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At the core of any Data Storage Systems (DSS), ongoing research efforts are dedicated to 

refining algorithms for effective data storage and retrieval. The primary objective of any data 

management systems (DBMS) is improving the performance of data management such 

optimizing queries response times. Decades of research have borne fruit in the form of 

performance-oriented optimization techniques, revolutionizing DSS usability and enhancing 

the user experience significantly. However, the explosion of digital data and the rise of various 

data-driven services, combined with the ongoing decline in processing equipment costs, are 

contributing significantly to the heightened energy consumption of data storage systems. With 

the pervasive incorporation of digital services into our daily lives, energy management has 

become a major challenge for digital companies to mitigate their environmental footprint and 

reduce their energy cost. Considering this perspective, several initiatives have been undertaken, 

such as the development and exploitation of renewable energies, or the redefinition of the 

Database (DB)’s primary quality objective: from the performance-oriented approaches to an 

energy-integrated approaches. In this paper, we suggest leveraging the advancements in 

performance characterizing to integrate energy efficiency into DSS. Initially, we assess the 

energy efficiency of a particular optimization technique, specifically, data partitioning applied 

during physical design. Next, we evaluate the energy efficiency of the query processor system by 

introducing a multi-objective formulation that considers two non-functional constraints: 

performance and energy consumption. Lastly, we present a simulator that incorporates an 

energy model, enabling the generation of query plans optimized for energy efficiency. 

Keywords: Energy Efficiency, Data Storage Systems (DSS) 

 

 

INTRODUCTION 

In recent years, we have observed a rapid transformation of our daily activities due to significant technological 

advancements. The pivotal role of data in driving this digital transformation is widely acknowledged by all. 

Presently, the increasing significance of data is widely recognized, serving as a guiding force for strategic decision-

making in businesses and a tool for governments to monitor, control, and prevent crises. At the core of any 

business, data plays a central role while simultaneously acting as a new environmental pollutant. This pollution 

primarily stems from the greenhouse gas emissions generated by data storage systems, which consume substantial 

energy when processing these data. 

These systems are designed to store, process, recover, and share data. They are the backbone on which data centers 

are built. In addition to offering a secure and enduring storage framework, they facilitate efficient access to stored 

data for users or programs through query languages like SQL(Structured Query Language). The objective of 

performance optimization is to reduce query response times by maximizing the utilization of system resources 

(CPU, memory, disk, network) while ensuring data consistency. Attaining this goal necessitates a deep 

comprehension of the logical and physical design of the data and applications implemented on the system 

(Kamatkar et al., 2018). 
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The urgency of environmental sustainability has never been greater, as reflected in current and coming statistics 

and associated repercussions on life. Factors such as the proliferation of the Internet, the emergence of new 

technologies, heightened user demands, and the exponential growth of data production are significantly amplifying 

the energy and water consumption of data centers, and consequently, their carbon footprint. This increase is 

primarily due to digital infrastructure installation, including storage and communication devices. The carbon 

footprint of data centers is the highest it has ever been(Kilgore, 2023). Actually, Datacenters alone are responsible 

for 2.7% of the EU’s electricity demand and their consumption is expected to increase by 3.21% by 2030. China 

electricity consumption in Datacenters sector will exceed 400 billion kWh By 2030, accounting for 3.7% of the 

country’s total electricity consumption (Mar, 2022). 

      

In response to this situation, technologies have progressed towards energy-saving strategies referred to as Energy-

Efficiency (EE) solutions. Thus, the conventional approach of improving the performance of IT systems has 

converged towards satisfying the constraints of environmental sustainability by reducing the Carbon impact. 

Among the initiatives proposed are: 

 

• Some regulations of so-called Good Practice Standards in favor of climate change, such as Estonia’s 

 "National Energy and Climate Plan", which aims "to provide Estonian people, companies and other 

 member states  with  as much information as possible about the measures that Estonia plans to use to 

 achieve the energy and climate policy targets". 

• More Concrete Actions within Datacenters by relocating them to regions with more favorable climates, 

 or  opting for energy-efficient chemical components, optimizing the design of logic circuits, designing 

 algorithms efficiently, and establishing energy management techniques, etc. 

