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This work purposes to address the need for open switch fault diagnosis in 3-phase voltage 

source inverters used in industry, with the goal of enhancing consistency, minimizing 

downtime, reducing maintenance costs, and ensuring optimal performance. Open switch faults 

in switching devices can considerably reduce the efficacy as well as consistency of a voltage 

source inverter. This leads to costly downtimes and increases security risks. This paper 

proposes a novel technique for open switch fault diagnosis that consists of feature extraction, 

rule-based modeling, as well as machine learning and pattern recognition in fault diagnosis 

with the combination of direct-quadrant transformation and convolutional neural networks. 

This technique successfully detects faulty switches by integrating direct-quadrant 

transformation, feature selection, as well as fault classification. The direct-quadrant 

transformation aids in distinguishing between healthy as well as defective states by mapping 

signals into different patterns. These patterns are then improved after feature selection, 

increased diagnostic accuracy, and machine learning-based fault identification, resulting in 

reliable and efficient diagnoses. Two methods for open switch fault diagnosis utilized in the 

paper are pattern recognition and fault diagnosis using a feature-based fault diagnosis system. 

A feature-based fault diagnosis system uses rule-based as well as machine learning models for 

fault classification, subsequently extracting features from direct-quadrant transformed data as 

well as selecting appropriate features. Convolutional neural networks with pattern recognition 

methods are applied in fault diagnosis to transform direct-quadrant transformed input images. 

These methods were compared on the basis of robustness, computational efficiency, as well as 

diagnostic accuracy in many operating conditions. 

Keywords: Three-Phase Voltage Source Inverters, Open Switch Faults, Direct Quadrant 

Transformation, Pattern Recognition 

 

INTRODUCTION 

The systems like Electric grids, industrial machinery and renewable energy depend on inverters to convert direct 

current (DC) into alternating current (AC) (Amol Rathod et al., 2022). AC is preferred over DC for long-distance 

transmission because it is easier to step up or step down the voltage using a transformer, which reduces energy loss 

over long distances. A 3 phase voltage source inverter (3Φ-VSI) produces a three-phase, adjustable sinusoidal 

waveform. Controllable sinusoidal waveforms are required for power quality control and load balancing in grid and 

industrial applications. Waveform controllability enables precise voltage and frequency changes, which are essential 

for smooth power transfer, effective motor performance and reduced harmonic distortion. The output waveform of an 

inverter can be distorted by electrical noise, which is introduced by frequent switching transients, power supply 

variations, or external electromagnetic interference. This results in harmonic distortion, which affects system 

performance by increasing heat in components, causing vibrations in motors and reducing the overall efficiency and 

lifespan of connected equipment (Dhumale et al., 2024). However, 3Φ-VSI switching devices, such as metal oxide field 

effect transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs), are prone to errors such as open switch 

errors (OSFs) and short circuit faults (SCFs) (Sonawane, 2022). IGBTs are designed to withstand SCFs for a certain 

period of time to protect the device from SCFs. An IGBT can usually withstand SCF for 5-10 µs (Basler et al., 2013). 
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This period is critical because it allows the protective circuitry to detect the problem and begin the process of shutting 

down the IGBT and preventing it from failing. The thermal and electrical limitations of IGBTs are the reason for this 

small tolerance window; If the SCF continues beyond this point, excessive current can inevitably damage the device. 

Because the fault must be identified and resolved in order to activate protective mechanisms such as circuit breakers or 

shutdown protocols to stop damage and guarantee continuous safe operation of the inverter, this tolerance period is 

essential for fault detection and protection circuit design. Several strategies are used to protect against SCF and to 

guarantee that the switching devices do not experience any short circuits. Fast-acting fuses cut off large fault currents 

before they can damage the device, while desaturation detection circuits track the collector-emitter voltage of IGBTs to 

quickly identify overcurrent conditions. Furthermore, gate drivers with integrated protection features have the ability 

to immediately stop the IGBT when a fault is detected, thereby increasing device life and preventing ongoing problems. 

