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Smart building management and construction is tremendous for developing smart cities in 

building sites and is known for its stability and durability. However, its performance can be 

significantly enhanced by improving material properties such as strength, fire resistance and 

impact protection. Conventional earthquake structural design considers only a limited number 

of factors, mainly elastic structural properties, to determine the critical design parameters.Yet, 

these parameters are often suboptimal since they do not consider the extensive plasticity 

expected in building structures during earthquakes. One significant challenge in concrete 

design is that it is difficult to predict the exact performance of a particular concrete mix without 

extensive testing, which is time-consuming and costly.Conventional techniques for optimizing 

concrete properties depend significantly on empirical testing and expert intuition, which are 

time-consuming and may not completely handle the complex interactions among various 

material components.To address the above problems, this research presents the Artificial 

Intelligence (AI) based Multi-Layer Perceptron Neural Network (MLPNN) method for efficient 

building construction that resists earthquakes.To start with the proposed work, C-Score 

Normalization (CSN) method is employed to normalize the collective dataset. Then, select 

essential features of concrete materials using the Deep Feature Elimination with Residual 

Network (DFE-RN)approach. Following that, the MLPNN method is used to classify the best 

materials for efficient building construction that resists earthquakes. The proposed framework 

has the potential to revolutionize the building industry by constructing concrete with improved 

properties, reducing the need for extensive physical testing and speeding up the innovation 

process.This paper demonstrates the proposed AI-based approach can effectively improve 

Earthquake-resistant structural design. The proposed simulation result illustrates the efficient 

performance regarding precision, recall, classification accuracy and F1-score with less time 

complexity. 

Keywords: Building construction, classification, concrete, earthquake, pre-processing, 

feature selection, material components,structuraldesign. 

 

1. Introduction 

Civil engineers must prioritize designing buildings that are earthquake-resistant since earthquakes are a 

severe hazard to infrastructure and human life. Seismic occurrences during the past century have left extensive 

damage in their wake, highlighting the necessity of robust infrastructure that can endure ground shaking. Reducing 

the destructive impact of earthquakes on structures and communities has been the driving force behind the 

development of earthquake engineering [1]. The stability of infrastructure and structures around the world is 

seriously threatened by earthquakes, which are erratic and destructive natural events. Given the growing 

urbanization in seismically active areas, the need to produce materials resistant to earthquakes has never been 

more pressing [2].Classifying the several facets of seismic engineering, such as different building materials, tracking 

the condition of building components or structures, and predicting their seismic resistance, was the author's goal 
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[1]. An approach known as Machine Learning (ML) was used to achieve the goal. If the data is biased, erroneous, or 

incomplete, the AI system's performance will suffer. Because of this dependency, applying machine learning in 

fields with limited or difficult-to-get quality data is challenging. To fix the problem, the [2] used a K-Nearest 

Neighbor (KNN) technique. However, the experience of the engineering reconnaissance team is the only factor that 

determines the risk statuses of structures, therefore typical conclusions may not be possible.  

Accurately classifying infrastructure systems with diverse properties, including conditions, materials, 

surface appearances and textures, was the author's [3] goal. A Convolutional Neural Network (CNN) approach was 

used to achieve the goal. The CNN isn't strong enough to handle this kind of variability, though. A Random Forest 

(RF) approach was used to fix the problem. Rapidly determining the extent and spatial distribution of building 

damage is crucial for emergency response and recovery following an incident. However, RF required more 

processing power and was more complicated [4]. 

Cement is the primary component of concrete, a substance used extensively in buildings, according to the 

author [5]. Because of the numerous gases released during cement production and use, the environment is 

negatively impacted. A technique called AdaBoost was used to categorize the mechanical characteristics of the 

concrete. If the number of boosting iterations is too high or the weak classifiers are too complicated, the suggested 

approach, however, results in over fitting. To fix the problem, the author used an improved ML technique [6]. 

Therefore, there was insufficient labeled data to train and validate the model on a wide scale. Artificial Intelligent 

such as SARIMA, multi-variable regression, ridge regression, and KNN regression for prediction water level[7]. 