 

This research tackles the issue of Databases over-consumption in Datacenters by combining empirical approaches 

with those of physical design optimization techniques. The goal is to improve energy efficiency. Our initiative 

focuses on the physical design phase, specifically data partitioning technique, and the incorporation of an energy 

model into PostgreSQL Query Processor (QP). 

 

A Query Optimizer plays a pivotal role by: (i) presenting a search space of query execution plans, (ii) offering cost 

estimates for all operations constituting the query, and (iii) outlining a strategy for exploring this space to select the 

optimal performance plan [39]. Following a similar approach as performance-oriented cost models, we introduce a 

framework named "GreenPipeline" built on the PostgreSQL system by integrating our energy model into its 

Optimizer, with the aim of selecting energy-optimizing plan, or a plan that optimizes a compromise threshold 

between the two Non-Functional Objectives (Performance and Energy). Figure 1 illustrates how our future 

optimizer will work considering performance and energy cost model. 

 

 
Figure 1: Energy integration illustration. 

 

Our Contribution 

 

The major technical contributions of this paper can be summarized as follows: 

• We present an in-depth review of existing works focusing on the integration of energy into databases. We 

 classify these researches into four categories based on their deployment levels (Figure 2): (1) hardware 

 solutions, (2) software solutions, (3) environmental management, and (4) behavioral standards to guide or 

 facilitate EE techniques. 
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Figure 2: EE deployment levels 

 

• We conduct an empirical study to assess the influence of data partitioning techniques on energy 

 consumption during the processing of Select-Join-Projection (SJP) queries. 

• After proposing our strategy for defining energy models, we apply it on a row-stored data engine 

 (PostgreSQL). In the model conception process, machine learning algorithms are used to estimate the 

 weights of certain parameters. This study rely on three algorithms: Non Linear Regression (NLR), Artificial 

 Neural Networks (ANN), and Random Forests (RF) in order to compare their predictions and evaluate their 

 influence on the models accuracy. 

• We propose an evaluation method for plan selection based on a trade-off between energy and performance. 

 This threshold signifies a preference for either Performance (T) or Energy cost (E) superiority. 

• Finally, we introduce a Framework that incorporates the validated model and plan evaluation method into 

 the PostgreSQL optimizer for energy estimation and saving studies. 

 

Paper Organization 

After covering the basics to facilitate the understanding of the paper, we present the previous works on energy 

efficiency in databases, focusing more on the Software’s approaches in Section 2. In Section 3, we discuss the 

results obtained when querying un-partitioned and partitioned data. In Section 4, we propose our modeling 

approach and then we evaluate our approaches by conducting prediction studies. Section 5 describes the main 

features of our Framework, and then presents the energy savings achieved by deploying our tool. We conclude our 

work in section 6. 

 

BACKGROUND 

Energy Concept 

Formally, energy and power can be defined as follows (Beloglazov et al., 2011): 

𝑃(𝑡) = 𝑑/𝑑𝑡𝐸(𝑡) ;  𝐸(𝑡) = ∫ 𝑝
𝑡

0

(𝜏)𝑑𝜏  (𝟏) 
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where P, t, and E represent respectively the power, time, and energy. 

• Query’s energy: In the context of databases, usually two aspects of power are considered: average or peak 

energy. They represent respectively, the Average(Avg) energy and Maximum(Max) power consumed during 

the query execution. the energy of a DSS when executing query (Q) denoted by EQ is defined as follows: 

 

𝐸𝑄 = (𝐴𝑣𝑔|𝑀𝑎𝑥) {(∑𝑃

𝑛

1

𝑜𝑤𝑒𝑟𝑜𝑝𝑖 ∗ 𝑇𝑖𝑚𝑒𝑜𝑝𝑖) + 𝜀}        (𝟐) 

where n and ε are the number of operators in the plan and the energy measurement errors. 

• Energy efficiency: refers to the optimal use of energy by a system to provide the same service. Energy 

efficiency (EE) is defined as the ratio of performance, measured in rate of work done, to the amount of 

energy used(Tsirogiannis et al., 2010). 