Comparison of the current signal to a predetermined threshold can be used to identify SCFs, but more efficient 

methods are needed to diagnose OSF (Wu and Zhao, 2016). Monitoring OSFs is critical for ensuring system reliability 

and safety. The output voltage and current can become uneven because of these faults, which can also lower efficiency 

and do a lot of damage to the load connected to the VSI (Farooqi et al., 2022). Timely diagnosis of OSF is serious to 

protect operational instability, save downtime, and defend equipment. 

For VSI, various Fault Diagnosis Methods (FDMs) have been suggested; all FDMs propose distinctive methods to 

isolate OSF. Diagnosing various OSFs in a PMSM method is significant to reduce torque imbalance, efficiency loss, as 

well as overheating, and to assure accurate, dependable performance in needed applications. The technique (Chen et 

al., 2019) concentrates on diagnosing multiple OSFs in a Permanent Magnet Synchronous Motor (PMSM) 

drive system by way of an average Fault Isolation Time (FIT) of 1.7 ms. Threshold free single OSF diagnosis in a 

multilevel inverter is the concentrate of the technique using Discrete Wavelet Transform (DWT) as well as 

Machine Learning (ML) algorithms with FIT ranging from 0.433 seconds to 0.502 seconds (Achintya and Kumar 

Sahu, 2020). The technique (Gong et al., 2020) practices Convolutional Neural Networks (CNNs) to accurately 

diagnose IGBTs in DC-DC converters with fast training as well as testing times. One-third of the cycle time is the time 

needed for diagnosis by the technique (Chen et al., 2021), which applies an Extended State Observer (ESO) to 

diagnose OSF in stages. For example, if the AC signal cycle is 20 milliseconds, the ESO will take about 6-7 milliseconds 

to diagnose. Diagnostics must be finished inside fractions of cycle time to guarantee a steady and unremitting process 

of the system, reduce downtime, and remove faults quickly. 

The Total Harmonic Distortion (THD) characteristics are utilized to design a Fuzzy Logic (FL) system for OSF 

diagnosis with a diagnosis time as short as 32 ms (Chen et al., 2021). The FL technique is essential to achieve the 

uncertainty as well as ambiguity in THD data. FL system-based FDMs provide quick and correct diagnosis needed to 

keep inverter stability with less downtime. The OSF diagnosis technique for six-phase AC-DC wind turbines with a 

diagnosis time of 0.14 seconds is proposed in (Mehta, Sahoo and Dhiman, 2022). The method suggested in (Bengharbi 

et al., 2023) used for single as well as multiple OSF diagnosis of photovoltaic solar pumping systems, gives Artificial 

Neural Network (ANN) as well as Adaptive Neuro Fuzzy Interface System (ANFIS) with high accuracy and a 

response time of less than 0.1 seconds. ANN-based OSF diagnosis in a HANPC inverter has been proposed to attain a 

diagnosis time of 0.11 seconds with a low minimum dependency on the threshold value (Abid et al., 2022). A real-time 

bagged tree, which is fast, easy to understand, and reliable, was proposed for OSF diagnosis in 3Φ-VSI by Jian-Jian 

and Zhang (Wu and Zhao, 2016) with an isolation time of approximately 4 ms. 

The few methods implemented for OSF diagnosis are inadequate and show variations in terms of installation difficulty, 

diagnosis time, and accuracy, while other methods diagnose faults with better accuracy, which is significant to 

minimize false positives and negatives. Furthermore, diagnosis times are not the same, with certain techniques 

showing high latency while others techniques provide real-time fault diagnosis. Additionally, the effort required for 

implementation differs extensively; complex systems need considerable computing resources with fine-tuning for 

maximum performance. However, simple systems require less processing and tuning. Artificial intelligence (AI)-

based methods have accuracy as well as effectiveness; however, because of their complexity, they can compromise 

implementation effort plus diagnosis time. Traditional methods with threshold reliance, in comparison, may be to a 

smaller degree flexible, not so much resistant to load variations, and rarely able to diagnose many OSFs, as found in 

the literature. 

