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Health management systems require intelligent decision-making to effectively analyze complex interactions 

between various medical, financial, and operational factors. This study explores the application of t-Fuzzy 

Graphs (t-FG) in modeling and managing intricate relationships within healthcare environments. By 

leveraging t-FG, this research highlights how these graphs can express uncertainty, capture multi-

dimensional dependencies, and provide a structured representation of diverse health management variables. 

Fundamental t-FG operations, including homomorphism and isomorphism, are introduced to demonstrate 

their role in optimizing decision-making processes. Furthermore, the study discusses real-world applications 

of t-FG in healthcare, showcasing their potential in handling circular dimensions such as resource allocation, 

patient care strategies, and financial planning. The adaptability and efficiency of t-FG make them a valuable 

tool for policy development and strategic decision-making in health management, particularly in addressing 

complex social and numerical challenges within the healthcare sector. 

Keywords: t-Fuzzy Graph, Health Management, Decision Support System, Homomorphism, Isomorphism, 

Uncertainty Modeling. 

 

1. INTRODUCTION 

The majority of conventional formal modelling and reasoning frameworks are clear-cut and deterministic. A 

statement in a crisp system has only two possible outcomes: true or false. In the same way, an element in classical set 

theory is either a member of a set or not. But instead of strict categories, Zadeh [1] established the idea of fuzzy sets, 

which provide a continuum of membership grades. The value of membership that gives all element a degree of 

membership in between 0 & 1 defines a fuzzy set. These days, fuzzy set theory is essential for simulating uncertainty 

in a variety of fields, including as business, society, and the environment. It is a potent mathematical tool that 

facilitates approximation thinking in decision-making processes. 

Data and details about how components or objects interact may be conveniently represented using a graph [2, 3]. It 

makes sense to create a fuzzy graph when there is ambiguity in the depiction of the components or their interactions. 

A binary condtion of fuzzy subset is symmetric and also known as fuzzy graph [4]. The learning of fuzzy graphs based 

on fuzzy relations [6] was first introduced by Rosenfeld [5].  Bhattacharya [7] shed light on fuzzy graphs, while 

Sunitha and Vijayakumar [8] investigated their opposites. A number of fuzzy graph and fuzzy hypergraph traits were 

studied by Mordeson and Nair [9].  Concepts like regular, entirely regular, and total degree of vertices in certain fuzzy 

graphs were offered by Nagoor Gani and Radha [10, 11]. Chen [13] suggested a matrix model of graphs including 

fuzzy information, whereas Bhutani and Battou [12] studied M-strong fuzzy graphs.  

Graph structures were first proposed by Sampathkumar [14] and have since shown great utility in a number of 

computer science and artificial intelligence domains. Hausdorff [15] was the first to study the lexicographic product, 

and Radha and Arumugam [16] extended it to fuzzy graphs. Ramakrishnan and Dinesh [17] studied generalised fuzzy 

graph structures, whereas Dinesh [18] studied fuzzy graph structures and related ideas. The semistrong min-product 

and maximum product of fuzzy network topologies were presented by Akram and Sitara [19-20], who also examined 

their characteristics. Furthermore, the residue product of fuzzy graph architectures were examined by Akram et al. 

[21].  

It has been demonstrated that 𝔱 -FGs, which provide a flexible approach to decision-making, may efficiently handle 

ambiguity and uncertainty. These models act as a link between symbolic expert systems and traditional numerical 

engineering techniques. The t-fuzzy hypothesis effectively communicates imprecision and unpredictability in 
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complicated and uncertain circumstances. In order to solve real-world issues, we provide the idea of a 𝔱 -FG in this 

study using linear operators. The parameter "t" is essential for eliminating uncertainty in the decision-making 

process, allowing for exact control and customised solutions. This parameter offers a personalised approach to 

uncertainty management while improving flexibility. 𝔱 -FGs are an effective tool for deciphering intricate 

circumstances involving decision-making, providing a thorough approach to overcoming obstacles in decision-

making. This method greatly improves decision-making accuracy while reducing the limitations of binary logic. 

After providing a quick overview of 𝔱 -FGs, this work is organised as follows: To assist readers understand the 

originality of this study, basic terminology is included in the "Preliminaries" section. The knowledge of 𝔱 -FGs is 

examined, along with some of its most important characteristics, in the "  -FG " section. Set-theoretical operations 

on 𝔱 -FGs are studied in "Operations on the 𝔱 -FG," along with graphical representations. "Isomorphism of 𝔱 -FGs" 

presents the ideas of homomorphism and isomorphism that are unique to t-FGs. The "Complement of 𝔱 -FG " section 

examines the fundamental properties of the complement of 𝔱 -FGs and defines it. In "Application of 𝔱 -FG," this novel 

framework is used to create a health management decision support system. Lastly, the "Comparative Analysis" and 

"Conclusion" sections present a summary of the main findings and compare different elements of the study. 

 

Symbols  Meaning  

FS Fuzzy Set 

FG Fuzzy Graph 

𝔱-FS 𝔱-Fuzzy Set 

𝔱-FG t-Fuzzy Graph 

𝔱 -FSG t- Fuzzy Subgraph 

𝒉𝓖𝐭  Membership Function 
 

Table 1 List of symbols used 
 

MOTIVATION 

• The capacity of 𝔱 –FGs to manage intricate situations with unclear information and erratic, reluctant interactions 

between parts is the main reason for their selection. These graphs, which use the "𝔱" parameter, offer an 

organised method for assessing and simulating different levels of relationship confidence and uncertainty. 

• The above structure uses an approach that makes use of -norms and t-conorms to handle the integration and 

separation of uncertain information. This method is especially well-suited for making decisions in real-world 

situations where a variety of inputs and results need to be taken into account. 

• This approach is applicable in a number of fields, such as decision analysis, risk assessment, and system 

optimisation. Its objective is to reveal hidden links in ambiguous data while preserving adaptability in various 

circumstances. 

• By enabling multi-layered analysis using t-fuzzy graphs, medical practitioners may assess various degrees of 

clinical data confidence, resulting in a more intelligent and flexible decision-support system. 

NOVELTY 

• The "t" parameter plays a crucial role in establishing a structured and comprehensible representation of 

uncertain connections by acting as a threshold that reflects hesitation. 

• By incorporating the "t" parameter, relationship visualization is enhanced, allowing for the selective display of 

edges and nodes based on a predefined confidence level. This ensures that only the most relevant connections 

are highlighted. 

• This approach enables a more precise distinction between strong and subtle associations, facilitating a 

systematic approach to managing ambiguity. 
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• A t-fuzzy framework links different paramete values of "t" to various graph layers, supporting multi-layered 

analysis. This allows for a detailed examination of relationships within the graph while accounting for varying 

confidence levels, ultimately leading to a deeper understanding of the underlying structure. 

OBJECTIVES 

By using 𝔱 –FGs to handle ambiguity, reluctance, and differing confidence levels in medical data, the main objective 

of this research is to create a strong decision-support model that improves healthcare methods. 