 

𝐸𝐸 =
𝑈𝑠𝑒𝑓𝑢𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡
=
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝐸
         (𝟑) 

 

LITERATURE REVIEW 

Energy consumption has been widely studied in the computer architecture field for decades. Energy efficiency 

techniques in systems are categorized into two primary domains: (1) Static Energy Management and (2) Dynamic 

Energy Management. Static management aims to enhance energy efficiency during component design, relying on 

electronic circuit optimization and components miniaturization. On the other hand, dynamic management focuses 

on regulating energy consumption during system operation (Lu & De Micheli, 2001). Our research emphasizes 

techniques based on the dynamic management of energy consumption, which we have classified into four main 

categories (see Figure 3) based on their deployment level: (1) Hardware solutions, (2) Software solutions, (3) 

Environmental management, and (4) Standards of conduct. 

 

Figure 3: EE approaches in dynamic energy management. 

Hardware Solutions 

At the hardware and micro-architectural levels, three alternative solutions are implemented: (a) Dynamic 

Component Deactivation (DDC), (b)Dynamic voltage and frequency scaling (DVFS) and (c) combining processing 

units (co-processing) (Beloglazov et al., 2011). The DVFS technique is widely applied as energy-efficiency 

approaches in micro-architectural devices (CPU, memory, etc.), in packet forwarding on interconnection networks 

and in the problem of task scheduling (Nishikawa et al., 2015),(Haj-Yahya et al., 2020),(L. Zhou et al., 

2020),(Pagani et al., 2017),(Jaiantilal et al., 2010),(Salami et al., 2020) ,(Y. Zhou et al., 2018). 
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Software Solutions 

In the field of databases, the software perspective consists of investigating query optimization methods, scheduling 

algorithms, physical design and data update techniques with energy concerns in view. These approaches are 

generally characterized by (1) the development of an energy cost model and (2) the use of a cost-driven technique in 

the optimization phase. 

The majority of efforts in this field have suggested methods to improve the efficiency in query processor. This 

choice is justified by the observation that this particular component constitutes the most energy-intensive in DSS 

architecture. By extracting the common characteristics of a set of queries, which define the key factors influencing 

its energy consumption when processing them in a specific architecture (centralized, distributed, parallel). The 

authors of these works (Xu et al., 2015)(Liu et al., 2013)(Rodriguez-Martinez et al., 2011)(Guimarães et al., 

2016)(Roukh et al., 2017)(Dembele, Bellatreche, Ordonez, & Roukh, 2020)(Dembele, Bellatreche, & Ordonez, 

2020)(Dembele, Bellatreche, Ordonez, Gmati, et al., 2020)(Guo et al., 2017)(Kunjir et al., 2012) develop energy 

models based on a modeling level (operator, pipeline, request) and a model execution (sequential, parallel, 

distributed). Subsequently, they validate these models by scrutinizing their precision through variations in Datasets 

or initial architectures. Following this validation phase, they undertake studies on estimation and energy 

conservation by incorporating the model into the query optimizer. Our proposal in this work differs from the 

works suggested in the literature by the fact that we highlight the step of machine learning to derive the weights 

of the final model and conduct our experiments on an engine that offers an intra-parallelism mode. The step of 

machine learning is crucial because from our experiences, we understood that it can have a huge impact on the 

accuracy of the model. The current approach relies solely on one machine learning technique, whether it’s simple 

linear regression or polynomial regression. We propose to confront three techniques: polynomial regression, 

random forest and neural networks. 

Virtualization, cloud computing, and co-processing methods are advancing and demonstrating considerable 

promise in the field of energy efficiency (Kaur & Chana, 2015),(Huh, 2018)(Quang-Hung et al., 2013). Additionally, 

data compression is also widely applied as an EE approach because by comparing the energy absorbed by the 

processor during the compression and decompression steps and the energy required in the input/output 

subsystems to load the data. 

Temperature Management 

The ideal temperature is adequate for the proper functioning of these components. Heat tends to increase hardware 

failures. The higher the amount of heat released, the more energy the cooling systems consume. The ambient 

temperature recommended by ASHRAE8 for Class A1 to A2 DSS is between 18^∘ and 27^∘ Celsius (64^∘ to 81^∘ 

Farenheit). Major corporations, including Google and Facebook, adopt a strategy of relocating data centers to 

regions with a temperate climate, often situated at the edges of oceans. While this approach undeniably decreases 

energy consumption, it raises concerns about potential pollution released into the water. The environmental 

repercussions of such discharges on the aquatic ecosystem and its inhabitants warrant careful consideration. 