This paper suggests a new method to address this inconsistency by combining the best qualities of threshold dependent 

and AI-based systems to minimize threshold dependency, high implementation effort, and heterogeneous diagnosis 

times. It tries to attempt an additional practical and effective method to diagnose OSF. Within the framework of the 

condition-based maintenance (CBM) paradigm of Industry 5.0, this work efforts on diagnosing OSF. The proposed 
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approach compares Pattern Recognition (PR) approaches with statistical feature-based techniques plus image 

recognition methods to confirm reliable OSF diagnosis in 3Φ-VSI systems. 

This includes feature extraction using Direct Quadrant (DQ) transformation and feature selection to detect various 

fault states with healthy operation. The technique improves power electronic converter dependability by lowering 

threshold dependence, diagnosis time, and implementation effort while also increasing robustness. AI and PR 

techniques guarantee reliable, low-maintenance performance in power-dependent regions by enabling precise problem 

diagnosis in a variety of scenarios. 

MATERIALS AND METHODS 

A 3Φ-VSI has six switches, S1, S2, S3, S4, S5 and S6, as shown in Fig. 1, these switches are turned on and off in such a 

way that the output of the 3Φ-VSI is in the form of a sine wave as shown in Fig. 2. When the switches are turned on, 

currents Ia, Ib and Ic flow continuously, indicating a healthy condition. In OSF fault condition output current Ia, Ib and 

Ic flow is disturbed as shown in Fig. 3. An OSF occurs when one or more switches malfunction, interrupting the 

current flow of the affected phase. As a result, there is an imbalance, the current in the problematic phase drops to zero 

while the other phases either remain the same or fluctuate in strength. As the inverter tries to compensate, the current 

waveforms distort, exhibiting spikes and abnormalities. The control system reacts without fully compensating for the 

loss, increasing the voltage on the remaining phases. The reliability of power electronic converters and associated loads 

is ultimately compromised by this imbalance, which also reduces operational efficiency and increases the likelihood of 

overheating or failure of the remaining components. The proposed methodology for OSF diagnosis in a 3Φ-VSI has 

been divided into three major parts, as shown in Fig. 4.  

A. Pattern Generation for healthy and faulty condition 

B. Fault Diagnosis using Statistical Features (FDSF) 

C. Fault Diagnosis using Pattern Recognition (FDPR) 

In this system, the process started by creating samples representing healthy and faulty conditions of the system. Data 

was collected from the system during both normal and malfunction operations, using techniques including sensor 

measurements, data gathering equipment and logging software. These data were then transformed using the DQ 

transformation, a mathematical technique that helps to clearly distinguish between different faulty conditions. As a 

result, distinct patterns representing the behavior of the system at each condition were formed. These generated 

patterns were then used in two different fault diagnosis methods. Each method uses samples to analyze and identify 

whether the system is operating under healty condition or has a fault. By comparing the current state of the system 

with the generated patterns, the methods can accurately diagnose the state of the system and detect any faults that may 

have occurred. 

The first method which is FDFS, extracts features from the generated patterns. The mean of these features was 

calculated, then the features were selected and the selected features were used to develop a model using If-Then Rules 

and ML to diagnose defects. Another method is FDPR. This method requires further processing of the generated 

samples for fault diagnosis. The generated patterns using DQ transform were converted into images and analyzed 

using pattern recognition techniques. Different ML based algorithams are implemented and evaluated using extrcated 

features. Several machine learning techniques, including as SVM, decision trees, random forests, KNN, neural 

networks and gradient boosting, are employed to leverage the collected features for improved fault diagnosis. 

 Also the images are used to develop Convolutional Neural Networks (CNNs) to classify healthy and faulty 

switches.  

A. Pattern Generation for healthy and faulty condition:  

During the data acquisition phase, current samples were carefully collected to capture the behavior of the system under 

various faulty conditions, with special emphasis on single OSFs and multiple OSFs scenarios. For this purpose,  a  

comprehensive dataset  was  created  that  included 11  different  combinations  of  fault  conditions.  This  
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combination was created by sequentially opening each switch to simulate a single OSF and then opening pairs of 

switches to represent multiple OSFs. A large dataset of 8000 samples was generated for each fault condition, ensuring 

robust and representative data for further analysis. Data transformation was the next step in the pattern generation 

pipeline. The collected 3Φ current inputs were transformed into 2 attributes using the DQ transformation. The DQ 

transformation reduces the dimensionality of the data from three to two elements, which makes data processing easier, 

improves signal clarity and makes fault detection algorithms easier to use for efficient monitoring. 

