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Introduction: This study proposes, from the perspective of optimizing the model feature space, 

a deep learning-based vulnerability detection technique for Ethereum smart contracts based on 

Raptor vision invasive Hunt optimization. 

Objectives: To examine experimental results of available toools and novel model in detecting 

the re-entrancy vulnerability. 

Methods: By combining the coordinated invasive hunting behaviour of Gallus domesticus with 

the intelligent vision-based in-depth driving behaviour of osprey, the RVIhO algorithm is 

achieved. They successfully adjust the model's hyperparameters with increased productivity for 

precise vulnerability detection based on these hybridising traits. 

Results: A large-scale dataset with different vulnerabilities having the findings demonstrate 

that it suggested strategy performs exceptionally well in terms of detection 93.25% accuracy rates 

attained for detection of re-entrancy vulnerabilities of provided smart contract data set. 

Conclusions: The results presented, and performance compared with the best available deep 

learning methods for vulnerability detection. 
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INTRODUCTION 

The blockchain has changed the game for digital asset trade and monetary transactions. This groundbreaking 

development has significantly altered the nature of online commerce. Smart contracts are the backbone of the 

blockchain because they allow for transactions to be made between the parties without requiring the contract to be 

mediated by a third party. SCs, or "smart contracts," are digital contracts that may be carried out mechanically. These 

contracts are kept on a distributed ledger called a blockchain.  Smart contracts are being utilized more often to enable 

distributed commerce and program execution. Despite their useful features, because of their intricacy and lack of 

uniformity, they are vulnerable to attacks, like automation and transparency. Many security flaws exist in smart 

contracts because of their immutability and autonomy, as well as the wide range of programming languages that may 

be used to generate them. security. There are flaws and logical mistakes in every programming language. Flaws in 

the logic or code of smart contracts may result in a huge loss of digital assets and damage the image of blockchain 

technology as a whole, thus guaranteeing their security is of the utmost significance. The need to verify the safety and 

security of SCs smart contracts is growing as a result. Smart contracts may be protected against a variety of threats 

by using the numerous static tools available. However, a completely automated option is not yet available[1]. 

Smart Contracts: 

This section presents an overview of the potential risks and hazards associated with smart contracts. The potential 

elimination of intermediaries such as banks or attorneys can be achieved by the automation of intricate financial 

transactions using blockchain based "smart contracts" (SCs). The breakthrough outlined above represents significant 

advancement in the area of blockchain technology and holds the potential to fundamentally transform the dynamics 
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of commercial transactions [1]. Prominent blockchain systems encompass Ethereum, Hyperledger Fabric, Corda, 

Hyperledger, and EOS [2]. Each of these platforms employs its own exclusive programming language for the 

development of SCs. Ethereum employs Solidity, a programming language that is specifically designed for contract-

oriented programming. Similar to JavaScript [3,4], Solidity was developed with the objective of ensuring user-

friendliness and accessibility. The underlying structure of Hyperledger Fabric consists of chain code, which may be 

implemented using programming languages such as Go, Java, or JavaScript [5-7]. The Corda blockchain technology 

was developed using the Kotlin programming language, which shares similarities with Java [8,9]. The programming 

languages employed in the development of SC, EOS, and Tron were C++ and Solidity, correspondingly. The primary 

objective of all blockchain systems is to facilitate the creation of secure, operational, and blockchain-compatible smart 

contracts (SCs). However, it is worth noting that various blockchain systems employ distinct programming languages 

for the production of smart contracts. Given the multitude of potential risks, such as the presence of defective code, 

fraudulent inputs and the few attacks on the blockchain network, it is imperative to prioritize the establishment of 

robust security measures for smart contracts (SCs). Blockchain systems are susceptible to financial losses and erosion 

of user confidence as a result of inherent security vulnerabilities. Therefore, it is imperative to prioritize the security 

of (SCs) smart contracts throughout the development of blockchain-based applications [10,11,12]. 

There are various types of attacks in the context of cybersecurity and blockchain technology. These attacks include 

DDOS attacks, routing attacks, Sybil attacks, phishing attacks, 51% majority attacks, reentrancy attacks, double 

spending attacks, smart contract overflow and underflow, short address attacks, transaction ordering dependence, 

exceptional handling, frozen funds attacks, infinite loop attacks, timestamp dependence, callstack depth, and 

unchecked send. Each of these attacks poses a unique threat to the security and the integrity of blockchain systems 

[13]. 