2. t-FUZZY GRAPH 

Definition.2.1 In a universal set Ų, Let G be the FS with 𝔱 ∈ [0, 1]. A 𝐹𝑆𝒢𝑡  of Ų, also known as a 𝔱 -FS, is defined as 

ℎ𝒢𝑡(ʊ1) = min⁡{ℎ𝒢(ʊ1), 1 − 𝑡} ,⁡∀⁡ʊ1 ∈ Ų⁡. The form of 𝔱-FS is             𝒢𝑡 = {ʊ1, ℎ𝒢(ʊ1), ʊ1 ∈ Ų⁡} where ℎ𝒢𝑡 ⁡a function that 

assign to each degree is. Moreover, the function ℎ𝒢𝑡, satisfy the condition 0 ≤ 𝔥𝒢(ʊ1) ≤ 1. 

Definition. 2.2 Let 𝒢 = (Ą, Ɓ)  be a FG for a given simple graph H= (Ʋ, Ę). A 𝔱 -FG is represented by the otation⁡𝒢𝑡 =

(Ą𝑡 , Ɓ𝑡), where Ą𝑡 = {(ʊ𝑖 , ℎ𝒢(ʊ𝑖): ʊ𝑖 ∈ Ʋ} is the t-FS on Ʋ &  Ɓ𝑡 = {〈(ʊ𝑖, ʊ𝑗), ℎ𝒢(ʊ𝑖 , ʊ𝑗)〉, (ʊ𝑖 , ʊ𝑗) ∈ Ę} is the 𝔱-FS on Ę ⊆

Ʋ × Graph⁡ℎƁ𝑡(ʊ𝑖 , ʊ𝑗) ≤ 1. 

Example.2.3. Observe  𝐻′ = (Ʋ, Ę) where Ʋ = {𝑢, 𝑣, 𝑤, 𝑥} and  Ę = {𝑢𝑣, 𝑢𝑤, 𝑢𝑥, 𝑣𝑤,𝑤𝑥}.  Given Ʋ, the node strengths of 

Ą⁡𝑖𝑠⁡{(𝑢, 0.5), (𝑣, 0.3), (𝑤, 0.7), (𝑥, 0.4)}.   

The Edge strength of is {(𝑢𝑣, 0.3), (𝑢𝑤, 0.5), (𝑢𝑥, 0.4), (𝑣𝑤, 0.3), (𝑤𝑥, 0.4)}. Applying the concept of 𝔱-FS to the two FS 

A and B that are provided, which correspond to the value 𝔱 = 0.6, reveals that, 

Ą0.6 = {(𝑢, 0.4), (𝑣, 0.3), (𝑤, 0.4), (𝑥, 0.4)} and Ɓ0.6 = {(𝑢𝑣, 0.3), (𝑢𝑤, 0.4), (𝑢𝑥, 0.4), (𝑣𝑤, 0.3), (𝑤𝑥, 0.4)}. 

 

Graph 1. 0.6-FG 𝒢0.6 

𝔱-FG, if 𝔱 = 0.40; 𝒢0.40 = (Ą0.6, Ɓ0.6) 

Definition. 2.4. Let  𝒢𝔱 = (Ą𝔱, Ɓ𝔱) be an 𝔱-FG then ℋ𝔱 = (Ą𝔱
′, Ɓ𝔱

′) is considered a 𝔱-FSG if Ą𝔱
′ ⊆ Ą𝔱 and Ɓ𝔱

′ ⊆ Ɓ𝔱. 

 

Definition. 2.5. The complete 𝔱-FG 𝒢𝔱 is acknowlaged the following requirements listed below: 

ℎƁ𝑡(ʊ1, ʊ2) = ⋀{ℎĄ𝑡(ʊ1), ℎĄ𝑡(ʊ2)},⁡∀⁡(ʊ1, ʊ2) ∈ Ę. 

       

Definition.2.6. In 𝔱 -FG, the order is defined as follows 

𝑂(𝒢𝑡) = (∑ ℎĄ𝑡(ʊ1)

ʊ1∈Ʋ

) 

Example.2.8. The order of 𝔱-FG 𝒢𝔱 is (1.5) from example 2.3. 

Definition.2.9. The 𝔱-FG has a size defined by 

𝑆(𝒢𝔱) = ( ∑ ℎƁ𝔱(ʊ1, ʊ2)

(ʊ1,ʊ2)∈Ę

) 
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Definition. 2.10. 𝔱 -FG defines the degree of vertex ʊ1in 𝒢𝑡 as follows: 

𝑑𝑒𝑔𝒢𝑡(ʊ1) = (𝑑𝑒𝑔ℎƁ𝑡
(ʊ1)) 

𝑑𝑒𝑔𝒢𝑡(ʊ1) = ( ∑ ℎƁ𝑡(ʊ1, ʊ2)

(ʊ1,ʊ2)∈Ę

) 

Example.2.11. Referring to example 2.3,  
 

1. The degree of vertex in 𝒢𝑡 are,   

𝑑𝑒𝑔𝒢𝑡(𝑢) = (1.1); 𝑑𝑒𝑔𝒢𝑡(𝑣) = (0.6); ⁡𝑑𝑒𝑔𝒢𝑡(𝑤) = (1.1); ⁡𝑑𝑒𝑔𝒢𝑡(𝑥) = (0.8). 

2.  𝛿(𝒢𝑡) is minimum degree of 𝔱 -FG , 𝛿(𝒢𝑡) = (𝛿ℎƁ𝑡
(𝒢𝑡), 𝛿(𝒢𝑡) = (⋀ {𝑑𝑒𝑔ℎƁ𝑡

(ʊ1): ʊ1 ∈ Ʋ}). 

3. ∆(𝒢𝑡) is maximum degree of 𝔱-FG , ∆(𝒢𝑡) = (∆ℎƁ𝑡
(𝒢𝑡)), ∆(𝒢𝑡) = (max {𝑑𝑒𝑔ℎƁ𝑡

(ʊ1): ʊ1 ∈ Ʋ}). 