 The currents Ia, Ib and Ic in the AC output shown in    Fig 2 and Fig 3 are converted into Id and Iq. The characteristics 

Id and Iq were obtained using the mathematical formulas given in Eq 1 and Eq 2. Samples for each switch position 

were generated by plotting on the Id-axis and Iq-axis, respectively.  

 𝐼𝑑  = √
2

3
𝐼𝑎  −  

1

√6
𝐼𝑏 −

1

√6
𝐼𝑐                                                                                                                                 (1) 

  𝐼𝑞  =
1

√2
𝐼𝑏 −

1

√2
𝐼𝑐                                                                                                                                                                   (2)  

The comprehensive data includes one sample representing the healthy condition and 10 samples corresponding to the 

faulty conditions. Upon closer inspection, distinct differences between these patterns became apparent. The ultimate 

goal of the model was to determine whether these terms could be used directly for further analysis, or if alternative 

feature selection procedures were needed to enhance the performance of the model.  

B. Fault Diagnosis using Statistical Features: 

The initial condition of the switches was set to 'healthy,' where all switches operate under healthy conditions, yielding a 

pure 3Φ current output. The feature selection process involves the computation of 5 data samples from each generated 

pattern after DQ transformation, as shown in Fig 5.  

First, the co-ordinates of the Centroid (G) of pattern were calculated using median formulas. Then, the co-ordinate 

axes were shifted to the centroid and the intersection of co-ordinate axes to the locus of the generated pattern was 

calculated with points as shown in Fig. 6 and Fig. 7. The process of random sampling for OSF and selection of further 

features, which are required for efficient fault detection, are shown in Figures 6 and 7. This technology improves the 

accuracy of machine learning models for identifying problems with power electronic systems.The Centroid 𝐺, given by 
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Eq. 3. It acts as the center of attention for the data, emphasizing variations and simplifying analysis to find patterns 

and faultss. 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐺) ≡ (𝑥𝑚, 𝑦𝑚)                                                                                                                                                     (3)                                                                                                                                         

The origin was shifted to the centroid 𝐺 to obtain the points of intersection between the locus of the generated pattern 

and the translated axes, namely 𝑃(1), 𝑃(2), 𝑃(3), and 𝑃(4) calculated using Eq. 4, Eq. 5, Eq. 6 and Eq. 7 respectively. 

Determining the centroid and intersection points provides important insight into the operational state of the system. 

𝑃(1) ≡ (𝑥𝑚 , 𝑦2)                                                                                                                                                                                             (4) 

𝑃(2) ≡ (𝑥𝑚, 𝑦1)                                                                                                                                                                                             (5) 

𝑃(3) ≡ (𝑥1, 𝑦𝑚)                                                                                                                                                                                             (6) 

𝑃(4) ≡ (𝑥2, 𝑦𝑚)                                                                                                                                                                                             (7) 

The median (𝑥𝑚), given by Eq. 8.  

𝑥𝑚 = 𝑀𝑒𝑑(𝑋) =

{
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Fig. 6: Random generated Pattern for OSF 
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0. 

S1 & S5 Open Switch S1 & S6 Open Switch  

Fig 7: Feature Selection from Generated Patterns 

Where 𝑋 is the ordered list of values in the dataset 𝐼𝑞  and 𝑛 is the number of values in the dataset𝐼𝑞.  Where 𝑌 is the 

    

Healthy condition S1 Open Switch S3 Open Switch S4 Open Switch 

    
S5 Open Switch S6 Open Switch S1 & S2 Open Switch S1 & S3 Open Switch 
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Fig. 5. DQ transformation Generated Patterns 



203  

 

J INFORM SYSTEMS ENG, 10(24s) 

ordered list of values in the dataset 𝐼𝑑 and 𝑛 is the number of values in the dataset 𝐼𝑑. The value 𝑥𝑚 in Eq. 4 represents 

the value of 𝐼𝑑 which helps to determine the abscissas of the centroid and the points of intersection between the locus 

of the generated pattern and the translation axes. If the locus of the given plot curve follows, 𝑦 = 𝑓(𝑥) Then,  𝑦1 & 𝑦2 =

𝑓(𝑥𝑚)  𝑎𝑛𝑑 𝑥1 & 𝑥2 = 𝑓(𝑦𝑚). The features were selected for pattern recognition and stored as a Feature Vector Table as 

shown in Table 1. 

