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Introduction: Mobile Robotic Systems (MRS) navigate hazardous environments 

autonomously, requiring precise front wheel angle prediction. This paper proposes a CNN-based 

multi-sensor fusion framework integrating visual and ultrasonic data for improved decision-

making. A Raspberry Pi-controlled prototype utilizes TensorFlow and MATLAB for accurate 

navigation and task efficiency. Experimental results demonstrate enhanced execution, 

reliability, and real-time applicability. 

Objectives: The objective of this study is to develop a CNN-based multi-sensor fusion 

framework for Mobile Robotic Systems (MRS) to enhance autonomous navigation in hazardous 

environments. The proposed system aims to improve front wheel angle prediction, decision-

making accuracy, and task efficiency by integrating visual and ultrasonic sensor data. A 

Raspberry Pi-controlled prototype, utilizing TensorFlow and MATLAB, is implemented to 

validate the framework’s effectiveness in real-time applications. 

Methods: The proposed methodology is novel approach towards interdisciplinary projects like 

mobile robotic system. Multiple sensor fusion signals are used to generate the data required for 

completion of decided navigation plan to take final action according to image data with CNN. 

Whole working area is divided in to different navigation plan. The action taken for the last 

navigation plan is use to train the machine for completion of next task. The final decision getting 

from the input data from the different sensors to train AI algorithm of the machine. From this 

paper the movement of sequential task completing robot is done with sequential steps.1st step is 

scanning of surrounding environment is done with ultrasonic sensor and using of surrounding 

data for 1st navigation map planning. With the help of surrounding particles in the environment 

NP(navigation plan) is designed. Auto tuning of front wheel angle and distance decided with the 

help of NP formed. Pid controlling is used for sequential operation of MRS.  

Results: The experimental results demonstrate the effectiveness of the proposed AI-driven 

multi-sensor fusion framework for autonomous robotic navigation. The system successfully 

integrates ultrasonic sensors and a camera module with a Raspberry Pi, enabling precise front 

wheel angle adjustments and efficient navigation planning. Using CNN-based image processing 

and real-time sensor fusion, the robotic vehicle achieved improved obstacle detection accuracy 

and reduced decision-making latency. Performance metrics indicate a significant enhancement 

in navigation precision, power efficiency, and adaptability compared to traditional methods. The 

results validate the feasibility of this approach for real-time applications in hazardous 

environments. 

Conclusions:. This study presents a novel approach for single-step sensor fusion and decision-

making within autonomous robotic systems. The proposed methodology addresses the challenge 

of continuous operation in complex robotic tasks by breaking down the process into discrete 

steps. Each step involves independent functioning, significantly reducing the complexity of 

system integration. By focusing on a modular approach, where each sensor fusion and decision-

making process is handled separately, the method ensures minimal integration while 

maintaining operational efficiency. 

Keywords: Navigation plan, CNN, Machine learning, Wheel Alignment Angle. 
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I. INTRODUCTION 

To develop the MRS vehicle multi sensor fusion is playing pivotal role[1]. This paper aims to present a multi-sensor 

fusion framework combining CNN-based image processing with ultrasonic sensors and vehicle parameters to 

enhance front wheel angle, distance traveling precision and decision reliability[2]. The following section is describing 

the literature survey. Whole working principle of the proposed methodology is very useful for the repetitive and time 

consuming tasks such at killing of unwanted grass from the farm. Collection of plastics bags from the ground. The 

novel approach from this proposed method is navigation plan[2][3]. Whole working scenario is divided into different 

navigation plan. completion of 1st navigation plan is done with precise end to end front wheel angle adjustment and 

distance traveling towards finishing of each decided task. The task will be completed with AI powered hardware and 

software the last navigation plan completion data is used for next navigation plan completion. Machine learning is 

done with last navigation plan completion data[4][5].      

The field of mobile robotic systems (MRS) has made significant advancements in recent years, particularly in areas 

such as autonomous navigation, sensor fusion, and decision-making algorithms. Sensor fusion, which combines 

multiple sensor types like vision, ultrasonic, and LIDAR[6], has proven crucial for improving the navigation and 

decision-making capabilities of autonomous robots[7]. A comprehensive review on sensor fusion techniques for 

autonomous vehicles highlights the importance of integrating various sensors, including cameras and ultrasonic 

devices, to enhance navigation and perception accuracy[8]. In mobile robot localization, the use of multi-sensor 

fusion methods has demonstrated improvements in both localization precision and reliability, particularly in 

dynamic environment. Convolutional Neural Networks (CNNs) have emerged as a promising approach for 

autonomous navigation, with several studies showing their effectiveness in real-time decision-making, object 

detection, and path planning, thus allowing robots to navigate through complex environments autonomously[9]. 