Standards and Conduct 

In response to global warming, governments and major actors have imposed regulations with the objective of 

reducing greenhouse gas emissions and mitigating economic, safety and environmental impacts. For example, we 

have the code of conduct established in 2008 by the European Commission1, the ENERGY STAR2 program of the 

US Department of Energy and the holding of the Conferences of the Parties (COP3) organized by the United 

Nations (UN) annually. 

Energy Efficiency during Physical Design 

Physical design is one of the steps of the database lifecycle. The objective is to suggest optimization structures that 

will impact the performance of database applications. These optimization structures encompass the choice of 

storage format, selection of relevant indexes, query execution mode, definition of materialized views, 

denormalization of data, and use of data partitioning techniques, etc(March & Carlis, 1985). In this paper, we focus 

on data partitioning. Split into two classes: horizontal and vertical, partitioning significantly affects query 

performance. Our goal in conducting this experiment is to investigate whether the Partitioning technique, in 

addition to being efficient, is also energy-efficient or not. 

 
1 https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en 
2 https://www.energy.gov/eere/buildings/energy-starr 
3 https://unfccc.int/fr 

https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en
https://www.energy.gov/eere/buildings/energy-starr
https://unfccc.int/fr
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To do this, using the PostgreSQL System, we collect the time and energy consumed by each of the 22 Select-Join-

Projection queries of the TPCH benchmark on the same data in the different scenarios. In the first scenario, the 

data is not partitioned, in the second scenario, the data is partitioned horizontally using PostgreSQL’s Auto-

Partitioning based on the number of available nodes, and in the third scenario, the data is partitioned vertically. 

MonetDB’s column-oriented storage model is used to partition the data vertically. We load the same data on this 

engine and evaluate its energy consumption. 

We use a Power meter to measure the average energy consumed in each scenario and retrieve the execution time of 

the queries on both 10 GB and 30 GB Datasets. The figure 4 indicates, for each Datasets, the total query execution 

time and the total average energy consumed in each configuration. 

 
(a)  Processing time                                                (b) Energy consumption 

                                                            Figure 4: Time and Average energy consumption. 

The energy savings achieved through Vertical Partitioning (VP) for all queries on Datasets SF10 are 20 times 

smaller compared to the scenario with No-Partitioning, and 24 times smaller on Datasets 30. In the case of 

Horizontal Partitioning, the energy savings are 29 times lower compared to the scenario with No-Partitioning on 

Datasets SF10 and 0.02 times higher on Datasets SF30. From the experimentation results, we find that the 

performance of Vertical Partitioning greatly exceeds the case of No-Partitioning and Horizontal Partitioning in 

terms of query execution time and energy consumption. The choice made by database administrators in the 

physical design step can have a considerable impact on performance and energy consumption. 

Thus, we conclude that Vertical Partitioning is a way to optimize not only the performance, but also the energy 

consumption for analytical queries 

 

POWER MODEL PROFILING 

 

Designing  

 

Creating an energy model can be a laborious and time-consuming task as it necessitates a comprehensive 

understanding of various aspects, including the deployment platform and the specifics of the storage system (such 

as the data model, storage structure, execution mode, type of requests, etc.). In this manuscript, we refrain from 

delving into these procedures as they have been thoroughly addressed in our earlier publications (Dembele, 

Bellatreche, Ordonez, & Roukh, 2020) (Dembele et al., 2018) (Dembele, Bellatreche, & Ordonez, 2020) (Dembele, 

Bellatreche, Ordonez, Gmati, et al., 2020) (Dembele, Ladjel, et al., 2020). One of the primary aims of this paper is 

to introduce and analyze the results of our energy conservation efforts, utilizing the model we have established, and 

assess the influence of learning techniques on the model accuracy. 