After the feature selection process, the ML models were trained using the feature vectors listed in Table 1. Features 

were simplified into datasets with 'x' and 'y' coordinates along with their corresponding class labels to facilitate easy 

classification. A variety of ML algorithms were selected, including Support Vector Classifier (SVC), linear and non-

linear polynomial (degree 3) kernels, Naïve Bayes with Gaussian function and Random Forest classifier. These methods 

equipped distinctive benefits that improved the overall efficiency of FDM. Primary fault classification tasks significantly 

benefit from the computational efficiency as well as effectiveness of linear SVCs in high-dimensional domains. Model fit 

and fault diagnosis accuracy were improved using complex relationships in the data, which were detected by non-linear 

SVC with polynomial kernels. As a result of its strong probabilistic foundation plus user-friendliness, the Naïve Bayes 

algorithm with Gaussian function was selected. It offers fast and effective fault diagnosis in real time and works best 

with widely dispersed features. The random forest classifier controlled complex feature interactions with flexibility and 

reliably implemented well with immaterial or noisy features by merging numerous decision trees to avoid over-fitting 

and boost classification accuracy. 

Using the benefit of each model for robust as well as reliable fault diagnosis, this method combines multiple models to 

generate a comprehensive and effective FDM. To diagnose OSF in 3Φ-VSI, the data were classified into different fault 

states using the “If-Then Rule Base” technique. Data with features like median_x, median_y, points_x1, points_y1, 

points_x2, points_y2, points_x3, points_y3, points_x4 and points_y4 were used in this method from Table 1. Table 1 

details the 3Φ-VSI system, which is an important resource for understanding feature vectors used in OSF diagnostics. 

They benefit in pattern recognition, increase detection sensitivity, and give a detailed representation of working 

situations. These points were adopted for their empirical significance, potential to do better diagnostic accuracy, and 

data-driven study to guarantee that the model successfully differentiates among healthy and defective states. This 

careful feature selection contributes to the ultimate goal of accurate fault diagnosis. 

The "if-then rule basis" method make simple the method of fault diagnosis because the selected features offer significant 

information about the system's implementation. By strengthening the overall diagnostic capability, this structured 

representation improves system reliability and fault management. 

Table 2 signifies a healthy and different faulty conditions that was assigned a class label. This consist of the 

'healthy_data' state as well as other OSF states designated 'open1' to 'open16'. A series of conditional statements that 

evaluated these attributes then identified the output class that formed the rule base. By using different feature values, 

the scenario helped in the classification of different defect categories. Table 2 shows the rule base. 

For clarity, the mathematical notation is displayed in tabular form. An "if-then rule base" is used to diagnose OSF in 3Φ-

VSI systems, highlighting the importance of thresholds for distinguishing operational modes. These thresholds, which 

are determined through statistical analysis, experimental calibration and machine learning techniques, ensure the 

accuracy and reliability of the rules. Fault diagnosis are intended to increase system performance and reliability by 

improving diagnostic performance, optimizing decision-making, and adapting to changing operational conditions. As 

shown in Figure 8, FDPR is implemented using a convolution neural network (CNN) model that begins with data 

augmentation of various OSF patterns in order to generate images for each class. A strategic method to improve fault 

diagnosis capability is the use of FDPR with a CNN model initialized with data augmentation. In addition to improving 

model generalization, reducing overfitting, and simulating real-world variability, data augmentation solves problems 

associated with limited data availability. As a result, 3Φ-VSI operate reliably due to a more robust and efficient problem 

diagnosis mechanism. As shown in Fig. 8 , the images generated for each OSF class play an important role in the 