From example 2.3: 𝛿(𝒢𝑡)⁡= (0.6); ⁡∆(𝒢𝑡) = (1.1). In 𝔱-FG the following inequality holds, 𝛿(𝒢𝑡) ≤ ∆(𝒢𝑡) ≤ 𝑆(𝒢𝑡) ≤

𝑂(𝒢𝑡) 

Theorem.2.12 An 𝔱-FG is represented as 𝒢𝑡= (A𝔱, B𝔱), then 

∑𝑑𝑒𝑔𝒢𝑡 (ʊ𝑖) = (2∑ℎ𝒢𝑡 (ʊ𝑖 , 𝑤)) 

Proof. Considering 𝔱-FG represented by 𝒢𝑡= (A𝔱, B𝔱), let's investigate,  

∑𝑑𝑒𝑔𝒢𝑡 (ʊ𝑖) ⁡= (∑𝑑𝑒𝑔ℎƁ𝑡
(ʊ𝑖)) 

= (𝑑𝑒𝑔ℎƁ𝑡
(ʊ1) + (𝑑𝑒𝑔ℎƁ𝑡

(ʊ2))…+⁡⁡⁡⁡⁡⁡⁡ (𝑑𝑒𝑔ℎƁ𝑡
(ʊ𝑛)) 

= (ℎƁ𝑡(ʊ1, ʊ2)) + (ℎƁ𝑡(ʊ1, ʊ3) + ⁡⁡⁡⁡…+ (ℎƁ𝑡(ʊ1, ʊ𝑛) + ⋯+⁡⁡⁡ (ℎƁ𝑡(ʊ𝑛, ʊ1) + (ℎƁ𝑡(ʊ𝑛, ʊ2) + ⁡⁡⁡⁡…+

(ℎƁ𝑡(ʊ𝑛, ʊ𝑛−1)) 

= (2(ℎƁ𝑡(ʊ1, ʊ2) + 2(ℎƁ𝑡(ʊ1, ʊ3) + ⁡…+ 2(ℎƁ𝑡(ʊ1, ʊ𝑛)) 

                            = (2∑ℎ𝒢𝑡 (ʊ𝑖, 𝑤)). 

4. OPERATION ON 𝔱-FUZZY GRAPH 

Definition.3.1. Consider two 𝔱-FG of G = (Ʋ,⁡Ę) and G’=(⁡Ʋ’,⁡Ę’) correspond to 𝒢𝑡 = (Ą𝔱, Ɓ𝔱) and 𝒢𝑡
′ = (Ą𝔱

′, Ɓ𝔱
′), 

respectively.⁡(Ą𝔱 × Ą𝔱
′, Ɓ𝔱 × Ɓ𝔱

′)  defines the Cartesian product of two 𝔱 -FG is denoted bt 𝒢𝔱 × 𝒢𝔱
′. Where Ą𝔱 × Ą𝔱

′ and 

Ɓ𝔱 × Ɓ𝔱
′ are 𝔱 -FS on  Ʋ × Ʋ′ = {(ϗ1, Ϙ1), (Ϙ2, ϗ2): Ϙ1&Ϙ2 ∈ Ʋ; ϗ1&ϗ2 ∈ Ʋ′} and Ę × Ę′ = {(Ϙ1, ϗ1), (Ϙ2, ϗ2): Ϙ1 =

Ϙ2, Ϙ1&Ϙ2 ∈ Ʋ, (ϗ1, ϗ2) ∈ Ę′}⁡Ų⁡⁡{(Ϙ1, ϗ1), (Ϙ2, ϗ2): ϗ1 = ϗ2, ϗ1&ϗ2 ∈ Ʋ′, (Ϙ1, Ϙ2) ∈ Ę}⁡Ų⁡⁡{(Ϙ1, ϗ1), (Ϙ2, ϗ2): ϗ1 ≠ ϗ2, Ϙ1 ≠

Ϙ2, (ϗ1, ϗ2) ∈ Ę′, (Ϙ1, Ϙ2) ∈ Ę} respectively, which fulfills the given requirement. 

1. ∀((Ϙ1, ϗ1) ∈ ⁡Ʋ × Ʋ′, ℎĄ𝑡×Ą𝑡′
(Ϙ1, ϗ1) = ⋀ {ℎĄ𝑡(Ϙ1), ℎĄ

𝑡′
(ϗ1)} 

2. If Ϙ1 = Ϙ2 and ∀ (ϗ1, ϗ2) ∈ Ę′ , ℎƁ𝑡×Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) = ⋀ {ℎĄ𝑡(Ϙ1), ℎƁ

𝑡′
(ϗ1, ϗ2)} 

3.  If ϗ1 = ϗ2 and ∀ (Ϙ1, Ϙ2) ∈ Ę , ℎƁ𝑡×Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) = ⋀ {ℎƁ𝑡(Ϙ1, Ϙ2), ℎĄ

𝑡′
(ϗ1)} 

4.  If  ϗ1 ≠ ϗ2⁡𝑎𝑛𝑑Ϙ1 ≠ Ϙ2,⁡ ∀ (ϗ1, ϗ2) ∈ Ę′, (Ϙ1, Ϙ2) ∈ Ę,  ℎƁ𝑡×Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) = ⋀ {ℎƁ𝑡(Ϙ1, Ϙ2), ℎƁ

𝑡′
(ϗ1, ϗ2)}. 

 

Example.3.2. The two 0.3-FG 𝒢𝑡 ⁡and⁡𝒢𝑡
′, which are the elements to be taken into consideration, are shown in Graphs 

2 and 3. Graph 4 displays the corresponding Cartesian product 𝒢0.3 × 𝒢0.3
′ .



24  

 
 

 

 J INFORM SYSTEMS ENG, 10(25s) 

 
 

Graph 4. 0.3-FG 𝒢0.3 × 𝒢0.3
′  

Definition.3.3. 𝑑𝑒𝑔𝒢𝑡×𝒢𝑡′
(Ϙ1, ϗ1) = (deg {ℎƁ𝑡×Ɓ𝑡′(

(Ϙ1, ϗ1), (Ϙ2, ϗ2))}) 

Where,  

deg {ℎƁ𝑡×Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2))} = ∑ ⋀{ℎĄ𝑡(Ϙ1), ℎƁ

𝑡′
(ϗ1, ϗ2)}

Ϙ1=Ϙ2,(ϗ1,ϗ2)∈Ę
′⁡

 

  +∑ ⋀{ℎƁ𝑡(Ϙ1, Ϙ2), ℎĄ
𝑡′
(ϗ1)}⁡ϗ1=ϗ2,(Ϙ1,Ϙ2)∈Ę⁡  

  +∑ ⋀{ℎƁ𝑡(Ϙ1, Ϙ2), ℎƁ
𝑡′
(ϗ1, ϗ2)}ϗ1≠ϗ2,Ϙ1≠Ϙ2 ⁡ 

Example.3.4. From example 3.2, the degree of vertex in ⁡𝒢0.3 × 𝒢0.3
′  

 

𝑑𝑒𝑔𝒢𝑡×𝒢𝑡
′(𝑥, 𝑖) = (0.6), 𝑑𝑒𝑔𝒢𝑡×𝒢𝑡

′(𝑥, 𝑗) = (0.6), 𝑑𝑒𝑔𝒢𝑡×𝒢𝑡
′(𝑥, 𝑘) = (0.6), 𝑑𝑒𝑔𝒢𝑡×𝒢𝑡

′(𝑥, 𝑙) = (0.6), 𝑑𝑒𝑔𝒢𝑡×𝒢𝑡
′(𝑦, 𝑖) = (0.6), 

𝑑𝑒𝑔𝒢𝑡×𝒢𝑡
′(𝑦, 𝑗) = (0.8), 𝑑𝑒𝑔𝒢𝑡×𝒢𝑡

′(𝑦, 𝑘) = (1.0), 𝑑𝑒𝑔𝒢𝑡×𝒢𝑡′
(𝑦, 𝑙) = (1.0)  