Additionally, integrating deep learning with sensor fusion has proven effective for enhancing navigation 

performance. One framework combining CNNs with sensor fusion for robotic navigation showcases the potential of 

CNNs in processing image data while other sensors, such as ultrasonic and LIDAR, contribute to more accurate 

localizatio [10]. Another study emphasizes the real-time fusion of ultrasonic and vision sensors for autonomous 

vehicles, demonstrating their utility in enhancing obstacle detection and enabling robust navigation[11].  

The use of CNNs for path planning and navigation in autonomous mobile robots is also well-documented, with these 

networks assisting robots in navigating through environments without human intervention. As mobile robots operate 

in diverse and unpredictable environments, multi-sensor fusion approaches are increasingly important for improving 

the efficiency and accuracy of navigation systems. An overview of such techniques reveals that combining sensors 

like ultrasonic, vision, and LIDAR improves robot mobility and task execution in various dynamic scenarios. 

Furthermore, the integration of CNNs with other sensor data is critical for mobile robot localization and mapping, as 

evidenced by studies on the fusion of ultrasonic and vision sensors for precise positioning. Another notable 

contribution uses CNN-based object detection and navigation for mobile robots, showing that visual processing can 

help make real-time navigation decisions in dynamic environments[12][13]. Ultrasonic and vision sensors, when 

fused, enable mobile robots to navigate effectively in unknown environments, overcoming challenges like sensor 

noise and occlusions[14][15][16]. Machine learning plays an essential role in enhancing decision-making processes, 

with several studies highlighting its application for real-time decisions and task execution in mobile robots. Deep 

Reinforcement Learning (DRL) has also been explored as a method for end-to-end learning for autonomous 

navigation, allowing robots to optimize their navigation strategies through interactions with the environment[17].  

Multi-sensor fusion further supports robotic decision-making, with various frameworks integrating sensor data for 

better task execution and environment interaction[18][19]. Combining CNNs with Long Short-Term Memory (LSTM) 

networks for autonomous robot navigation enables the system to process both spatial and temporal data, enhancing 

real-time decision-making and navigation capabilities. Additionally, hybrid deep learning models have been 

proposed to improve the navigation and task execution of mobile robots, with CNNs[20][21] handling visual 

processing while other machine learning models manage decision-making. The role of ultrasonic sensors in 

enhancing robot performance, particularly for obstacle detection and proximity sensing, is explored in detail in recent 

studies, highlighting their contribution to precise robot navigation in constrained environments[22]. Deep learning 

methods, particularly for sensor fusion, have further improved the performance of autonomous vehicles by 

combining data from multiple sensors to make more accurate navigation decisions. The fusion of ultrasonic and 

vision sensors remains a key factor in improving navigation and task execution in robotic systems, allowing them to 
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operate more efficiently in real-time. The need for efficient decision-making and navigation planning in autonomous 

systems has led to the development of frameworks that utilize multi-sensor input and machine learning algorithms 

to optimize task execution[23].  

Using CNNs in combination with sensor fusion for robot positioning further enhances the accuracy of navigation in 

complex environments, which is crucial for real-time operations. Dynamic environments require continuous sensor 

fusion to maintain accurate navigation, as demonstrated by studies on multi-sensor fusion for robotic navigation in 

dynamic settings[24]. Moreover, deep reinforcement learning has proven to be a powerful method for robotic task 

planning and execution, optimizing performance through trial and error based on previous experiences [24]. Finally, 

machine learning algorithms for real-time decision-making in unknown environments have shown significant 

promise in enabling autonomous robots to adapt to and perform in unpredictable conditions. Based on the literature 

survey a multi-sensor fusion framework combining CNN-based image processing with ultrasonic sensors and vehicle 

parameters to enhance steering precision and decision reliability. The CNN processes images for robust, context-

aware decisions. Clustering tasks take 1.5 times longer than navigation but ensure smooth sequential operation. An 

in-house robotic model, controlled by a Raspberry Pi with ultrasonic sensors and a camera, implements the system. 