To find structural deterioration, the author [31] used an unsupervised DL-based method. For its training 

procedures, it needs data from a structure that is intact as well as different damage scenarios of structures that are 

being observed. Labeling the training data, however, is usually expensive and time-consuming. The author used an 

improved RF technique to fix the problem [8]. The suggested model is adaptable enough to take into consideration 

more experimental findings that provide fresh perspectives. However, because RF can be unstable, even a small 

change in the training data might have a significant impact on the final model. 

The efficacy of current ML-based damage identification techniques is mostly reliant on the chosen 

signatures from raw signals, according to the author [9]. As a result, it might not perform as well in other 

situations. The Deep CNN (DCNN) approach was used to fix the problem. It was utilized to locate and identify 

damage to building structures that have smart control devices installed. The time-consuming nature of DCNN, 

however, might have an impact on real-time performance in real-world applications. Gradient Boost Regressors 

(GBR) and XGBoost technology were used to fix the problem. Therefore, using standard linear or nonlinear 

regression studies to predict the compressive and flexural strengths of SFRC is challenging [10]. 

In order to forecast the compressive strength of concrete, the author [11] used an innovative approach that 

utilized ML. By combining multiple weak learners, this method uses the adaptive boosting algorithm to create a 

strong learner that can identify the mapping between the input and output data. Accurately predicting the 

compressive strength of concrete material is difficult, though, because of this complex system. An improved GBR 

with XGBoost (GBR-XGB) technique was used to fix the problem. However, because each classifier must correct the 

mistakes made by the previous learners, GBR-XGB was extremely sensitive to outliers [12]. 

An ensemble ML methodology was used by the author [13] to estimate the modulus of elasticity of concrete 

made from recycled concrete aggregate in response to mixture design characteristics. Even if the basis classifier 

accuracy is low, high accuracies can be obtained if distinct base models incorrectly categorize different training 

samples when ensembles are utilized for classification. A Hybrid Ensemble Model (HENSM) was used to fix the 

problem. The HENSM has been found to generate more accurate predictions. However, because several models had 

to be trained, stored, and their outputs combined, HENSM was time-consuming [14]. A Multi-Objective 

Optimization (MOO) approach was used to address the problem. Prior to the construction phase, the MOO model 

can be used as a design guide to help with decision-making. Most of the time, nevertheless, it is necessary to 

optimize several goals at once [15]. 

To support sustainable development and lessen its impact on the environment, the construction sector 

must improve seismic design and switch from strength-based to damage control-based, creative structural 

solutions [16]. The main goals of seismic design are to minimise damage to buildings so they won't collapse during 

strong earthquakes, guarantee utility and safety, and integrate clever framing techniques for important structures 
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[17]. With appropriate design and construction, earthquake-resistant components increase a structure's seismic 

resistance, reducing damage and fatalities in high-rise buildings [18]. Advances in the multidisciplinary field of 

earthquake-resistant structure design include performance-based codes, probabilistic analysis, and enhanced 

analytical tools. Deterministic methods are anticipated to be replaced by this field [19]. 

During the Ahmedabad earthquake, many reinforced concrete frame structures were severely damaged or 

collapsed. The Sabarmati River left behind deep sediments on which many buildings were built. Such buildings 

might have felt more ground motion as a result of this. Inadequate structural design and poor construction were 

other significant contributor to the destruction. To solve the aforementioned issues, a case study of an earthquake-

damaged structure in Bhuj was conducted. This study introduces the Artificial Intelligence approach to effective 

earthquake-resistant building construction. 

AI models, especially Multi-Layer Perceptron Neural Networks (MLP-NN), hold the potential for this 

process since, using large databases, relationships between interdependent parameters can be modeled at a level 

that has not been possible earlier. This approach thereby enables multi-objective optimization using historical data, 

domain knowledge, and real-time data inputs to supply useful information to engineers. The MLP-NN also has 

high-quality performance in noisy and incomplete data; therefore, it is highly applicable in real-life construction 

practicality and resiliency to earthquakes. The incorporation of these AI-driven methods initiated herein for 

sustainable construction is thus a revolution, responding to the environmental issues of concrete production and 

issues of seismic stability of buildings in regions with high risks of earthquake. This paper provides valuable 

recommendations for improving the role of AI in this field, thus ensuring a sustainable and safe construction 

environment is provided. 