Theorem.3.5. The Cartesian products of two 𝔱 -FGs, result is a new 𝔱 -FG 

Proof: The requirement is clear for Ą𝑡 × Ą𝑡
′ . Considering that (ϗ1, ϗ2) ∈ Ę′ and Ϙ1 ∈ Ʋ, 

ℎƁ𝑡×Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) = ⋀ {ℎĄ𝑡(Ϙ1), ℎƁ

𝑡′
(ϗ1, ϗ2)} 

ℎƁ𝑡×Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) ≤ ⋀ {ℎĄ𝑡(Ϙ1), ⋀⁡{ℎĄ

𝑡′
(ϗ1), ℎĄ

𝑡′
(ϗ2)}} 

ℎƁ𝑡×Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) ≤ ⋀ {⋀⁡{ℎĄ𝑡(Ϙ1), ℎĄ

𝑡′
(ϗ1)}, ⋀⁡{ℎĄ𝑡(Ϙ1), ℎĄ

𝑡′
(ϗ2)}} 

ℎƁ𝑡×Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) = ⋀ {ℎĄ𝑡×Ą𝑡′

(Ϙ1, ϗ1), ℎĄ𝑡×Ą𝑡′
(ϗ1, ϗ2)} 

Likewise we can demonstrate it for ϗ1 ∈ Ʋ′,(Ϙ1, Ϙ2) ∈ Ę. 

Definition.3.6. Consider two t-FG of G = (Ʋ, E) and G’= (Ʋ′,E’) correspond to 𝒢𝔱 = (Ą𝔱, Ɓ𝔱) and 𝒢𝔱
′ = (Ą𝔱

′, Ɓ𝔱
′), 

respectively.⁡(Ą𝔱 ∘ Ą𝔱
′, Ɓ𝔱 ∘ Ɓ𝔱

′) defines composition 𝒢𝔱 ∘ 𝒢𝔱
′ of two t-FG. Where Ą𝔱 ∘ Ą𝔱

′ and Ɓ𝔱 ∘ Ɓ𝔱
′ are t-FS on  Ʋ × Ʋ′ =

{(Ϙ1, ϗ1), (Ϙ2, ϗ2): Ϙ1&Ϙ2 ∈ Ʋ; ϗ1&ϗ2 ∈ Ʋ′} and Ę × Ę′ = {(Ϙ1, ϗ1), (Ϙ2, ϗ2): Ϙ1 = Ϙ2, Ϙ1&Ϙ2 ∈ Ʋ, (ϗ1, ϗ2) ∈

Ę′}⁡Ų⁡⁡{(Ϙ1, ϗ1), (Ϙ2, ϗ2): ϗ1 = ϗ2, ϗ1&ϗ2 ∈ Ʋ′, (Ϙ1, Ϙ2) ∈ Ę}⁡Ų⁡⁡{(Ϙ1, ϗ1), (Ϙ2, ϗ2): ϗ1 ≠ ϗ2, Ϙ1 ≠ Ϙ2, (ϗ1, ϗ2) ∈ Ę′, (Ϙ1, Ϙ2) ∈

Ę} respectively, which fulfills the given requirement. 

1. ∀((Ϙ1, ϗ1) ∈ ⁡Ʋ ∘ Ʋ′,  ℎĄ𝑡∘Ą𝑡′
(Ϙ1, ϗ1) = ⋀ {ℎĄ𝑡(Ϙ1), ℎĄ

𝑡′
(ϗ1)} 

2. If Ϙ1 = Ϙ2 and ∀ (ϗ1, ϗ2) ∈ Ę′ , ℎƁ𝑡∘Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) = ⋀ {ℎĄ𝑡(Ϙ1), ℎƁ

𝑡′
(ϗ1, ϗ2)} 

3.  If ϗ1 = ϗ2 and ∀ (Ϙ1, Ϙ2) ∈ Ę, ℎƁ𝑡∘Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) = ⋀ {ℎƁ𝑡(Ϙ1, Ϙ2), ℎĄ

𝑡′
(ϗ1)} 

4.  If ϗ1 ≠ ϗ2 and ∀ (Ϙ1, Ϙ2) ∈ Ę , ℎƁ𝑡∘Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) = ⋀ {ℎƁ𝑡(Ϙ1, Ϙ2), ℎĄ

𝑡′
(ϗ1), ℎĄ

𝑡′
(ϗ2)} 

5. If Ϙ1 ≠ Ϙ2 and ∀ (ϗ1, ϗ2) ∈ Ę′ , ℎƁ𝑡∘Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2)) = ⋀ {ℎĄ𝑡(Ϙ1), ℎĄ𝑡(Ϙ2), ℎƁ

𝑡′
(ϗ1, ϗ2)} 

Example.3.7. Contemplate two 0.6-FG 𝒢𝔱 and 𝒢𝔱
′ illustrated in Graph 5 & 6. 
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Graph 7. Shows their corresponding Compositon 

𝒢0.6 ∘ 𝒢0.6
′  

 

Graph 7. 0.6-FG 𝒢0.6 ∘ 𝒢0.6
′  

Definition.3.8. From the composition of two 𝔱-FG, the degree of vertex is demonstrate as follows 

(Ϙ1, ϗ1) ∈ Ʋ × Ʋ′; 𝑑𝑒𝑔𝒢𝔱∘𝒢𝔱
′(Ϙ1, ϗ1)

= (deg {ℎƁ𝑡∘Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2))} , deg {𝐼Ɓ𝑡∘Ɓ𝑡′(

(Ϙ1, ϗ1), (Ϙ2, ϗ2))} , deg⁡{𝐹Ɓ𝑡∘Ɓ𝑡′(
(Ϙ1, ϗ1), (Ϙ2, ϗ2))}) 

Where, deg {ℎƁ𝔱∘Ɓ𝔱
′((Ϙ1, ϗ1), (Ϙ2, ϗ2))} = ∑ ⋀ {ℎĄ𝑡(Ϙ1), ℎƁ

𝑡′
(ϗ1, ϗ2)}Ϙ1=Ϙ2,(ϗ1,ϗ2)∈Ę

′⁡  

 +∑ ⋀{ℎƁ𝑡(Ϙ1, Ϙ2), ℎĄ
𝑡′
(ϗ1)}⁡ϗ1=ϗ2,(Ϙ1,Ϙ2)∈Ę⁡  

     +∑ ⋀ {ℎƁ𝑡(Ϙ1, Ϙ2), ℎĄ
𝑡′
(ϗ1), ℎĄ

𝑡′
(ϗ2)}ϗ1≠ϗ2,(Ϙ1,Ϙ2)∈Ę⁡  

      +∑ ⋀{ℎĄ𝑡(Ϙ1), ℎĄ𝑡(Ϙ2), ℎƁ
𝑡′
(ϗ1, ϗ2)}⁡Ϙ1≠Ϙ2,(ϗ1,ϗ2)∈Ę

′⁡  

Example.3.9. In Graph 7 shows that every vertex in 𝒢𝑡 ∘ 𝒢𝑡
′ must have degrees, 

𝑑𝑒𝑔𝒢𝔱×𝒢𝔱
′(𝑥, 𝑎) = (0.7), 𝑑𝑒𝑔𝒢𝔱×𝒢𝔱

′(𝑥. 𝑏) = (0.4), 𝑑𝑒𝑔𝒢𝔱×𝒢𝔱
′(𝑦, 𝑎) = (0.8),  

𝑑𝑒𝑔𝒢𝔱×𝒢𝔱
′(𝑦, 𝑏) = (0.5), 𝑑𝑒𝑔𝒢𝔱×𝒢𝔱

′(𝑧, 𝑎) = (0.2), 𝑑𝑒𝑔𝒢𝔱×𝒢𝔱
′(𝑧, 𝑏) = (0.2) 