Tensor Flow and MATLAB enable precise angle predictions and effective decisions. The robotic vehicle transitions 

efficiently between tasks, optimizing time and energy. Experimental results highlight significant improvements in 

execution, decision-making, and efficiency, making this framework suitable for real-time applications. 

II. PROPOSED METHODOLOGY 

The proposed methodology is novel approach towards interdisciplinary projects like mobile robotic system. Multiple 

sensor fusion signals are used to generate the data required for completion of decided navigation plan to take final 

action according to image data with CNN. Whole working area is divided in to different navigation plan[25]. The 

action taken for the last navigation plan is use to train the machine for completion of next task. The final decision 

getting from the input data from the different sensors to train AI algorithm of the machine. From this paper the 

movement of sequential task completing robot is done with sequential steps.1st step is scanning of surrounding 

environment is done with ultrasonic sensor and using of surrounding data for 1st navigation map planning. With the 

help of surrounding particles in the environment NP(navigation plan) is designed. Auto tuning of front wheel angle 

and distance decided with the help of NP formed. PID controlling is used for sequential operation of MRS[26]. The 

whole methodology is working on sequential flow with multistage fusion[27]. The machine learning algorithm is used 

to save past NP data where action has to be taken and used for next NP operation. The schematic operation of 

proposed methodology is given in fig no 1. 

 

Fig 1: Block diagram of proposed method 

III. WORKING MECHANISM 

The proposed methodology outlines an integrated system for MRS navigation and decision-making, combining 

hardware components and software is generating algorithms. The system is structured around two primary modules: 
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Sensor Data Acquisition and Image-Based Decision-Making. In the first module, an Arduino microcontroller controls 

ultrasonic sensors mounted on a servo motor, which sweep across a 180° arc to measure distances to obstacles in the 

robot's environment. These distance measurements, along with the corresponding angles, are processed in real-time 

by the Arduino and sent to the Raspberry Pi for further analysis. The Raspberry Pi uses this data to generate a distance 

map that helps determine the optimal front wheel angle, ensuring smooth navigation and obstacle avoidance. In the 

second step, the Raspberry Pi is equipped with a camera that captures real-time images of the environment. These 

images are processed using a pre-trained Alex Net Convolutional Neural Network (CNN), which classifies objects in 

the environment based on learned patterns. The CNN’s classification results are used to make real-time decisions, 

such as triggering an obstacle avoidance maneuver or activating specific actuators for task execution. 

The communication between the Arduino and Raspberry Pi is managed through serial interfacing, where the 

Raspberry Pi synchronizes the sensor data with the image classifications. Python scripts on the Raspberry Pi handle 

this data exchange, ensuring seamless integration between the sensor inputs and the visual data processed by the 

CNN[28]. By combining the distance map from the ultrasonic sensors with the image classification results from the 

camera, the system enables the robot to make intelligent, real-time decisions about its environment[29]. 

Furthermore, the system is designed to evolve with time through the integration of machine learning, which will store 

past NP data and use it to optimize decision-making in future operations. This capability will allow the robot to learn 

from previous tasks and environmental conditions, reducing processing time and improving overall efficiency. 

A) Real-Time Image Collection and Decision-Making Using Pre trained Alex Net CNN  

 

Fig 2: Working Flow Diagram 

The experimental setup integrates a Raspberry Pi microcontroller with a camera module to capture real-time images, 

which are processed using OpenCV and classified with AlexNet CNN models implemented in MATLAB. Operating in 

a dynamic field environment, the robotic vehicle utilizes radar signals for front wheel angle and displacement 

adjustments, while a multi-stage sensor fusion approach incrementally processes data to minimize computational 

complexity and cost. Real-time images are compared with pre-stored datasets, enabling precise decision-making as 

the robot navigates and detects its target position. This method demonstrates superior Performance in hazardous 

environments, achieving accurate navigation, efficient obstacle detection, and reduced power consumption 

compared to traditional systems. By leveraging AI-driven algorithms, radar-based navigation, and multi-stage data 
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processing, the system showcases significant advancements in robotic vehicle design, offering improved adaptability, 

reliability, and safety in dynamic and hazardous conditions. 