training process, allowing the CNN to accurately identify and classify a range of fault events. This phase improved the 

dataset and allowed the model to generalize to fault scenarios that had not been encountered before by producing many 

permutations of the original data. Then, in order to build the model, complimentary data pre-processing was done, 

which included normalization and conversion to scaled array format. This preprocessing phase ensured that the data 

was in the right format and scale, which was essential for neural network training to be successful. 50 neural network 

layers ResNet-50 was a distinct pretrained model whose capability was superior by transfer learning. ResNet-50 was 

selected because of its potent feature extraction capabilities, which significantly improve the features utilized in the 

model development stage. ResNet-50 was precisely selected because of its deep learning abilities, innovative residual 
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learning architecture, recognized performance in image classification tasks, and best suitability for transfer learning. 

Fault diagnosis with pattern recognition leverages ResNet-50's ability to learn complex 3Φ-VSI characteristics, adapt to 

specific diagnostic tasks, and locate open switch faults (OSFs) with high accuracy. This choice increases the overall 

effectiveness and reliability of the fault diagnosis process. 

After preprocessing and augmentation, the processed data was scrutinized to ensure the accuracy with suitability of the 

CNN model training. The model was then trained on the available data using hyper-parameter tuning with iterative 

learning to enhance performance. 

 

 

 

 

 

Fig. 8. Solid Images of Patterns 

  Table 2. If – Then Rule Base 

Rule 

No. 
Condition Output 

1)  medianx = 0.0 and mediany = 0.0 Healthy_Data 

2)  medianx < 0 and mediany < 0 and pointsx1 < 0 and pointsy1 < 0 and pointsx2 

< 0 and pointsy2 < 0 and pointsy3 < 0 and pointsx4 < 0 and pointsy4 < 0 and 

pointsx3 > 0 

Open1 

Table 1. 11x10 feature vector 

 

Feature

s 

Classes 

Healt

hy 

S1 

Open 

S3 

Open 

S4 

Ope

n 

S5 

Ope

n 

S6 

Ope

n 

S12 

Ope

n 

S13 

Ope

n 

S14 

Ope

n 

S15 

Ope

n 

S16 

Open 

median

_x 
-0.01 -0.11 -1.85 1.79 1.99 -1.97 

-

0.09 
-1.70 0.56 1.93 -1.86 

median

_y 
-0.03 -1.68 1.28 0.55 1.26 -1.17 0.00 -1.25 -2.54 

-

0.24 
-2.20 

points_

x1 
-0.01 -0.12 -1.85 1.79 1.99 -1.97 -0.10 -1.70 0.56 1.92 -1.89 

points_

y1 
-4.16 -4.15 -2.24 0.53 -1.08 -2.97 0.00 

-

3.02 
-4.56 -1.33 -1.69 

points_

x2 
-0.01 -0.11 -1.85 1.79 1.99 -1.97 

-

0.09 
-1.70 0.56 1.93 -1.86 

points_

y2 
4.21 -0.66 3.79 0.57 2.98 1.17 0.00 

-

0.80 
-1.50 0.07 -1.28 

points_

x3 
3.99 2.74 -0.43 2.57 4.32 

-

0.07 
2.03 

-

0.68 
2.47 5.13 -0.09 

points_

y3 
-0.03 -1.68 1.28 

-

0.45 
1.26 -1.17 0.00 -1.26 -2.54 

-

0.24 
-2.20 

points_

x4 
-4.23 -3.21 -3.77 2.40 -0.10 

-

4.05 

-

0.98 
-2.62 0.09 0.38 -3.97 

points_

y4 
-0.03 -1.68 1.28 

-

0.52 
1.25 -1.17 0.00 -1.25 -2.54 

-

0.24 
-2.20 
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3)  medianx < 0 and pointsx1 < 0 and pointsx2 < 0 and pointsx3 < 0 and pointsx4 