When discussing earthquake-resistant building design advances, Mohammad Shahjalal et al. [20] place a 

strong emphasis on cutting-edge materials, technologies and techniques. For better seismic performance, it 

highlights the significance of shape memory metals, fiber-reinforced plastics, and artificial intelligence. An AI 

model for effective earthquake-resistant building design is presented by Behera et al. [21]; it predicts design 

parameters with reduced calculation time, showing promise for further study and use. According to Plevris et 

al.,[22] artificial intelligence (AI) has the potential to reduce earthquake risk through dynamic multi-hazard risk 

assessments, real-time structure health monitoring, and early warning systems. 

The conventional view of concrete as a static, unchangeable material has given way to a dynamic field 

characterized by ongoing innovation within this dynamic environment [23]. The concept of sustainable and long-

lasting concrete has changed over time, reflecting the paradigm shifts in contemporary buildings [24,25]. 

Sustainable cementitious materials, such as calcium sulpho-aluminate cement and alkali-activated binders, are 

among the notable advances [26,27]. By lowering the carbon footprint of concrete, these materials have the 

potential to transform construction methods completely [28-30]. However, there is still a need for more research as 

these new materials become available. A novel method is needed to increase the sustainability of concrete buildings 

in order to lessen the environmental impact of concrete used in businesses [3–4]. One of the newest and most 

important topics in both academic research and engineering practice is Artificial Intelligence (AI). The field of 

computer science that creates software and machines with intelligence similar to that of humans is called AI. AI 

methods have spread quickly in recent years and are now widely used in several engineering specialties [5]. 

2. Materials and methods 

 This section demonstrates the detailed process of earthquake-resistant intelligent structural design of 

building materials using an AI-based approach. Figure 1 describes the proposed architecture diagram for the 

earthquake-resistant intelligent structural design. Initially, the dataset was gathered from the Kaggle repository. It 

contains nine columns: cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, 

Age (day), and concrete compressive strength.  
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Fig 1: Architecture diagram for earthquake-resistant intelligent structural design 

Next, the CSN method is employed to normalize the collective dataset. Then, the essential features of 

concrete materials will be selected using the DFE-RN approach. Following that, the MLPNN method is used to 

classify the best materials for efficient building construction that resists earthquakes. 

2.1 C-Score Normalization Method 

C-Score Normalization is a statistical process of scaling and normalizing data for modeling when one is 

working with the datasets on earthquake building damage predictions. This method brings raw input values into 

the same range so that none of the features can overpower other variables because they are more prominent in 

magnitude. The specific computation form of C-Score Normalization is to obtain the feature’s normalized value 

based on the value’s deviation from the population’s mean, with a constant calibrated factor. The proposed method 

makes sure that a quantitative attribute such as ‘asphalt, brick, timber and bamboo, etc.,’ makes the same 

contribution to the model as a discrete attribute such as ‘soil type.’ This method is beneficial for preprocessing the 

earthquake data set so as to enhance the efficiency of pattern recognition for damage prediction by AI-based DL 

algorithms. Equation 1,2,3 illustrates the C-Score normalization formula, 

𝐶𝑥 =
𝐼𝑥−𝜇

𝜎
     (1) 

Let's assume 𝐼𝑥 as the data point, 𝑥 as the sample, 𝐼 as the actual value, 𝜇 as the mean of the feature values, 

and 𝜎 as the standard deviation of the feature values in the dataset.   

𝜇 =
1

𝑁
∑ 𝐼𝑥
𝑁
𝑥=1      (2) 

Here, 𝑁 represents the total number of samples in the earthquake building damage prediction dataset.  

𝜎 = √
1

𝑁
∑ (𝐼𝑥 − 𝜇)2𝑁
𝑥=1    (3) 
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These equations remove feature scale differences, improve model convergence in DL methodologies, and 

enhance the interpretability of features' contributions. By following equation 4 C-Score was adjusted to normalize 

the bound between two specific values (0to1). 