B) Radar System 

Real-time images are compared with pre-stored datasets, enabling precise decision-making as the robot navigates 

and detects its target position. This method demonstrates superior Performance in hazardous environments, 

achieving accurate navigation, efficient obstacle detection, and reduced power consumption compared to traditional 

systems. By leveraging AI-driven algorithms, radar-based navigation, and multi-stage data processing, the system 

showcases significant advancements in robotic vehicle design, offering improved adaptability, reliability, and safety 

in dynamic and hazardous conditions[30] 

Simulation of the prototype for collecting surrounding data and making of 1st navigation plan is shown with 

processing 4.1 simulation software in figure no.7. The radar system for an autonomous robot uses an ultrasonic sensor 

on a servo motor to detect objects, measure their distance and angle, and visualize them in a radar-like display. It 

calculates obstacle distance by measuring the time delay between emitted and received sound pulses. 

𝑑 = 𝑡.
𝑣

2
 

where d is the distance in centimetres, t is the measured time delay in microseconds, and v is the speed of sound in 

air, approximately 0.0343 cm/μs. 

The servo motor sweeps the ultrasonic sensor across a 180-degree arc, capturing distance measurements to map 

obstacles. The Arduino sends angle and distance data to a PC, where Processing visualizes the radar pattern by 

converting polar to Cartesian coordinates. 

𝑥 = 𝑑. cos⁡(𝜃)  ,                   𝑦 = 𝑑. sin⁡(𝜃)                     

To fit the distance measurements within the radar display, a scaling factor (S is applied to the coordinates, yielding. 

   𝑥 , = 𝑠. 𝑥                     𝑦 , = 𝑠. 𝑦             

The radar system features concentric arcs for distance ranges and a rotating red line that scans and marks obstacles 

as red points in real time. A 15-millisecond delay between servo movements ensures smooth and accurate 

operation[31]. 

C) Mapping Surroundings object and making of navigation plan.  

The proposed methodology establishes communication between an Arduino microcontroller and a Raspberry Pi via 

serial interfacing for efficient sensor fusion and real-time decision-making. The Arduino manages the ultrasonic 

sensor and servo motor, collecting spatial data by sweeping the sensor across a 180-degree arc. This data, including 

obstacle distances and angles, is transmitted to the Raspberry Pi, which processes it alongside camera-based image 

inputs. Python scripts ensure seamless synchronization between sensor data and image classifications, enabling 

effective decisions. The Arduino excels in precise sensor control and rapid data collection, while the Raspberry Pi 

executes advanced computations, such as CNN models, for intelligent navigation. By introducing NP, the system 

optimizes decision-making by dividing the environment into manageable sections, reducing complexity and cost. The 

robot operates in two slots: scanning with ultrasonic sensors and measuring object distances based on time of flight, 

ensuring adaptive performance in dynamic environments[32]. 

D) Movement of the Robot Towards objects in NP. 

The robot uses ultrasonic sensors to detect surrounding objects collecting distance data to identify objects, gaps, and 

flat regions. This data is mapped into NPs using AI algorithms, defining boundaries and classifying regions for 

movement. In a polar coordinate system, each distance reading di is associated with an angle θi, forming coordinates 

P(x,y) for each cluster. The robot calculates the centroid of a cluster, with coordinates Cx and Cy, derived from cluster 

points (xi,yi) to align its trajectory effectively. The front wheel angle Φ is adjusted to guide the robot toward the 

centroid, optimizing its path. The distance ‘D’ to the next cluster is calculated using the Pythagorean theorem, and 

the time to travel is derived based on the robot’s linear velocity. The number of wheel revolutions needed is 

determined by relating the wheel radius to the linear displacement, ensuring precise movement and alignment with 

cluster centroids[33][34]. 
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 𝛼 = 𝑓(𝜃𝑖 , 𝑑𝑗)                                              ------->    (1) 

𝐶𝑛+1 = 𝑔(𝐶𝑛, 𝛼, 𝑑)                                     ------>     (2) 

𝑃(𝑥, 𝑦) = ∑ (𝑑𝑖cos⁡(𝜃𝑖
𝑛
𝑖=1 ), (𝑑𝑖cos⁡(𝜃𝑖)   -------->  (3) 

𝐶𝑥 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1                                         -------->   (4) 