< 0 and mediany > 0 and pointsy1 > 0 and pointsy2 > 0 and pointsy3 > 0 and 

pointsy4 > 0 

Open3 

4)  medianx > 0 and mediany > 0 and pointsx1 > 0 and pointsy1 > 0 and pointsx2 

> 0 and pointsy2 > 0 and pointsx3 > 0 and pointsy3 < 0 and pointsy4 < 0 
Open4 

5)  medianx > 0 and mediany > 0 and pointsx1 > 0 and pointsy3 > 0 and pointsx2 

> 0 and pointsy2 > 0 and pointsx3 > 0 and pointsy4 > 0 and pointsy1 < 0 and 

pointsx4 < 0 

Open5 

6)  medianx < 0 and mediany < 0 and pointsx1 < 0 and pointsy1 < 0 and pointsx2 

< 0 and pointsx3 < 0 and pointsy3 < 0 and pointsx4 < 0 and pointsy4 < 0 and 

pointsy2 > 0 

Open6 

7)  mediany = 0 and pointsy1 = 0 and pointsy2 = 0 and pointsy3 = 0 and pointsy4 

= 0 
Open12 

8)  medianx < 0 and mediany < 0 and pointsx1 < 0 and pointsy1 < 0 and pointsx2 

< 0 and pointsy2 < 0 and pointsy3 < 0 and pointsx4 < 0 and pointsy4 < 0 and 

pointsx3 < 0 and medianx > −3.5 and mediany > −3.5 

Open13 

9)  mediany < 0 and pointsy1 < 0 and pointsy2 < 0 and pointsy3 < 0 and pointsy4 

< 0 
Open14 

10)  medianx > 0 and mediany < 0 Open15 

11)  medianx < 0 and mediany < 0 and pointsx1 < 0 and pointsy1 < 0 and pointsx2 

< 0 and pointsy2 < 0 and pointsy3 < 0 and pointsx4 < 0 and pointsy4 < 0 and 

pointsx3 < 0 

Open16 

 

RESULT & DISCUSSION 

DQ-transformed features with median calculations were utilized for statistical feature-based fault diagnostic methods. 

Fault diagnosis enhances accuracy and efficiency by improving the definition and dependability of planned features by 

linking in-between calculations and DQ conversions. When applied to these features, Random Forest Classifier, Naïve 

Bayes, Support Vector Classifier (Non-Linear), and Support Vector Classifier (Linear) showed different levels of 

accuracy. The random forest classifier outperformed the linear and non-linear support vector classifiers by 42% and 

the naive Bayes (Gaussian) by 68%, with an accuracy of 98%. 

 The if-then rule-based approach promises accurate fault diagnosis with an impressive 99% accuracy rate. However, 

due to its rigid structure, which lacks flexibility and adaptability, this technique performed less well with noisy real-

time inputs. SVCs and Naive Bayes perform less accurately due to their assumptions and limitations, but Random 

Forests perform better because they can capture complex relationships and are resistant to overfitting. However, the 

unpredictability of noisy inputs can be better handled by more flexible and adaptive methods, such as using ensemble 

methods or real-time learning processes. 

After the standard feature extraction, the CNN and ML algorithms were trained on the sample images created by the 

DQ transformation. Images were Gray-scaled and resized to various resolutions to use as pre-processing steps. 

Traditional feature extraction methods included Gaussian and Sobel filters, max-pooling and data flattening.  The 

Scale-Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF) approaches, which seek to locate 

and describe local features in pictures, can both be taken into consideration. ML algorithms such as Logistic 

Regression, Decision Tree Classifier and Random Forest Classifier were then applied, resulting in lower accuracy rates 

(12.8% to 20%) than the Statistical feature-based methods. Preprocessing techniques, cross-validation techniques, and 

hyperparameter tweaks to prevent overfitting or underfitting will also have an impact on an algorithm's accuracy. 

Using a CNN model, specifically ResNets, resulted in a significant improvement in accuracy of 87%, outperformed 

traditional ML methods. In comparison to conventional machine learning methods, ResNet enhances fault diagnosis 

and dramatically boosts classification accuracy by extracting complex, hierarchical characteristics from data using its 

deep structure and residual connections.Enhancing feature selection and applying domain-specific knowledge can 

improve the performance of ML algorithms. 