Ethereum Smart Contract  (SCs) Vulnerability - Reentrancy 

Reentrancy vulnerability is regarded as a call-to-action value that has the ability to call itself back over a series of 

calls. In addition to its other flaws, re-entrancy is a significant problem for Solidity smart contracts. A hostile actor 

may launch a re-entrancy attack if they are able to pause the process in progress and rejoin the contract with fresh 

instructions before the process has been fully executed. When several outcomes are intended to result from a single 

transaction, this flaw appears in the smart contract.  

Therefore, the attacker may be able to take advantage of unexpected contract behaviour brought on by this 

phenomenon. This hole might be used by bad actors to repeatedly run the same procedure, which could lead to a 

breach of the contract and the theft of revenue. Developers may take precautions, including using the "check effects 

interaction" pattern or reducing the gas allocation for external calls. These precautions are taken to reduce the 

possibility of re-entrancy attacks by making sure all system state changes are made before any external calls are made. 

Tests and audits of the contract code should be thorough to find and fix any re-entrancy issues it may include [7]. 

OBJECTIVES 

To Evaluate different vulnerabilities available with range of the respective tools available. To examine experimental 
results of BiLSTM, MEVD, Optimized CodeBERT and novel model in detecting the re-entrancy vulnerability.  
To perform Comparative Analysis of BiLSTM, MEVD, Optimized CodeBERT and Triplet loss BiLSTM Under 
reentrancy vulnerability Conditions. 
 

METHODS 

Input data of vulnerability detection  

The unknown vulnerabilities of smart contracts are detected in the research under the utilization of historical 

Ethereum transaction data, which contains classified opcode data sequences with or without vulnerabilities for 

performing the evaluation. The input is attained from a malicious smart contract dataset [26], which is represented 

as,  

1

,
r

i i

i

CV C V
=

=
   (1) 
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where, r denotes the total number of contracts with respective vulnerabilities, Further, the data organized as iC C

and, iV V , where C defines the set of contracts, and, V indicates the vulnerability that is affected in the contrast. 

Pre-processing using Natural Language Techniques   

The attained byte code includes various strings that contain symbols, characters, and words, together represent the 

text. In the pre-processing section, the raw sequence data are converted into a unique separator. To achieve, these 

unique separator processes, the pre-processing phase performs both tokenization and lemmatization processes 

effectively.  

The input textual data contains various sets of characters that are converted into digital representation by 

tokenization to preserve the sensitive data.  The stream of textual content is broken into terms, symbols, elements, 

and words called tokens, which are utilized in computer science and linguistics applications. These stacks of tokens 

are combined as input sources for performing text mining and parsing. In general, tokenizations mainly occurred in 

word-level documents to recognize the meaning of full keywords. 

The input textual content is allowed into the lemmatization process to obtain the root word by finding the lemma to 

express the proper intended meaning for better understanding [28]. The attained pre-processed outcome D , after 

performing tokenization and lemmatization is mentioned as,  

* *

i iD C V=      (2) 

Feature Extraction with Word Term Frequency Encoder Graph features  

The obtained normalized word content is then subjected to the feature extraction phase that extracts the features and 

converts them into vectors. These text vectorizations are achieved by performing word2vec features, TF-IDF features, 

and AE-based graph features respectively.  

Conceptually, word2vec features represent vector form notation for every word in the vocabulary, based on the 

semantic relationship of the word. Similar words garner similar vector values that are grouped in the same block for 

evaluation. The similarity value of the word is measured by a cosine similarity that ranges from -1 to 1. Moreover, 

word2vec features extract the vector value by vector dimensions and window size. All the word contents are converted 

into vectors and measure the distance among them. The outcome dimensions of word2vec features are
( )1 20

, 

which is expressed as,  

( )  1 2 3, , ,... rF D u u u u=
    (3) 

where 1 2, ... ru u u
denotes the vector representation of word content obtained from D .  

TF-IDF is a statistical method algorithm that estimates the significance of the word in the document, which is the 

most often used feature extraction method to calculate the word weight function in the current vector space. Mainly, 

the function of TF-IDF is categorized into two such as word frequency and inverse text frequency. Word frequency 

observes the occurrence of certain words that are present in the entire document, whereas inverse text frequency 

evaluates the importance of the word. Furthermore, the inverse text frequency performs the quotient logarithm for 

the entire document along with the document containing the specific word. The mathematical representation of both 

frequency word and inverse text frequency are combined to form TF-IDF, which is depicted as,  
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where, c defines the specific word, g indicates the total number of documents, and k expresses the total number of 

sample words in the document. The achieved outcome dimensions of TF-IDF are ( )1 50
.  