𝐶𝑦 =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1                                        ----------> (5) 

Distance to Time Relation 

𝐷 = √(𝑥2⁡ − 𝑥1)
2⁡ +⁡(𝑦2⁡ − 𝑦1)

2⁡            ---------> (6) 

𝑡 =
𝑑

𝑣
                                                            --------> (7) 

𝑛 =
𝐷

2𝜋𝑟
                                                           --------> (8) 

Convolutional Layers: 

𝐹𝑖(𝑥, 𝑦) = 𝜎(∑ ∑ 𝐾𝑖,𝑗𝐼𝑖−1(𝑥 + 𝑖, 𝑦 + 𝑖) + 𝑏)𝑘
𝑗=−𝑘

𝑘
𝑖=−𝑘  ---->  (9) 

(𝐶𝑥, 𝐶𝑦) =(⁡
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 ,

1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 )      ----------> (10) 

 

Fully Connected Layers    

 

𝑍 = 𝑊.𝑃 + 𝑏                              ----------------> (11) 

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡--------------> (12) 

 

 

IV. EXPERIMENTAL SETUP 

The experimental setup involves integrating an Arduino Uno, Raspberry Pi 3 Model B, ultrasonic sensor (HC-SR04), 

servo motor (SG90 9g), and Raspberry Pi Camera Module V2 to implement an AI-driven obstacle detection and 

decision-making system. The Arduino Uno captures distance and angular data from the ultrasonic sensor and 

transmits it via USB serial communication to the Raspberry Pi. Using the MATLAB Support Package, the Raspberry 

Pi processes real-time camera input with the Alex Net CNN model for object detection and decision-making. 

MATLAB scripts ensure data synchronization, while Python manages device communication. Testing was conducted 

in a controlled environment featuring both stationary and moving obstacles under varied lighting conditions to 

evaluate the accuracy of ultrasonic measurements and the reliability of object detection. The setup showcases 

effective integration of sensor data with AI-powered decision-making for real-time applications. 

 

Fig 3: Experimental Setup 
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The above photo shows the experimental setup for MRS. Where 1st fig shows the radar system with Arduino and 

2nd photo shows the processor and robotic hardware setup.  

A) End-to-End Front Wheel Angle and Displacement Calculations 

A novel method for calculating front wheel angles and displacement was developed for autonomous robot navigation. 

Sample images were fed into the Alex Net pre-trained CNN model for object detection and decision-making. The 

radar system and associated mathematical models calculated essential navigation parameters. A clustering approach 

was applied to process radar data, dividing the environment into dynamic NP. The robot’s movement was determined 

based on these NP, allowing for accurate adjustments in front wheel angles and displacement calculations. Radar 

data processing, cluster design, and software integration were executed on a Windows system with an Intel i7 

processor. Once the clusters were formed, the robot navigated from the starting point to the destination, dynamically 

adjusting its path based on the designed clusters. Figure 5 illustrates the interfacing of the Raspberry Pi controller 

and sensors within the system[33]. 

 

Fig 4: Visual Representation of NP 

 

V. DATASET DESCRIPTION 

The proposed AI-based method, leveraging OpenCV for real-time image processing and AlexNet CNN for 

classification, demonstrates superior performance compared to traditional approaches like Dijkstra's algorithm, 

especially in dynamic and hazardous environments. The system efficiently processes camera-captured images by 

applying Gaussian blurring, normalization, and edge detection, synchronizing the processed image data with 

ultrasonic sensor readings for precise navigation. Unlike Dijkstra's algorithm, which relies on pre-mapped and 

structured environments with high computational overhead, the AI-based method adapts in real-time to unknown 

terrains with cluster-based obstacle detection, ensuring low latency and cost-effectiveness through optimized 

hardware integration. This method is ideal for hazardous areas and dynamic terrains, offering enhanced flexibility, 

real-time adaptability, and reduced operational costs compared to traditional systems designed for static road maps 

or indoor navigation. 

VI. RESULTS AND DISCUSSION 

A) Front Wheel Adjustment  

The radar system for an autonomous robot is designed to detect and map objects in the surrounding environment 

using an ultrasonic sensor mounted on a servo motor. This system provides critical input for robotic navigation by 

measuring the distance and angle of obstacles and visualizing them in a radar-like display 
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Fig 5: Front Wheel Adjustment with selected Object 

The robotic system features a secondary and critical function that ensures precise front wheel angle adjustments to 

align with the designated target and calculate the required displacement for the robot’s travel. This is achieved 

through the interaction of two ultrasonic sensors interfaced with a Raspberry Pi module and a microcontroller. 