𝐶𝑑 =
𝐶𝑥−min⁡(𝐶)

max(⁡𝐶)−min⁡(𝐶)
    (4) 

Let's assume, 𝐶𝑑 is adjusted C-Score for the data point, min⁡(𝐶) as the minimum score value in the used 

dataset, and max(⁡𝐶) as the maximum score value in the used dataset. It is used to adjust all normalized values to 

fall within a specific range, making them more interpretable for prediction models. Here 𝐼𝑥 contains structural 

integrity, distance from the epicenter, soil type, building material, and other related factors. 𝐶𝑥 is used to focus on 

the relative contribution of each feature, eliminating the influence of varying scales. 𝐽 is illustrated for building 

damage severity levels (e.g., no damage, moderate damage, severe damage). Equation 5 predicts the model 

example, 

𝐽 = 𝑓(𝐶𝑑, 𝑈) + 𝜀    (5) 

Let's assume, 𝐽 is damage level prediction, 𝐶𝑑 is adjusted input factors, 𝑈 is the model weight for feature 

importance, and 𝜀 is the error term. The normalized dataset shows that feature distributions are more aligned with 

each other, removing noise and highlighting essential patterns. This has enabled better prediction when AI is 

coupled with the DL model to improve the identification of high-risk buildings. The preprocessing step, C-Score 

Normalization, enables a cost-effective method of both earthquake damage assessments and disaster risk 

mitigation regarding management and resource allocation, infrastructure, etc. 

2.2 Deep Feature Elimination with Residual Network (DFE-RN)  

 After preprocessing the predicted building damage from the earthquake dataset, the DFE-RN method was 

used to select the appropriate features. DFE-RN is useful for reducing the number of features in the data set, which 

makes the processes enhanced and more specialized. Residual connections mitigate the vanishing gradient 

problem, improve the network's ability to learn complex features, and enhance prediction accuracy. Subsequently, 

using DFE, the most relevant features from a building damage point of view (e.g., brick, wood, soil type) may be 

analyzed. The obtained reduced dimensionality vectors are applied to the ResNet model for learning to compute in 

residual blocks prediction of building damage while still preserving essential features and learning higher level 

features at deeper levels. Using the identified features of the earthquake, the DFE-RN produces the predicted 

damages, including the levels or probabilities. Equation 6 eliminates the irrelevant features, 

𝑋(𝑓𝑦) =
1

𝑁
∑ ∆ℒ(𝑓𝑦\𝐺𝑥)
𝑁
𝑥=1     (6) 

Let's assume, that 𝑓𝑦 is the feature, 𝑋(𝑓𝑦) is the importance of 𝑓𝑦, 𝐺𝑥 is the subset of the dataset, ∆𝒶𝓃𝒹⁡ℒ(𝑓𝑦\

𝐺𝑥) is the loss difference when 𝑓𝑦 is excluded.  Features with𝑋(𝑓𝑦) < 𝜏 (threshold τ) are iteratively removed to refine 

the input data. After refining the input data, the ResNet was performedat equation 7, 

𝑗 = 𝐹(𝑖, {⁡𝑈𝑥}) + 𝑖     (7) 

Let's assume, 𝑖 as the input to the residual block, 𝑗 as the output block, 𝑈𝑥 weight, and 𝐹(𝑖, {⁡𝑈𝑥}) as the 

transformation function with 𝑈𝑥. This equation is used to learn hierarchical feature representations for predicting 

building damage. It combats vanishing gradients and facilitates learning by adding shortcut connections. Equation 

8 combines DFE and ResNet to improve the accuracy and efficiency, 

𝑗̂ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (ℎ (𝐹𝑅(𝐷(𝐼))))   (8) 

Let's assume, ̂ that j is the predicted class, ℎ is the fully connected layers for classification, 𝐹𝑅 is the feature 

extraction and learning via ResNet, ( )and DI is the processed features via the elimination stage. This equation 

integrates feature elimination and ResNet for improved accuracy and efficiency. By following, the loss function was 

performed through the equation 9, 

ℒ = −
1

𝑆
∑ ∑ 𝑗𝑥,𝑦

𝐾
𝑦=1 log(𝑗𝑥̂,𝑦)

𝑆
𝑥=1    (9) 
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Let's assume ℒ as cross-entropy loss, 𝑆 as the number of samples, 𝐾 as the number of classes, 𝑗𝑥,𝑦 as the 

ground truth label and 𝑗𝑥̂,𝑦 as the predicted probability. This method is optimized for the accuracy, scalability, and 

computational cost necessary for a large-scale damage prediction application. The results prove the model's 

applicability in managing the risks associated with disasters and the recovery phase following earthquakes by 

accurately and quickly predicting the levels of building damage. 