𝑀𝑜𝑑𝑒𝑙𝑄𝑢𝑒𝑟𝑦
𝐸𝑛𝑒𝑟𝑔𝑦

=

{
 
 

 
 
𝐶𝑜𝑠𝑡𝐸𝑙𝑒𝑚𝑂𝑃

𝐶𝑃𝑈  ⊕

𝐶𝑜𝑠𝑡𝐸𝑙𝑒𝑚𝑂𝑃
𝐷𝑖𝑠𝑘  ⊕

𝐶𝑜𝑠𝑡𝐸𝑙𝑒𝑚𝑂𝑃
𝑀𝑒𝑚𝑜𝑟𝑦

 ⊕

𝐶𝑜𝑠𝑡𝐸𝑙𝑒𝑚𝑂𝑃
𝑁𝑒𝑡𝑤𝑜𝑟𝑘  ⊕
. . . }

 
 

 
 

(𝐸, 𝑃𝑛 , 𝑀𝑜𝑑𝑒𝐸𝑥,𝑀𝑜𝑑𝑒𝑙𝐸𝑥) + 𝜀  (𝟒) 
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where 𝐸𝑙𝑒𝑚𝑂𝑃 represents the number of operators constituting the query plan, 𝐸 is the metric that we wish to 

evaluate, 𝑃𝑛 is a list of characteristics which describes the component, 𝑀𝑜𝑑𝑒𝐸𝑥 is the execution mode and 𝑀𝑜𝑑𝑒𝑙𝐸𝑥 

is the execution model. 

Following our methodology (Figure 5) and considering a set of parameters that can affect the model’s lifespan, we 

present a generic formulation (Equation 4) for energy models in the context of DSS when handling queries. The 

formalism results from the combination of physical resources (CPU, Memory, Disk, bus, network, etc.) invoked 

when processing operations constituting the query plan in a specific environment impacted by the execution model 

(pipeline, etc.) and the execution mode (sequential, etc.). The main challenge lies in the inability to determine or 

estimate each parameters value directly in isolation mode. 

 

Figure 5: Energy cost model designing methodology. 

We deploy our BD in a centralized environment on a single machine therefore we ignore the cost of communication. 

In our model, we consider a parallel execution mode (Intra-Query) and a pipeline execution model. 

 

For a query 𝑄𝑖, we denoted by 𝑃𝑙𝑎𝑛𝑖 its execution plan consisting of 𝑘 pipelines noted {𝑃𝐿1
𝑖 , 𝑃𝐿2

𝑖 , 𝑃𝐿3
𝑖 , …𝑃𝐿𝑘

𝑖 }, its 

average power is estimated as follows: 

 

𝑃𝑜𝑤𝑒𝑟(𝑄𝑖) =
∑ 𝑃𝑘
𝑗=1 𝑜𝑤𝑒𝑟(𝑃𝐿𝑗

𝑖 )∗𝑇𝑖𝑚𝑒(𝑃𝐿𝑗
𝑖 )

𝑇𝑖𝑚𝑒(𝑄𝑖)
, where  𝑇𝑖𝑚𝑒(𝑄𝑖), 𝑇𝑖𝑚𝑒(𝑃𝐿𝑗

𝑖) represent respectively, the execution time of the 

query 𝑄𝑖  and the execution time of 𝑃𝐿𝑗
𝑖 . The power dissipated when processing a pipeline is the combination of the 

energy consumption of the main resources identified. The formula is given by the equation 5. 

 

𝑃𝑜𝑤𝑒𝑟(𝑃𝑃𝐿𝑖 , 𝐷𝑜𝑃) = (𝑓𝑐𝐷𝑜𝑃  ⊕  1) ∗ 𝛽𝐶𝑃𝑈 ∗∑𝐶

𝑛

𝑘=1

𝑇𝐶𝑃𝑈𝑘  ⊕  𝜆𝐼𝑂 ∗∑𝐶

𝑛

𝑘=1

𝑇𝐸𝑆𝑘      (𝟓) 

where 𝛽𝐶𝑃𝑈  and 𝜆𝐼𝑂 are the model parameters (i.e., unit power costs) for the operators. The 𝐶𝑇𝐸𝑆𝑘 is the predicted 

number of I/O required for executing a specific operator. The 𝐶𝑇𝐶𝑃𝑈𝑘 is the predicted number of CPU Cycle and 

buffer cache get that DBMS needs to run a specific operator. The 𝑛 is the number of operators in the pipeline.𝑓𝑐𝐷𝑜𝑃 

denote an energetic factor. This factor is defined according to the degree of parallelism (𝐷𝑜𝑃) and expresses the 

difference between the power consumed during the parallel mode processing compared to the sequential processing 

at the CPU level(Dembele, Bellatreche, Ordonez, & Roukh, 2020). ⊕ expresses the correlation between the 

parameters. 