  ResNets, with its identity shortcut connections, allowed for the training of very deep networks while it mitigated the 

vanishing gradient problem and maintained robust performance. 

Despite higher accuracy, image recognition was found to be less effective due to the complexity of multi-class 
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classification, longer diagnosis time and higher implementation effort. Table 3 shows that in terms of identifying open 

switch faults (OSFs) in voltage source inverters (VSIs), the statistical feature-based technique that used DQ-

transformed data and central computation for feature selection performed better than the machine learning-based 

image. Identification technique."Implementation effort" is evaluated as "moderate" if it requires moderate resources, 

manageable coding complexity and some parameter tuning, while "high" indicates significant resource demands, 

advanced coding, and the potential need for specialized hardware or domain expertise. The "robustness" of a method is 

scored as "moderate" if it performs consistently under normal conditions but falls short when exposed to high noise or 

unexpected data fluctuations, and is scored as "high" if it maintains accuracy in the face of varied noisy and 

unpredictable inputs.  

The high accuracy of the Random Forest Classifier in the statistical feature-based methods demonstrated the efficacy of 

ensemble learning techniques in this domain. While the If-Then rule-based method was the most accurate, it was less 

flexible and ineffective with noisy real-time inputs which made it least robust technique. The ability of deep learning 

models to accurately identify complex patterns in altered photos was demonstrated through the application of ResNets 

in image identification. However, CNN's complexity, long diagnosis time, bad flexibility, and implementation 

difficulties make simplified statistical feature-based approaches more suitable for real-time problem diagnosis. 

Table 3. Comparative analysis 

Model 
Accuracy 

(%) 

Diagnostic 

Time 

Implementati

on Effort 

Robustne

ss 

Statistical feature-based methods for Fault Diagnosis 

ML Models  

a) Random Forest Classifier 98.0 Low Medium High 

b) Naive Bayes (Gaussian) 68.0 Low Medium Medium 

c) Support Vector Classifier  

    (Non-Linear) 
42.0 Low Medium Medium 

d) Support Vector Classifier 

(Linear) 
42.0 Low Medium Medium 

If-Then Rule Base 99.0 Very Low Low Very Low 

Image Recognition methods for Fault Diagnosis 

Training of ML Models  

(a) Logistic Regression 18.0 Medium High Medium 

(b) Decision Tree Classifier 19.0 Medium High Medium 

(c) Random Forest Classifier 20.0 Medium High High 

Convolutional Neural 

Networks (CNN) 
 

ResNets 87.0 High High Medium 

 

CONCLUSION AND FUTURE WORK 

The identification of OSFs in 3Φ-VSI, which are critical components in industrial settings, can be revolutionized by the 

innovative method revealed by our work. Accurate diagnosis is important to continue steady and useful processes in 

industrial settings as OSFs in 3Φ-VSI can result into equipment breakdown, uselessness and expensive downtime. The 

statistical feature-based technique gives unique fault diagnosis performance, reducing downtime and safety risks by 

merging pattern recognition algorithms, direct quadrant transformation as well as a rigorous feature selection process. 

Pattern recognition algorithms, direct quadrant transformation and fine-grained feature selection allowed fast and 

correct fault diagnosis. This enhanced safety and significantly decreased downtime. This method was essential as, 

along with speeding up fault diagnosis, it was capable of avoiding the drawbacks of old diagnostic techniques. Low 

accuracy, rigidity, slow response time, noise sensitivity, low utilization of features as well as reliance on manual 

assessment, are certain of the drawbacks of traditional techniques that delay fault diagnosis. Poor robustness, 

expensive implementation, delayed diagnostic time and dependency on particular thresholds are all addressed by this 

technology. Accordingly, it delivered a robust way out that enhanced power electronic converter performance as well as 

reliability. Significantly, the proposed approach is fully compatible with the Industry 5.0 paradigm of condition-based 

monitoring and offers wide aids in several industrial sectors. This study optimizes power electronic converter 

maintenance procedures, increases efficiency, reduces downtime and improves safety in addition to guiding future 



207  

 

J INFORM SYSTEMS ENG, 10(24s) 

predictive maintenance and sophisticated diagnostic methods. 
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