Definition.3.10. Consider two 𝔱 -FG of G = (Ʋ,E) and G’=(Ʋ’,E’) correspond to 𝒢𝔱 = (Ą𝔱, Ɓ𝔱) and 𝒢𝑡
′ = (Ą𝔱

′, Ɓ𝔱
′), 

respectively.⁡(Ą𝔱 ∪ Ą𝔱
′, Ɓ𝔱 ∪ Ɓ𝔱

′) defines the union 𝒢𝑡 ∪ 𝒢𝑡
′ of two 𝔱 -FG, Ą𝔱 ∪ Ą𝔱

′ and Ɓ𝔱 ∪ Ɓ𝔱
′, represent 𝔱 -FS on Ʋ ∪ Ʋ′ and 

Ę ∪ Ę′,  which fulfills the given requirement, 

1) If Ϙ1 ∈ Ʋ and Ϙ1 ∉ Ʋ′.  ℎĄ𝑡∪Ą𝑡′
(Ϙ1)=ℎĄ𝑡(Ϙ1) 

2) If Ϙ1 ∉ Ʋ and Ϙ1 ∈ Ʋ′.  ℎĄ𝑡∪Ą𝑡′
(Ϙ1)=ℎĄ𝑡′

(Ϙ1) 

3) If Ϙ1 ∈ Ʋ ∩ Ʋ′.  ℎĄ𝑡∪Ą𝑡′
(Ϙ1)=⁡𝑚𝑎𝑥{ℎĄ𝑡(Ϙ1), ℎĄ𝑡′

(Ϙ1)} 

4) If (Ϙ1, ϗ1) ∈ Ę and (Ϙ1, ϗ1) ∉ Ę′.  ℎƁ𝑡∪Ɓ𝑡′(Ϙ1, ϗ1)=ℎƁ𝑡(Ϙ1, ϗ1) 

5) If (Ϙ1, ϗ1) ∉ Ę and (Ϙ1, ϗ1) ∈ Ę′.  ℎƁ𝑡∪Ɓ𝑡′(Ϙ1, ϗ1)=⁡ℎƁ𝑡′(Ϙ1, ϗ1) 

6) If (Ϙ1, ϗ1) ∈ Ę ∩ Ę′. ℎƁ𝑡∪Ɓ𝑡′(Ϙ1, ϗ1) =⁡𝑚𝑎𝑥{ℎƁ𝑡(Ϙ1, ϗ1), ℎƁ𝑡′(Ϙ1, ϗ1)} 

 

Definition.3.11. Let (Ϙ1, ϗ1) is a degree of vertex in a 𝔱-FG for every (Ϙ1, ϗ1) ∈ Ʋ ∪ Ʋ′. 

𝑑𝑒𝑔𝒢𝑡∪𝒢𝑡
′(Ϙ1, ϗ1) = (deg {ℎƁ𝑡∪Ɓ𝑡′

(Ϙ1, ϗ1)}) 

Where 
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𝑑𝑒𝑔 {ℎƁ𝑡∪Ɓ𝑡′
(Ϙ1, ϗ1)} = ∑ ℎƁ𝑡(Ϙ1, ϗ1)

(Ϙ1,ϗ1)∈Ę⁡,(Ϙ1,ϗ1)∉Ę
′⁡

+ ∑ ℎƁ𝑡′
(Ϙ1, ϗ1)

⁡(Ϙ1,ϗ1)∉Ę,(Ϙ1,ϗ1)∈Ę
′⁡

 

+∑ ⁡𝑚𝑎𝑥{ℎƁ𝑡(Ϙ1, ϗ1), ℎƁ𝑡′(Ϙ1, ϗ1)}⁡(Ϙ1,ϗ1)∈Ę∩Ę
′⁡ . 

Definition.3.12. let⁡𝒢𝔱 = (Ą𝔱, Ɓ𝔱) and 𝒢𝑡
′ = (Ą𝔱

′, Ɓ𝔱
′) be a two t-FGs and the join operation of 𝔱–FG is  𝒢𝑡 + 𝒢𝑡

′  is 

demonstrated as (Ą𝑡 + Ą𝑡
′ , Ɓ𝑡 + Ɓ𝑡

′ ),  Ą𝔱 + Ą𝔱
′ yields a 𝔱-FG on Ʋ ∪ Ʋ′ & Ɓ𝔱 + Ɓ𝔱

′ forms a 𝔱-FG in Ę ∪ Ę′ ∪ Ę′′ has to give 

particular below conditions  

1) If⁡Ϙ1 ∈ Ʋ and Ϙ1 ∉ Ʋ′,  ℎĄ𝑡+Ą𝑡′
(Ϙ1)=ℎĄ𝑡(Ϙ1) 

2) If Ϙ1 ∉ Ʋ and Ϙ1 ∈ Ʋ′, ℎĄ𝑡+Ą𝑡′
(Ϙ1)=ℎĄ𝑡′

(Ϙ1) 

3) If Ϙ1 ∈ Ʋ ∩ Ʋ′, ℎĄ𝑡+Ą𝑡′
(Ϙ1)=⁡𝑚𝑎𝑥{ℎĄ𝑡(Ϙ1), ℎĄ𝑡′

(Ϙ1)} 

4) If (Ϙ1, ϗ1) ∈ Ę and (Ϙ1, ϗ1) ∉ Ę′,⁡ ℎƁ𝑡+Ɓ𝑡′(Ϙ1, ϗ1)=ℎƁ𝑡(Ϙ1, ϗ1) 

5) If (Ϙ1, ϗ1) ∉ Ę and (Ϙ1, ϗ1) ∈ Ę′,  ℎƁ𝑡+Ɓ𝑡′(Ϙ1, ϗ1)=⁡ℎƁ𝑡′(Ϙ1, ϗ1) 