Hardware Configuration 

The experiments are conducted using a DELL PRECISION T1700, Intel Core i7 4770 CPU@ 3.40GHz (1 CPU-

4Core-8 Threads), 16Go DDR3 main memory, ATA Disk Western Digital (WD 500 GB). The operating system 

Ubuntu 18.04 bionic (kernel 5.0.0-27-generic) is used and the PostgreSQL system (version 10.10), an open-source 

row-store. We collect statistics about average time and power consumption for each query in the particular DBMS. 

For power measurment, we use power meters called Watt-UP-PRO4 at a 1Hz frequency, placed between the power 

source and the DBs server. In addition to the training Datasets and the TPC-H benchmark queries, we use the 

Datasets and queries from the SSB and TPC-DS benchmarks. 

 

 
4 http://www.energyalternatives.ca/pdf/wattsup_TTW.pdf 

http://www.energyalternatives.ca/pdf/wattsup_TTW.pdf
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Machine Learning 

Following a sequence of observations, during which the selected queries for model training were executed 

sequentially, we apply regression, Random Forest, and neural network algorithms in the R language to ascertain 

the parameter values for the models. 

Based on our experiments, the application of the polynomial regression technique of degree 2 yielded acceptable 

results. The average power of a pipeline is then written as : 

𝑃𝑜𝑤𝑒𝑟(𝑃𝑃𝐿𝑖 , 𝐷𝑜𝑃) = 𝛽1 ∗ 𝐶𝑇𝐼𝑂 + 𝛽2 ∗ 𝐶𝑇𝐶𝑃𝑈 ∗ 𝑓𝑐𝐷𝑜𝑃
+ 𝛽3 ∗ 𝐶𝑇𝐼𝑂

2 + 𝛽4 ∗ 𝐶𝑇𝐶𝑃𝑈
2 ∗ 𝑓𝑐𝐷𝑜𝑃

+ 𝛽5 ∗ 𝐶𝑇𝐼𝑂 ∗ 𝐶𝑇𝐶𝑃𝑈 ∗ 𝑓𝑐𝐷𝑜𝑃
+ 𝛽0 + 𝜖

     (𝟔) 

𝜖 represents measurement errors and (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5) are regression coefficients that will be estimated by machine 

learning technique. 

In order to construct the other models (Neural Networks, Random Forest), we carried out multiple experiments 

until we determined the most optimal hyper-parameters. The hyper-parameter values used in both cases are 

summarized in Table 1(b) and 1(c). In order to assess the quality of the models, we used R software to calculate 

statistical quantities that measure the adequacy of the learning data.  

In Table 1(a), we provide either the coefficient of determination denoted by R2 or the mean square error for each 

model. 

Table 1: Accuracy analysis 

 

 

Validation Study 

We used Estimation Error (ERR) methodology to quantify the accuracy of ours models. It consists to determine 

difference between the Real Energy (𝑅𝐸) measured by Powermeter and the Energy Estimated(𝐸𝐸) in percentage. It 

is expressed by the following formula for a single query: 

𝐸𝑟𝑟𝑜𝑟𝑄𝑖 =
|𝑅𝐸 − 𝐸𝐸|

𝑅𝐸
× 100%      (𝟕) 

To measure the accuracy of the model on a query set, we determine the mean of the errors (𝐸𝑀𝑒𝑎𝑛) of predictions 

formulated as follows: 

𝐸𝑀𝑒𝑎𝑛 =
1

𝑛
×∑𝐸

𝑛

𝑖=1

𝑟𝑟𝑜𝑟𝑄𝑖         (𝟖) 

In order to compare the effectiveness of learning methods, we will use the average of prediction errors on a set of 

queries. 
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When working with a 10 GB TPCH Datasets, the mean errors differ depending on the degree of parallelism. 

