tree: 

• For each feature (including transformed categorical features), calculate the best split. 

• ii. Grow the tree by recursively splitting nodes to minimize loss: 

• Maximum depth d is used to limit tree complexity. 

o Update the model: 

• Add the tree's predictions to the overall model predictions using learning rate α. 

• Apply boosting with permutation-driven categorical feature handling to reduce overfitting. 

• Output the final model consisting of T trees. 

• Classify new network events or logs as "Normal" or "Anomalous" using the trained model. 

5. IMPLEMENTATION 

5.1 Dataset  

CICIDS2017 Dataset: The CICIDS2017 dataset is a widely used dataset for intrusion detection 

system (IDS) research. It was created by the Canadian Institute for Cybersecurity to reflect real-world 

network traffic and attack scenarios. This dataset includes normal traffic as well as a variety of attack 

types such as brute force, Denial of Service (DoS), Distributed Denial of Service (DDoS), infiltration, 

web attacks, and botnets, among others. The data captures several days of network traffic, featuring 

over 80 network traffic features, including basic network information (e.g., source and destination IP 

addresses, port numbers, and protocols), time-based statistics (e.g., packet count, flow duration), and 

advanced traffic metrics related to packet flow, payload size, and more.The CICIDS2017 dataset is 

structured to represent real-world traffic by simulating a typical corporate network with various users 

and services running simultaneously, including FTP, HTTP, HTTPS, SSH, and email. The dataset is 

designed to evaluate the performance of machine learning algorithms for anomaly detection, where 

models must distinguish between benign network behavior and malicious intrusions. The complexity 
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and diversity of the attack types in the dataset make it ideal for developing IDSs that can detect known 

attacks while being adaptable enough to identify new and evolving threats. Furthermore, its balanced 

representation of both normal and malicious traffic ensures that machine learning models trained on 

this dataset do not suffer from data imbalance issues. 

Source : https://www.unb.ca/cic/datasets/ids-2017.html 

NF-UNSW-NB15 Dataset:The NF-UNSW-NB15 dataset is another prominent dataset used in 

network intrusion detection research. Created by the University of New South Wales (UNSW), this 

dataset is a more recent and modern representation of network traffic, capturing both contemporary 

network traffic and attack types. It was designed to address some of the limitations present in previous 

IDS datasets by introducing new types of modern-day attacks that were not present in older datasets. 

The attacks in this dataset include Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, 

Reconnaissance, Shellcode, and Worms, making it a comprehensive dataset for studying both 

traditional and novel attack vectors.The dataset was generated in a controlled network environment 

using the IXIA PerfectStorm tool, which generated realistic traffic flows from a variety of users and 

applications. NF-UNSW-NB15 consists of a combination of both labeled normal and malicious traffic 

records, with over 49 features capturing network-level details such as protocol type, service type, source 

and destination IP addresses, TCP flags, and traffic volume. These features include both basic traffic 

data (e.g., flow size, number of packets) and more advanced features that can be used to analyze traffic 

behavior over time. 

Source : https://research.unsw.edu.au/projects/unsw-nb15-dataset 

5.2 Illustrative example 

5.2.1 Illustrative example of LightGBM 

 

Figure 2. The class distribution before and after applying SMOTEof LightGBM 

The figure 2 illustrates the class distribution before and after applying SMOTE (Synthetic Minority 

Over-sampling Technique). Initially, there is a significant imbalance with class "0" dominating, while 

after applying SMOTE, all classes are balanced with an equal number of samples, improving the 

dataset's suitability for training machine learning models. 

 

https://www.unb.ca/cic/datasets/ids-2017.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
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Figure 3. Confusion matrix shows strong model performanceof LightGBM 

The figure 3 shows confusion matrix shows strong model performance with the majority of true classes 

correctly classified, especially for class "0" (5292 correct predictions). However, some misclassifications 

are evident, such as minor errors across classes like "1," "3," and "6," where a few instances are 

mispredicted as other classes. 

 

Figure 4. The feature importance of principal components (PCA components) in the datasetof 

LightGBM 

The figure 4 illustrates the feature importance of principal components (PCA components) in the 

dataset. PC1 has the highest importance, significantly contributing to model performance, followed by 

PC8, PC9, and PC2. These components capture the most variance, making them crucial for reducing 

dimensionality while retaining important information for predictions. 

5.2.2 Illustrative example of XGBoost 

 

Figure 5. The class distribution before and after applying SMOTEof XGBoost 
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The figure 5 shows the class distribution before and after applying SMOTE. Initially, class "0" 

dominates, with other classes significantly underrepresented. After applying SMOTE, the class 

distribution is balanced across all labels, ensuring that each class has an equal number of samples, 

improving the fairness and performance of machine learning models. 

 

 

Figure 6. Confusion matrix shows strong model performanceof XGBoost 

The figure 6 shows confusion matrix shows the model's prediction performance across various classes. 

Class "0" has the highest correct predictions (5339), but some misclassifications occur across other 

classes, such as minor errors in classes "1," "3," and "6." Overall, the model performs well but has room 

for improvement in specific classes. 