6) If (Ϙ1, ϗ1) ∈ Ę ∩ Ę′,  ℎƁ𝑡+Ɓ𝑡′(Ϙ1, ϗ1) =⁡𝑚𝑎𝑥{ℎƁ𝑡(Ϙ1, ϗ1), ℎƁ𝑡′(ʊ1, 𝑤1)} 

7) If (Ϙ1, ϗ1) ∈ Ę′′,  ℎƁ𝑡+Ɓ𝑡′(Ϙ1, ϗ1) =⁡𝑚𝑎𝑥{ℎƁ𝑡(Ϙ1), ℎƁ𝑡′(ϗ1)} 

 

Definition.3.13. Examine the subsequent pair of 𝔱 -FGs, 𝒢𝔱 and⁡𝒢𝔱
′. The 𝔱 -FG has the degree for each vertex⁡𝒢𝔱 + 𝒢𝔱

′. If 

(Ϙ1, ϗ1) ∈ Ʋ + Ʋ′, then 𝑑𝑒𝑔𝒢𝑡+𝒢𝑡′
(Ϙ1, ϗ1) = (𝑑𝑒𝑔 {ℎƁ𝑡+Ɓ𝑡′

(Ϙ1, ϗ1)}) 

Where   

𝑑𝑒𝑔 {ℎƁ𝑡∪Ɓ𝑡′
(Ϙ1, ϗ1)} = ( ∑ ℎƁ𝑡(Ϙ1, ϗ1)

(Ϙ1,ϗ1)∈Ę⁡,(Ϙ1,ϗ1)∉Ę
′⁡

+ ∑ ℎƁ𝑡′
(Ϙ1, ϗ1)

⁡(Ϙ1,ϗ1)∉Ę,(Ϙ1,ϗ1)∈Ę
′⁡

 

+ ∑ ⁡𝑚𝑎𝑥{ℎƁ𝑡(Ϙ1, ϗ1), ℎƁ𝑡′(Ϙ1, ϗ1)}

⁡(Ϙ1,ϗ1)∈Ę∩Ę
′⁡

+ ∑ ⁡𝑚𝑎𝑥{ℎƁ𝑡(Ϙ1), ℎƁ𝑡′(ϗ1)}

⁡(Ϙ1,ϗ1)∈Ę
′′⁡

) 

 
Theorem. 3.14 For any two 𝔱-FGs, their union is a 𝔱-FG.  

Proof. Let us assume a 𝔱-FG, 𝒢⁡𝔱 ∪ 𝒢⁡𝔱
′. Let (Ϙ1, ϗ1) ∈ Ę, (Ϙ1, ϗ1) ∉ Ę′ and (Ϙ1, ϗ1) ∈ Ʋ − Ʋ′ 

Consider 

 ℎƁ𝑡(Ϙ1, ϗ1) = ℎƁ𝑡∩Ɓ𝑡′(Ϙ1, ϗ1)  

 ℎƁ𝑡(Ϙ1, ϗ1) ≤ ⋀⁡{ℎĄ𝑡∪Ą𝑡′
(Ϙ1), ℎĄ𝑡∪Ą𝑡′

(ϗ1)} 

 ℎƁ𝑡(Ϙ1, ϗ1) = ⋀⁡{ℎĄ𝑡(Ϙ1), ℎĄ𝑡(ϗ1)} 

Consequently  ℎƁ𝑡(Ϙ1, ϗ1) ≤ ⋀⁡{ℎĄ𝑡(Ϙ1), ℎĄ𝑡(ϗ1)}. 

Hence, 𝒢𝑡 = (Ą𝑡 , Ɓ𝑡)   is established as a 𝔱 -FG. Likewise, we deduce that 𝒢
𝑡
′ = (Ą

𝔱
′ , Ɓ𝔱

′) is 𝔱-FG in 𝐺′′. Given that 𝒢𝔱 & 

𝒢𝔱
′ are assumed, and since two 𝔱-FGs together produce a 𝔱-FG, we may deduce that 𝒢𝔱 ∪ 𝒢𝔱

′. 

4. ISOMORPHISM OF T-FUZZY GRAPH 

 
Definition. 4.1. Let 𝒢𝔱 & 𝒢𝔱

′ be any two 𝔱 -FG.  𝜃: 𝒢𝑡 ⁡𝑡𝑜⁡𝒢𝑡
′⁡⁡is a homomorphism Ʋ⁡𝑡𝑜⁡Ʋ′, satisfies the ensuing 

requirements: 

1. ℎĄ𝑡(Ϙ1) ≤ ℎĄ𝑡′(𝜃
(Ϙ1)) ; ∀Ϙ1 ∈ Ʋ. 

2. ℎƁ𝑡(Ϙ1, ϗ1) ≤ ℎƁ𝑡′(𝜃
(Ϙ1), 𝜃(ϗ1)), ∀(Ϙ1, ϗ1) ∈ Ę. 
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Definition. 4.2.  A weak isomorphism 𝜃: Ʋ⁡to⁡Ʋ′,   from 𝔱-FG 𝒢𝑡 to 𝒢𝑡
′⁡has to meet the below. 

  ℎĄ𝑡(Ϙ1) = ℎĄ𝑡′(𝜃
(Ϙ1)) , ∀Ϙ1 ∈ Ʋ. 

Definition. 4.3. A bijective mapping θ: Ʋ⁡to⁡Ʋ′ between two 𝔱-FGs, 𝒢
𝔱
= (Ą

𝔱
, Ɓ𝔱)& 𝒢

𝑡
′ = (Ą

𝔱
′ , Ɓ𝔱

′)of G = (Ʋ, Ę) and G’= 

(Ʋ’, Ę’), that satisfies the below  criteria is called a strong co-isomorphism. ℎĄ𝑡(Ϙ1) ≤ ℎĄ𝑡′(𝜃
(Ϙ1)); ∀Ϙ1 ∈ Ʋ. 

1. ℎƁ𝑡(Ϙ1, ϗ1) ≤ ℎƁ𝑡′(𝜃
(Ϙ1), 𝜃(ϗ1)),⁡ 

2. ℎƁ𝑡(Ϙ1, ϗ1) = ℎƁ𝑡′(𝜃
(Ϙ1), 𝜃(ϗ1)),⁡; ∀(Ϙ1, ϗ1) ∈ Ę. 

Definition. 4.4. An isomorphism of two t-FGs is a bijective homomorphism mapping 𝜃: Ʋ⁡⁡𝑡𝑜⁡Ʋ′, which gives the below  

criteria 

1. ℎĄ𝑡(Ϙ1) = ℎĄ𝑡′(𝜃
(Ϙ1)), ∀Ϙ1 ∈ Ʋ. 

2. ℎƁ𝑡(Ϙ1, ϗ1) = ℎƁ𝑡′(𝜃
(Ϙ1), 𝜃(ϗ1)),⁡; ∀(Ϙ1, ϗ1) ∈ Ę. 