2.3 Multi-Layer Perceptron Neural Network (MLPNN) method 

 The MLP-NN classification method is also a supervised AI-based DL technique used to predict the degree 

of building damage from data from an earthquake catastrophe. This MLP-NN method uses input features from a 

preprocessed dataset to transform them into output classifications (for instance, undamaged, minor, moderate, and 

major damages). The input layer takes in the attributes of an earthquake, including magnitude, distance to the 

epicenter, type of soil, age of building and material and structural construction. The hidden layer, which contains 

neurons, is fully connected and gives a non-linear transformation to the input data. The ReLU activation function is 

used to analyze dependencies between features. The output layer, on the other hand, provides the classification of 

the level of building damage. A SoftMax activation function is often used in the case of multi-class classification. 

During the training process, the network is trained with a backpropagation algorithm with an optimization function 

based on a loss function such as cross-entropy. The training phase of the model deemphasizes patterns on labeled 

examples that are available in the training set. Therefore, based on the earthquake damage dataset, MLP-NN can be 

used to predict building damage and help move and mitigate the risk indicators. Equation 10 provides the 

transformation from the input layer to the hidden layer in the multi-layer MLP-NN, 

𝑞𝑦 = ∑ 𝑢𝑥𝑦 . 𝑖𝑥 + 𝑏𝑦
𝑛
𝑥=1     (10) 

Let's assume, 𝑦 is the neuron, 𝑞𝑦 is the weighted sum for the 𝑦 in the hidden layer, 𝑥 is the input feature, 𝑖𝑥 

is the 𝑥 from the dataset (e.g., building age, material, location), 𝑢 is the weight of the input features and 𝑏 as bias 

term. This equation processes earthquake features (e.g., building attributes) and learns complex relationships using 

weights, biases and activation functions. The activation function ReLU and Sigmoid was performed through the 

equations 11 and 12, 

𝑧𝑦 = max(0, 𝑞𝑦)     (11) 

𝑧𝑦 =
1

1+𝑒−𝑞𝑦
      (12) 

Here 𝑧𝑦 represents the output of the activation function for the 𝑦.An activation function introduces non-

linearity to the network, enabling it to learn complex patterns. The hidden layer to output layer transformation was 

performedthrough equation 13, 

𝑗𝑐 = ∑ 𝑢′𝑦𝑐
𝑆
𝑦=1 . 𝑧𝑦 + 𝑏′𝑐    (13) 

Let's assume, 𝑗 is the weighted sum, 𝑐 is the output class (e.g., "No Damage," "Minor Damage," "Severe 

Damage"), 𝑢' as the weight of the classification attributes and 𝑏’ is the bias term. This equation produces 

probabilities of damage levels using SoftMax. By following, the SoftMax function was computedfor classification 

through equation 14, 

𝑅(𝑗 = 𝑐\𝑖) =
𝑒𝑗𝑐

∑ 𝑒𝑗𝑐𝐶
𝑐=1

     (14) 

Let's assume, 𝑅 is the probability, and 𝐶 is the total amount of output class. This equation converts raw 

output scores into probabilities for each class. After converting raw output scores into probabilities for each class ℒ 

Loss function was performed through equation 15, 

ℒ = −∑ ∑ 𝑗𝑥,𝑐
𝐶
𝑐=1 log(𝑅(𝑗 = 𝑐\𝑖𝑥))

𝑁
𝑥=1   (15) 

Let's assume ℒ is the total loss of the dataset, 𝑁 is the number of samples in the dataset and 𝑗𝑥,𝑐 is the 

indicator of the true label.  This equation measures the difference between predicted and actual labels, and it 

optimizes predictions by minimizing classification errors. After measuring the difference between predicted and 

actual labels, the 𝑢⁡ was updated through equation 16, 
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𝑢 ← 𝑢 − 𝜂
𝜕ℒ

𝜕𝑢
      (16) 

In this equation let's assume, that u is the current weight, 𝜂 is the learning rate, 
𝜕𝒶𝓃𝒹⁡ℒ

𝜕𝑢
 is the gradient of ℒ 

with respect to 𝑢. This equation (Backpropagation) updates 𝑢 to improve model accuracy during training. By 

successfully differentiating crucial characteristics such as building materials, structural designs, closeness to fault 

lines and seismic event size, the MLPL-NN ensures accurate damage classification.  