 

Figure 7. The feature importance of principal components (PCA components) in the datasetof 

XGBoost 

The figure 7 highlights the importance of PCA components in the model. PC1 has the highest influence, 

followed by PC7, PC2, and PC9. These principal components capture the most variance in the data, 

playing a crucial role in improving model performance by reducing dimensionality while retaining 

significant information. 
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5.2.3 Illustrative example of CatBoost 

 

Figure 8. The class distribution before and after applying SMOTEof CatBoost 

The figure 8 compares class distributions before and after applying SMOTE. Initially, there is a 

significant imbalance, with class "0" heavily dominating. After applying SMOTE, all classes are evenly 

distributed, effectively addressing class imbalance and providing a balanced dataset for better machine 

learning model training and evaluation. 

 

Figure 9. Confusion matrix shows strong model performanceof CatBoost 

The figure 9 shows confusion matrix shows the model's performance across multiple classes. Class "0" 

has the highest correct predictions (5387), while other classes like "3" and "6" also perform well. Some 

minor misclassifications occur, especially between classes "0" and others, indicating areas where model 

accuracy could be improved. 

 

Figure 10. The feature importance of principal components (PCA components) in the datasetof 

CatBoost 
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The figure 10 illustrates the importance of various PCA components in the model. PC1 has the highest 

significance, followed by PC2 and PC3. These components capture most of the data's variance, playing 

a crucial role in reducing dimensionality while preserving key information, thereby enhancing model 

efficiency and performance. 

6. RESULT 

Table 2. Performance comparison of various models on the CICIDS2017 dataset 

CICIDS2017 dataset 

  Accuracy (%) Precision (%) Sensitivity (%) F-measure (%) 

SVM-Linear  32.84 61 33 25 

SVM-Poly  17.65 18 18 15 

SVM-rbf  80.71 88 81 83 

SVM-Sigmoid 53.38 75 53 57 

LightGBM 98.56 98 98 98 

XGBoost 97.96 98 98 98 

CatBoost 97.39 98 97 97 

 

 

Figure 11. Performance comparison of various models on the CICIDS2017 dataset 

The table 1 and figure 11presents a performance comparison of various models SVM (Linear, Poly, RBF, 

and Sigmoid), LightGBM, XGBoost, and CatBoost on the CICIDS2017 dataset, evaluating metrics such 

as accuracy, precision, sensitivity, and F-measure. The performance of the SVM-Linear model shows 

lower accuracy (32.84%), sensitivity (33%), and F-measure (25%), though it achieves a precision of 61%. 

SVM-Poly performs poorly across all metrics, with accuracy (17.65%) being the lowest among the 

models. SVM-RBF shows significant improvement, with accuracy reaching 80.71% and strong 

performance across other metrics (precision: 88%, sensitivity: 81%, F-measure: 83%).SVM-Sigmoid 

offers moderate performance with accuracy at 53.38%, precision at 75%, and lower sensitivity and F-

measure scores. The LightGBM model outperforms the SVM variants with high accuracy (98.56%), 

precision, sensitivity, and F-measure, all reaching around 98%, making it a top performer. Similarly, 

XGBoost and CatBoost follow closely, both achieving high and balanced performance across all 
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metrics, with accuracy, precision, sensitivity, and F-measure hovering around 98%.Overall, LightGBM, 

XGBoost, and CatBoost outperform the SVM variants in all key performance indicators, especially in 

accuracy and F-measure, making them more suitable for the CICIDS2017 dataset in intrusion detection 

applications. 

Table 3. Performance comparison of various models on the NF-UNSW-NB15 dataset. 

NF-UNSW-NB15 

  Accuracy (%) Precision (%) Sensitivity (%) F-measure (%) 

SVM-Linear  91.78 91.5 93.94 73.28 

SVM-Poly  93.28 94.16 95.67 75.7 

SVM-rbf  91.71 90.18 93.23 75.93 

SVM-Sigmoid 92.49 92.13 94.44 75.82 

LightGBM 99.34 99 99 99 

XGBoost 98.75 98 98 98 

CatBoost 98.28 98 98 98 

 

 

 

Figure 12. Performance comparison of various models on the NF-UNSW-NB15 dataset 

The table 3 and figure 12compares the performance of different models SVM (Linear, Poly, RBF, and 

Sigmoid), LightGBM, XGBoost, and CatBoost on the NF-UNSW-NB15 dataset using key metrics like 

accuracy, precision, sensitivity, and F-measure. The SVM-Linear model shows strong performance 

with an accuracy of 91.78%, precision at 91.5%, and sensitivity at 93.94%, though its F-measure is 

notably lower at 73.28%. SVM-Poly outperforms the linear variant in all aspects, achieving 93.28% 

accuracy, 94.16% precision, and a higher F-measure of 75.7%. SVM-RBF performs similarly, with 
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slight dips in precision and accuracy, but still maintains solid metrics. SVM-Sigmoid shows moderate 

performance with accuracy at 92.49%, precision at 92.13%, and lower sensitivity and F-measure 

scores.In comparison, the ensemble models LightGBM, XGBoost, and CatBoostoutshine the SVM 

models, with all three models reaching high accuracies (above 98%), and achieving near-perfect 

precision, sensitivity, and F-measure scores, hovering around 98-99%. These results demonstrate that 

the ensemble-based models (LightGBM, XGBoost, CatBoost) are better suited for intrusion detection 

tasks on the NF-UNSW-NB15 dataset due to their superior performance across all evaluated metrics. 