Example. 4.5. From the below graphs, 0.7-𝒢𝔱⁡& 𝒢𝔱
′; 

 
Graph 8. 0.7 − 𝑁𝐺⁡𝒢0.7  

𝐆𝐫𝐚𝐩𝐡⁡𝟗. 0.7 − 𝑁𝐺⁡𝒢0.7
′  

 

Definition (4.4), the mapping ζ(x) = c, ζ(y) = b & ζ(z)=a gives us ⁡𝒢0.7 ≈ 𝒢0.7
′  

 

Theorem. 4.6. The isomorphism between t-FGs satisfies the properties of an equivalence relation. 

Proof: It is evident that there is symmetry and reflexivity. 𝜑: Ʋ⁡to⁡Ʋ′ and 𝜃:Ʋ′⁡to⁡Ʋ′′ indicate the isomorphisms of 𝒢𝑡 

onto  𝒢𝑡
′ & 𝒢⁡𝔱

′⁡onto  𝒢⁡𝔱
′′. A bijective map fromƲ′ to Ʋ′′ is therefore 𝜃 ∘ 𝜑:⁡Ʋ → Ʋ′′, it is follows by 

(𝜃 ∘ 𝜑)(Ϙ1) = 𝜃(𝜑(Ϙ1)), ∀Ϙ1 ∈ Ʋ 

𝜑: Ʋ⁡to⁡Ʋ′described by 𝜑(Ϙ1) = ϗ1, ∀Ϙ1 ∈ Ʋ, it is an isomorphism. From def(4.4),  

ℎĄ𝑡(Ϙ1) = ℎĄ𝑡′(𝜑
(Ϙ1)) = ℎĄ𝑡′

(ϗ1), ∀Ϙ1 ∈ Ʋ 

and 

ℎƁ𝑡(Ϙ1, Ϙ2) = ℎƁ𝑡′(𝜑
(Ϙ1), 𝜑(Ϙ2)) = ℎƁ𝑡′

(ϗ1, ϗ2), ∀(Ϙ1, Ϙ2) ∈ Ę 

 Similarly, we have    ℎĄ𝑡′
(ϗ1) = ℎĄ𝑡′′

(𝑣1), ∀ϗ1 ∈ Ʋ′ 

and 

ℎƁ𝑡′
(ϗ1, ϗ2) = ℎƁ𝑡′′

(𝑣1, 𝑣2), ∀(ϗ1, ϗ2) ∈ Ę′ 

With the help of above relations,  𝜑(Ϙ1) = ϗ1⁡, ∀Ϙ1 ∈ Ʋ. 

ℎĄ𝑡(Ϙ1) = ℎĄ𝑡′(𝜑
(Ϙ1)) = ℎĄ𝑡′

(ϗ1) = ℎĄ𝑡′′(𝜃
(ϗ1)) = ℎĄ𝑡′′ (𝜃(𝜑

(Ϙ1))) 

and 

ℎƁ𝑡(Ϙ1, Ϙ2) = ℎƁ𝑡′
(ϗ1, ϗ2) = ℎƁ𝑡′′(𝜃

(ϗ1), 𝜃(ϗ2)) = ℎƁ𝑡′′ (𝜃(𝜑
(Ϙ1)), 𝜃(𝜑(Ϙ2))) 

Thus, 𝒢𝑡 and 𝒢𝑡
′′  are isomorphic using⁡𝜃 ∘ 𝜑.  

 

5. COMPLEMENT OF t-FUZZY GRAPH 

 

Definition. 5.1. A 𝔱-FG of G = (Ʋ, Ę) is 𝒢
𝔱
= (Ą

𝔱
, Ɓ𝔱). A 𝔱-FG 𝒢𝑡 on 𝐺 = (Ʋ, Ę)  is the complement of a 𝔱-FG 𝒢𝑡 and is 

1. Ʋ = Ʋ 
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2. ʊ1 ∈ Ʋ,  ℎĄ𝑡(Ϙ1) = ℎĄ𝑡(Ϙ1) 

3. If ℎƁ𝑡(Ϙ1, Ϙ2) ≠ 0 

4. If ℎƁ𝑡(Ϙ1, Ϙ2) = 0,⁡thenℎƁ𝑡(Ϙ1, Ϙ2) = ⋀{ℎĄ𝑡(Ϙ1), ℎĄ𝑡(Ϙ2)}. 

 

Example. 5.2. Consider a 0.2-FG⁡𝒢𝑡⁡ as shown in the below graph 10 . Then the complement 𝒢𝑡 of 0.2-FG 𝒢𝑡 is 

shown in graph 11 

 
Graph 10. 0.2-FG𝒢0.2⁡ 

 
Graph 11. 0.2-FG𝒢0.2 

 

Definition. 5.3. A t-FG𝒢𝑡⁡ is said to be self-complementary 𝔱-FG if 𝒢𝑡 ≈ 𝒢𝑡. 

 

Preposition. 5.4. Let 𝒢
𝔱
= (Ą

𝔱
, Ɓ𝔱) be a self-complementary 𝔱-FG.  

∑ ℎƁ𝑡
Ϙ1≠Ϙ2

(Ϙ1, Ϙ2) = ∑ 𝑚𝑖𝑛{ℎĄ𝑡
Ϙ1≠Ϙ2

(Ϙ1), ℎĄ𝑡(Ϙ2)} 

Preposition. 5.5. Let 𝒢
𝔱
= (Ą

𝔱
, Ɓ𝔱), 𝔱 -FG. If 

∑ ℎƁ𝑡Ϙ1≠Ϙ2
(Ϙ1, Ϙ2) = ∑ 𝑚𝑖𝑛{ℎĄ𝑡Ϙ1≠Ϙ2 (Ϙ1), ℎĄ𝑡(Ϙ2)},∀⁡Ϙ1, Ϙ2 ∈ Ʋ. 

Then 𝒢𝑡 is a self-complementary t-FG 

 

Preposition. 5.6. For any two 𝔱-FG⁡𝒢𝑡⁡and 𝒢𝑡
′. If 𝒢𝑡⁡and 𝒢𝑡

′ have a strong homomorphism, then the strong isomorphism 

is 𝒢𝑡 and 𝒢𝑡
′⁡. 

 

Proof. Let 𝒢𝑡⁡and 𝒢𝑡
′ have a strong isomorphism, denoted by 𝜑. The Given 𝜑 & 𝜑−1 is ta bijective map, with 

𝜑−1(ϗ1) = Ϙ1, ∀ϗ1 ∈ Ʋ′. Thus  

ℎĄ𝑡(𝜑
−1(ϗ1)) = ℎĄ𝑡′

(Ϙ1), ∀ϗ1 ∈ Ʋ′ 

Applying definition 23 makes it clear that: 

ℎƁ𝑡(Ϙ1, ϗ1) = ⋀{ℎĄ𝑡(Ϙ1), ℎĄ𝑡(ϗ1)} 

ℎƁ𝑡(Ϙ1, ϗ1) ≤ ⋀ {ℎĄ𝑡′
(𝜑(Ϙ2)), ℎĄ𝑡′

(𝜑(ϗ2))} 

ℎƁ𝑡(Ϙ1, ϗ1) ≤ ⋀ {ℎĄ𝑡′
(Ϙ2), ℎĄ𝑡′

(ϗ2)} 

ℎƁ𝑡(Ϙ1, ϗ1) = ℎƁ𝑡(Ϙ2, ϗ2) 

Thus ℎƁ𝑡(Ϙ1, ϗ1) ≤ ℎƁ𝑡(Ϙ2, ϗ2) 

It follows from this that 𝒢𝑡 and 𝒢𝑡
′⁡are strongly isomorphic. 