Specifically, when utilizing the nonlinear regression technique, the mean errors are 9.85% and 12.16% for degrees 2 

and 4, respectively. Meanwhile, the Neural Networks technique yields mean errors of 7.89% and 9.63% for degrees 2 

and 4. Lastly, the random forest regression technique (FAR) results in mean errors of 12.90% and 13.61% for degrees 

2 and 4, respectively. 

 

With the 20 GB TPCDS schema, characterized by greater complexity compared to TPCH, we achieved an average 

error below 15% across all learning techniques, with the nonlinear regression technique exhibiting a maximum error 

of 30%. 

 

Utilizing a 100 GB Datasets with the less complex SSB schema as compared to TPC-H, we observed an average error 

of 12.98% and a maximum interpretable error of 18.56% when employing the nonlinear regression technique. 

Meanwhile, when using neural networks, we achieved an average error of 7.76% with a maximum error of 13.11%. 

 
(a) TPCH SF=10 GB  

Datasets.           

(b)  TPCH, TPC-DS, SSB  

Datasets 

Figure 6: The average estimation error across the three techniques. 

Discussion 

As depicted in Figure 6, our experiments reveal that the Neural Network (ANN) technique exhibits superior accuracy 

compared to NonLinear Regression (NLR) and Random Forests (RF). While the accuracy of Neural Networks tends to 

enhance with larger Datasets, it is noteworthy that Random Forests and NonLinear Regression are more 

straightforward to train and optimize due to their hyperparameters. In the context of an optimizer’s utilization, the 

ability to seamlessly integrate a model is crucial, as it should remain lightweight to avoid disrupting the energy of the 

system it seeks to estimate. While the Neural Network technique (ANN) proves suitable for energy estimation studies, 

it presents certain drawbacks in query optimization due to its computational time and energy consumption 

considerations. 

However, this study unmistakably illustrates that the selection of the learning technique significantly influences the 

precision of the resultant model. It must be determined beforehand, taking into account other factors such as 

integration flexibility, prediction time performance, and the operational objectives of the model. 

TOWARDS GREEN DATABASES: GREENPIPELINE 

This section outlines the design and showcases our experimental results using the tool we introduced, named 

"GreePipeline." Our tool was created atop the PostgreSQL system, incorporating modifications to accommodate our 

cost model and query plan evaluation model. To enhance user-friendliness, we introduced a Graphical User 

Interface (GUI) for defining specific parameter values and real-time visualization of energy consumption for 

queries. The workflow of our Framework, developed in Java, is detailed in Figure 7. The tool(demo available on 

GreenPipeline) is available on https://github.com/dembeles/GreenPipelineDB.git. 

https://github.com/dembeles/GreenPipelineDB.git
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Figure 7: Framework Workflow. 

The evaluation model is defined using a criterion that assesses either performance superiority (T) or energy cost 

(E). It is defined as follows: 

𝐶𝑝𝑙𝑎𝑛 = 𝛼 × 𝑙𝑜𝑔(𝑇) + (1 − 𝛼) × 𝑙𝑜𝑔(𝐸). 

𝐶𝑝𝑙𝑎𝑛 represents cost of the plan. 𝛼 serves as a compromise coefficient between 𝑇 (performance) and 𝐸 (energy 

cost), ranging from 0 to 1. Extreme values of 𝛼 can lead to the degradation of one of the metrics. An optimal value 

for 𝛼 enables the generation of execution plans with both acceptable performance and energy consumption. 

 

Results 

 

In our experimental setup, we chose to study three scenarios: 

 

• 𝛼 is set to 1, with 𝑡𝑖𝑚𝑒_𝑤𝑡 = 1 at 1 and 𝑝𝑜𝑤𝑒𝑟_𝑤𝑡 = 0 at 0 : the configuration underscores that optimizing 

performance is the primary objective during query processing. 