Python-based integration software is employed to determine front wheel angles and displacement dynamically. 

Separate algorithms are developed to handle danger flow and navigation. 

 

Fig 6: Processing 4.3 windows x 64 software simulation results of the radar system 

B) Visual Representation 

The robot's trajectory is determined by mapping clusters, represented as regions with distinct boundaries, similar to 

the diagrams provided [23]. Each cluster signifies a step in the robot’s path planning, allowing it to detect obstacles, 

align its wheels, and calculate the distance and time required to move efficiently.In the visualization, polar 

coordinates (angle, distance) are converted into Cartesian coordinates (x, y) using mathematical formulas. The radar 

visualization helps the robot in detecting obstacles and planning navigation, particularly in environments where 

visual input from the camera might be obstructed. The integration of the radar system with the camera feed and 

CNN-based decision-making enhances the robot's ability to navigate in complex and hazardous environments. 

      Table 1:  Angle and distance for making NP. 

Partic

le No. 

Angle(Deg

ree) 

Distan

ce 

(cm) 

Clust

er ID 

Time to complete task of each NP 

1 0 50 NP1 

2 5 48 NP1 

3 10 35 NP1 

4 15 34 NP1 

5 20 45 NP1 
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6 25 35 NP1 

 

7 30 53 NP1 

8 35 57 NP1 

9 40 24 NP1 

10 45 57 NP1 

11 50 24 NP1 

12 55 12 NP2 

 

13 60 67 NP2 

14 65 24 NP2 

15 70 57 NP2 

16 75 35 NP2 

17 80 67 NP2 

18 85 35 NP2 

19 90 78 NP2 

20 95 34 NP2 

21 100 24 NP2 

22 105 25 NP2 

23 74 57 NP2 

24 78 35 NP2 

25 80 67 NP2 

26 86 35 NP2 

 

The cluster diagram demonstrates two distinct groups, NP! and NP2, plotted in a 2D space. NP 1 is represented with 

purple markers and primarily occupies the lower left quadrant, while NP2, marked in yellow, is located in the upper 

right quadrant. The Navigation Planing process visualizes the separation of data points based on features such as 

proximity or similarity, which is critical for decision-making in robotics. This segmentation helps the robot analyse 

environmental patterns efficiently for tasks like obstacle detection and navigation. The diagrams showcasing the 

clusters have been created. Each visualizes different combinations of cluster interactions.  

C) Traveling map of robot according to NP1 and NP2 

 

Fig 7: Moving track of radar for radar data for decision making 
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The proposed system integrates advanced sensor technology and AI-driven algorithms, combining CNN-based image 

detection, ultrasonic sensors, and radar clustering to achieve autonomous navigation and obstacle avoidance. A 

Raspberry Pi module interfaces with ultrasonic sensors and a microcontroller to gather environmental data, 

dynamically adjusting front wheel angles and calculating displacement pulses for precise navigation. Radar-based 

clustering guides the robot's path, while deep learning techniques enhance object detection and decision-making. 

Experimental readings, including wheel angle adjustments, displacement time, and distance travelled, demonstrate 

the system's efficiency in navigating complex environments, representing a significant advancement in robotic 

vehicle design for hazardous applications. 

 

Fig 8: Decision making with accuracy provided by Alex net CNN 

D) Comparission 

Table 2: Comparission Table 

Future  Proposed AI-Based Method  Dijkstra’s Algorithm 

Environment Dynamic and hazardous Structured and Pre -mapped 

Real-Time Adaptation Yes Limited 

Obstacle Handling Real-time cluster-based object 

detection 

Requires pre-defined obstacle 

data 

Computational Overhead Low (optimized for real-time 

applications) 

High (graph computations) 

Flexibility Works in 

unknown/unstructured 

environments 

Limited to structured paths 

Cost-Effectiveness High (low-cost hardware + AI 

integration) 

Moderate to high 

Applications Hazardous areas, dynamic 

terrains 

Indoor navigation, static road 

maps 
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