 

6. DECISION SUPPORT IN HEALTH MANAGEMENT USING t-FUZZY GRAPHS  

Decision support in health management is becoming increasingly vital as healthcare systems move towards 

sustainable and efficient practices. Regenerative approaches, waste reduction, and optimized resource use are key 

objectives in reshaping health management. Let’s consider a case where seven vertices represent significant factors 

in improving decision-making processes in health management. Resource Allocation Efficiency (ℎ1) focuses on 

maximizing the utilization of healthcare resources while minimizing waste. Healthcare Waste Management (ℎ2) 

involves effective methods for the disposal, recycling, and reduction of medical waste. Innovative Health 

Technologies (ℎ3) encourages the development and application of eco-friendly, health-oriented technologies. 

Sustainable Health Practices (ℎ4) promote responsible consumption of healthcare services and medications, fostering 



29  

 
 

 

 J INFORM SYSTEMS ENG, 10(25s) 

responsible healthcare behaviors in individuals and communities. Renewable Healthcare Energy (ℎ5) represents the 

transition to renewable and sustainable energy sources in healthcare infrastructure. Eco-friendly Healthcare 

Production (ℎ6) emphasizes the use of environmentally responsible production methods for medical supplies and 

equipment.        

 

Graph 12.Fuzzy Graph  

 

Let Ʋ = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6} be the set of factors contributing to decision support in health management. The edges 

represent the level of interaction between these factors. For instance, using a t-fuzzy model, decision-makers can 

assess the degree of correlation between the components. For example, if the Sustainable Health Practices (ℎ4) 

strongly impact Eco-friendly Healthcare Production (ℎ6), this would be reflected in a high membership degree 

between (ℎ4) and (ℎ6), suggesting a strong positive influence on sustainable practices in healthcare production. On 

the other hand, low membership degrees would indicate weaker connections or a lack of significant impact between 

factors. 

In this model, decision-makers can examine fuzzy membership (connection). For instance, the edge 𝑒12 representing 

the connection between Resource Allocation Efficiency (ℎ1) and Healthcare Waste Management (ℎ2) might indicate 

a significant connection, with a membership value of 0.8, suggesting a moderately strong and uncertain correlation. 

By adjusting the parameter 't' in the model, decision-creators can modify the analysis permitting to their specific 

situation, expertise and risk preferences, offering a flexible and nuanced approach to decision support in health 

management. 

 

Edges FS 0.7-FS Edges FS  0.7-FS 

𝒆𝟏𝟐=(𝒉𝟏, 𝒉𝟐) (0.4) (0.4) 𝑒26=(ℎ2, ℎ6) (0.5) (0.5) 

𝒆𝟏𝟑=(𝒉𝟏, 𝒉𝟑) (0.6) (0.6) 𝑒34=(ℎ3ℎ) (0.3) (0.3) 

𝒆𝟏𝟒=(𝒉𝟏, 𝒉𝟒) (0.8) (0.7) 𝑒35=(ℎ3, ℎ5) (0.1) (0.1) 

𝒆𝟏𝟓=(𝒉𝟏, 𝒉𝟓) (0.2) (0.2) 𝑒36=(ℎ3, ℎ6) (0.6) (0.6) 

𝒆𝟏𝟔=(𝒉𝟏, 𝒉𝟔) (0.9) (0.7) 𝑒45=(ℎ4, ℎ5) (0.7) (0.7) 

𝒆𝟐𝟑=(𝒉𝟐, 𝒉𝟑) (0.1) (0.1) 𝑒46=(ℎ4, ℎ6) (0.9) (0.7) 

𝒆𝟐𝟒=(𝒉𝟐, 𝒉𝟒) (0.5) (0.5) 𝑒56=(ℎ5, ℎ6) (0.8) (0.7) 

𝒆𝟐𝟓=(𝒉𝟐, 𝒉𝟓) (0.4) (0.4)    

Table 2: Edges of FS and 0.7-NS 

The table of fuzzy membership degree of each factor is given below; 

Factors Degree of each factor 

𝒉𝟏 deg⁡(ℎ1) = (2.6) 

𝒉𝟐 deg⁡(ℎ2) = (1.9) 
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𝒉𝟑 deg⁡(ℎ3) = (1.7) 

𝒉𝟒 deg⁡(ℎ4) = (2.9) 

𝒉𝟓 deg⁡(ℎ5) = (2.1) 

𝒉𝟔 deg⁡(ℎ6) = (3.2) 

 

Comparatively, deg⁡(ℎ6) =3.2 is the greatest value. So, by our assumption ℎ6 factor has the high potential to Eco-

friendly Healthcare Production. 

6.1 COMPARATIVE ANALYSIS 

 
The choice between t-fuzzy and fuzzy graphs depends on the specific requirements of the decision-making problem. 
Both models utilize the  ' 𝔱 ' parameter to adjust uncertainty levels; however, when a more precise, comprehensive, 
and detailed representation of uncertainty is required, 𝔱 -fuzzy graphs are more effective. Their ability to 
independently assess connection makes them particularly useful in multifaceted decision-creation situations such as 
pattern recognition, medical identification, and advanced choice provision systems. Due to their exceptional 
flexibility and meticulous handling of uncertainty factors, t-fuzzy graphs are the preferred approach for achieving 
high precision and granularity in uncertainty modeling. 

 
7. CONCLUSION 

 

This study underscores the significance of 𝔱 -Fuzzy Graphs (t-FG) in enhancing decision-making processes within 

health management systems. By effectively modeling uncertainty and multi-dimensional dependencies, t-FG provide 

a structured and adaptable framework for analyzing complex interactions among medical, financial, and operational 

factors. The exploration of fundamental 𝔱 -FG operations, such as homomorphism and isomorphism, highlights their 

role in optimizing strategic planning. Additionally, real-world applications demonstrate their potential in critical 

areas like resource allocation, patient care strategies, and financial planning. Overall, 𝔱 -FG emerge as a powerful tool 

for policy development and intelligent decision-making, offering a robust approach to addressing the intricate 

challenges of healthcare management. 

 

Future work: Future research can investigate additional 𝔱 -FG operations, such as edge contraction, decomposition, 

and clustering techniques, to enhance decision-making efficiency. The creation of advanced algorithms for 𝔱 -FG-

based analysis and optimization can improve computational performance and practical implementation in real-time 

healthcare systems. 
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