The SVM models, while competitive, are outperformed by these more advanced machine learning 

algorithms. 

 

Figure 13. Compares the accuracy of various models. 

The figure 13compares the accuracy of various models SVM (Linear, Poly, RBF, Sigmoid), LightGBM, 

XGBoost, and CatBoost across two datasets: CICIDS2017 and NF-UNSW-NB15. The ensemble models 

(LightGBM, XGBoost, CatBoost) perform consistently well on both datasets, achieving accuracy above 

97%. In contrast, the SVM models show a significant disparity in performance between the datasets, 

especially SVM-Linear and SVM-Poly, which perform much better on NF-UNSW-NB15. Overall, the 

models perform better on NF-UNSW-NB15, with clear accuracy gains compared to CICIDS2017. 

 

 

Figure 14. Compares the precision of various models. 

The figure 14compares the precision of different models SVM (Linear, Poly, RBF, Sigmoid), LightGBM, 

XGBoost, and CatBoost across the CICIDS2017 and NF-UNSW-NB15 datasets. The ensemble models 

(LightGBM, XGBoost, and CatBoost) maintain high precision (around 98%) on both datasets. SVM 
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models show significant variation, particularly SVM-Linear and SVM-Poly, which achieve much 

higher precision on NF-UNSW-NB15 compared to CICIDS2017. Overall, the precision values are 

consistently higher for the NF-UNSW-NB15 dataset across all models, indicating better performance 

on this dataset. 

 

Figure 15. Compares the sensitivity of various models. 

The figure 15compares the sensitivity of various models SVM (Linear, Poly, RBF, Sigmoid), LightGBM, 

XGBoost, and CatBoost across the CICIDS2017 and NF-UNSW-NB15 datasets. Ensemble models like 

LightGBM, XGBoost, and CatBoost show consistently high sensitivity (around 98%) on both 

datasets. The SVM models exhibit substantial variability, with SVM-Linear and SVM-Poly 

performing significantly better on NF-UNSW-NB15 than on CICIDS2017. Overall, sensitivity values are 

higher for NF-UNSW-NB15, indicating that models are better at detecting true positives in this dataset 

compared to CICIDS2017. 

 

Figure 16. Compares the F-measure of various models. 

The figure 16compares the F-measure of different models SVM (Linear, Poly, RBF, Sigmoid), 

LightGBM, XGBoost, and CatBoost across the CICIDS2017 and NF-UNSW-NB15 datasets. The 

ensemble models (LightGBM, XGBoost, and CatBoost) achieve consistently high F-measure scores 

(around 98%) on both datasets. In contrast, the SVM models show notable variation, particularly SVM-
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Linear and SVM-Poly, which perform significantly better on NF-UNSW-NB15 compared to 

CICIDS2017. Overall, the models demonstrate higher F-measure values on NF-UNSW-NB15, indicating 

better balance between precision and recall on this dataset. 

7. CONCLUSION 

The analysis of various machine learning models for intrusion detection systemsacross two datasets, 

CICIDS2017 and NF-UNSW-NB15, highlights the differences in model performance in terms of key 

metrics such as accuracy, precision, sensitivity, and F-measure. LightGBM, XGBoost, and CatBoost, 

which are ensemble-based models, consistently outperformed the traditional SVM variants in all 

evaluated metrics on both datasets.From the accuracy comparison, the ensemble models exhibited 

high and stable performance across both datasets, achieving accuracy levels above 97%. In contrast, the 

SVM models showed significant variation, with SVM-Linear and SVM-Poly performing far better on 

the NF-UNSW-NB15 dataset compared to the CICIDS2017 dataset. This trend continued with 

precision, where the ensemble models maintained nearly perfect precision across both datasets, while 

the SVM models showed better precision on NF-UNSW-NB15.The sensitivity analysis further 

reinforced this finding. While the ensemble models demonstrated consistently high sensitivity on both 

datasets, the SVM models, particularly SVM-Linear and SVM-Poly, exhibited a marked 

improvement on NF-UNSW-NB15. This pattern also extended to the F-measure, where the ensemble 

models achieved high scores, while the SVM models saw their performance increase on the NF-UNSW-

NB15 dataset.The ensemble-based models—LightGBM, XGBoost, and CatBoost—are highly 

effective for intrusion detection tasks on both CICIDS2017 and NF-UNSW-NB15 datasets. While the 

SVM models demonstrate potential, especially on NF-UNSW-NB15, their performance is less 

consistent across different datasets. This analysis suggests that ensemble models provide better 

generalization and stability across varying data distributions, making them more suitable for real-world 

intrusion detection systems. 
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