• 𝛼 is set to 0, with 𝑡𝑖𝑚𝑒_𝑤𝑡 = 1 at 0 and 𝑝𝑜𝑤𝑒𝑟_𝑤𝑡 = 0 at 1 : the configuration signifies that the primary 

optimization goal during query processing is energy efficiency. 

• 𝛼 is set to 0.5, with 𝑡𝑖𝑚𝑒_𝑤𝑡 = 1 at 0.5 and 𝑝𝑜𝑤𝑒𝑟_𝑤𝑡 = 0 at 0.5 : this configuration aims to strike a balance 

between the two factors. An execution plan is chosen that fulfills the energy constraint without compromising 

performance. 

Additionally, besides varying the scale factor (SF) across different benchmarks, we perform TPC-H and SSB 

benchmark queries on each specified configuration (𝛼 = 1, 𝛼 = 0, 𝛼 = 0.5). Power values and execution statistics for 

each query are collected for every configuration. Figure 8 illustrates the real-time variations in energy consumption 

during the first 100 seconds, based on the results obtained from the optimizer. Analyzing energy consumption 

variations, it becomes evident that the performance-oriented configuration 𝛼 = 1 unsurprisingly consumes the 

highest amount of energy. 
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Figure 8: Variations in energy consumption captured in real time. 

Table 2 presents a summary of the average energy dissipation and the processing time for query loads across each 

configuration. Additionally, the table provides a concise overview of energy savings, power variations, and 

performance degradation for the energy-oriented configurations (𝛼 = 0, 𝛼 = 0.5) in comparison to the 

performance-oriented configuration (𝛼 = 1). 

 

Comparing the optimized workloads in terms of power and performance, we note power savings of 1 to 14 watts, 

resulting in overall power savings ranging from 2.7% to 21.08%. 

 

 

The 𝛼 = 0 configuration is evidently more energy-efficient than other configurations, exhibiting approximately 1.5 

times greater energy efficiency than the 𝛼 = 1 configuration. However, the energy-centric 𝛼 = 0 configuration is 

marked by a performance degradation. Despite observing a similar performance dip in the 𝛼 = 0.5 configuration, we 

achieved a cumulative energy savings of 26.4%. 

 

Our proposed approach, validated through a series of experiments, demonstrates an average energy saving of 12.5% 

for the 𝛼 = 0 configuration and 13.9% for the 𝛼 = 0.5 configuration 

 

Table 2: Assessment of query execution in various configurations. 
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CONCLUSION  

 

Undoubtedly, this paper serves as compelling evidence that achieving Energy Efficiency (EE) is feasible by 

incorporating best practices gleaned from prior research into performance optimization. Our approach commenced by 

substantiating, via a sequence of experiments, that the utilization of the partitioning technique significantly enhances 

both performance and energy efficiency. Subsequently, we introduced our framework, named "GreenPipeline," 

representing a pioneering step towards eco-friendly databases. The distinctive feature of this framework lies in an cost 

model integration, capable of accurately predicting the energy cost associated with a given plan, and an evaluation 

model designed to select the most optimal plan based on predefined optimization criteria. 

 

As our approach relies on cost-based principles, it becomes imperative to develop a precise model for selecting the 

optimal plan. Given the complexity and needs for reproducibility, we outlined two key aspects. Firstly, we presented a 

step-by-step guide for formulating an energy model tailored to the execution of queries within the realm of data storage 

systems. Secondly, we introduced a generic formulation including various factors that have the potential to influence 

energy consumption. Furthermore, this study discuss the influence of learning techniques on the model’s precision and 

addresses the challenges associated with integration based on the targeted objectives. 

 

After the design and implementation of our framework, using diverse benchmarks such as TPCH and SSB, and 

measuring actual energy consumption with a wattmeter, we noted energy savings of up to 26.4%. This paper reveals 

that the application of some good practices in the context of databases encourages the exploration of energy saving 

opportunities. 

 

We plan to extend our work by exploring the energy consumption of recursive (computation-intensive) queries and 

maintenance queries in a more sophisticated environment than a centralized system that we used in the context of this 

work. The feedback from the application of this extension will allow us to export our skills by evaluating the energy 

consumption of the SparkSQL processing system and its Catalyst optimizer engine. 
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