3. Results and Discussion 

The precision, recall, accuracy, F1 score, and time complexity are used to measure how well the introduced 

procedures are executed. Using the MLPNN methodology, this review finds accurate and dependable construction 

material detection for earthquake prevention using the current KNN, DCNN and GBR-XGB methodologies.  

Table 1. Simulation Parameters 

Parameters Values 

Name of the Dataset Concrete Compressive Strength 

No. of Records 1030 

Language Python 

Tool Anaconda 

 

The simulation results and the parameters of this work are shown in Table 1. There are 1030 datasets in the 

Concrete Compressive Strength dataset, which is used to categorize the strength of concrete. The Anaconda tool 

and Python are used in the implementation process. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Accuracy performance in % 

According to Figure 2, the accuracy performance of the MLPNN is 96.3%, the accuracy execution of the 

KNN is 78.94%, the accuracy of the DCNN is 86.4%, and the accuracy of the GBR-XGB is 91.2%.  Compared to the 

other approaches, the MLPNN has achieved a high level of accuracy. In most circumstances, a high accuracy 

guarantees that the model forecasts the compressive strength values accurately. 
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Fig 3. Recall performance in % 

Figure 3 shows that the MLPNN's recall performance is 94.6%, the KNN's recall execution is 74.6%, the 

DCNN's is 75.9%, and the GBR-XGB's is 86.4%. Compared to the prior approach, the deployed methodology has a 

higher recall value. It makes sure that every instance of weak concrete is found, preventing possible structural 

problems. 

 

Fig 4. Precision performance in % 

Figure 4 shows that the KNN's precision execution is 77.8%, the DCNN's is 83.4%, the GBR-XGB's is 

89.7%, and the MLPNN's is 95.7%. Compared to the prior technique, the deployed methodology is more precise. 

There are fewer inaccurate predictions of high compressive strength when it is actually low when the precision 

value is high. 
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Fig 5. F1 score performance in % 

Figure 5 shows that the KNN's F1 score execution is 75.3%, the DCNN's is 78.9%, the GBR-XGB's is 84.6%, 

and the MLPNN's is 93.6%. Compared to the prior technique, the deployed methodology has a higher F1 score. It 

gives an extensive overview of model performance by combining precision and recall, particularly in cases where 

the dataset contains unbalanced classes. 

 

Fig 6. Time complexity performance analysis in % 

Figure 6 shows that the KNN's time complexity performance is 51.6 ms, the DCNN's is 46.8 ms, the GBR-

XGB's is 23.4 ms, and the MLPNN's is 13.6 ms. Compared to the prior technique, the deployed methodology has a 

far lower temporal complexity. Large datasets may be processed rapidly by a model with minimal time complexity, 

which makes it scalable for industrial applications. 

4. Conclusion  

 In conclusion, the research highlighted the limitations of conventional concrete design parameters, which 

often fail to accommodate the necessary plasticity for earthquake resistance. It acknowledged the challenges 

associated with predicting the performance of concrete mixes, emphasizing the time and cost involved in extensive 

testing. By introducing the AI-based MLPNN method, the study presented a promising alternative that streamlines 

the design process for earthquake-resistant structures. Through the integration of CSN and the DFE-RN, essential 

features of concrete materials were effectively identified. The MLPNN method demonstrated significant 

improvements in classification accuracy and overall efficiency, reducing reliance on empirical testing. Ultimately, 

this research indicated the potential to transform the building industry by enabling the construction of concrete 
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with enhanced properties, thereby expediting innovation and improving structural safety in the face of seismic 

challenges. 
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