The graph embedding features are evaluated based on the distributed relation of diverse weighted matrices.  The 

major contribution of the AE graph feature is to estimate the mapping function and convert the low-dimensional 

representation into high-dimensional based on graph vertices. Basically, the graph features are extracted as intrinsic 

and penalty-based graphs.  In intrinsic-based graph that represents a similar data sample matrix along with its similar 

vector values. Similarly, in penalty-based graph that represents the relation among the specific characteristics of data.  

Based on these representations, the AE-based graph feature extracts the map function for diverse graph weights and 

analyzes the loss function for distinct feature representation effectively.  Additionally, the graph feature maintains 

the local and global structure of the sample [31]. The basic AE-based graph feature representation is expressed as,  

 ,H I J=
   (7) 

where, I refers to the sample data matrix and J represents the similarity matrix, both ,I J where obtained from D . 

The achieved outcome dimensions of the AE-based graph feature are ( )1 50 . The attained outcome of feature 

extraction methods is arranged in a stack form with the dimension of ( )1 120
, which is depicted as,  

 , ,M F TF IDF H= −
 (8) 

Raptor Vision-Invasive Hunt Optimization  

The RVIhO is utilized in the fourth layer of the model that effectively tunes the hyperparameter for achieving accurate 

vulnerability detection. The RVIhO algorithm accumulated from the behavior of vision-based drive character, 

intelligence character of Osprey [34], and invasive hunting and competitive search character of hen. From this 

perspective, the hierarchical hunting character and coordinate attempt character obtained from the hen effectively 

improved the detection accuracy of the model. Meanwhile, the intelligent and vision-based drive character obtained 

from Osprey enhanced the accurate vulnerability detection in the Ethereum network. In this context, the RVIhO-

LGAtt-G2SN model achieves effective performance with better quality detection results, which also reduces 

redundancy and increases the availability of the model. 

RESULTS 

The major goal of all the given tools is to do a source-level security analysis of Solidity programs. There are nine 

different tools available, but only four of them can detect vulnerabilities in bytecode. On closer inspection, many of 

these resources have been updated within the previous several months, as evidenced by the data supplied in the latest 

update column. All the software is publicly available on GitHub and is free to use. Python, Rus, Java, and Solidity are 

the four languages used to create platforms that aid in vulnerability detection. Python, among the other possible 

programming languages, was found to have the most widespread use. The evaluation indicators used in experiment 

are recall, precision, F1-score, and accuracy [1]. 

Arithmetic, Re-Entrancy, Inconsistent Access Control, Unchecked Calls, and Security-Contract with Amount 20,044, 

42,573, 39,098, 28,171, and 35,130 contracts, respectively, are among the vulnerabilities found in the statistics on the 

quantity of each type of contract. There are 165,000 smart contracts in the dataset, which is split 8:2 into training 

and test sets elaborate in Table 1. 

Average time as on Table 1 for detection of re-entrtancy vulnerability in smart contract by novel method is 0.09s 

compared with Mythril and Oyente are 4.53s and 4.41s respectively. Models based on DL are evaluated based on 

metrics such as Accuracy, Precision, F1 score, and Recall. BiLSTM achieved an accuracy of 81.01%, precision of 

78.93%, recall of 80.06%, and an F1 score of 79.71%. MEVD performed better with an accuracy of 92.13%, precision 

of 89.49%, recall of 90.15%, and an F1 score of 89.28%. Optimized CodeBERT showed promising results presented 

in Table 1 with an accuracy of 93%, precision of 85.45%, recall of 80.45%, and an F1 score of 87.29%. The model 

presented as "Ours" outperformed the others with an accuracy of 93.25%, precision of 96.20%, recall of 86.13%, and 

an F1 score of 90.89%. 
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The results presented and discussion compared with the best deep learning methods like BiLSTM, MEVD,  Optimized 

CodeBERT and techniques available and researched till date. To achieve descent accuracy, precision, Recall and f1 

score with the novel method based on triple loss and BiLSTM detection methods for vulnerabilities using deep 

learning depicted in Table 1.  

Models based on DL Accuracy Precision Recall F1 score 

BiLSTM 81.01% 78.93% 80.06% 79.71% 

MEVD 92.13% 89.49% 90.15% 89.28% 

Optimized CodeBERT 93% 85.45% 80.45% 87.29% 

RVIhO 93.25% 96.20% 86.13% 90.89% 

Table 1. Experimental results of BiLSTM, MEVD, Optimized CodeBERT and novel model in detecting the re-

entrancy vulnerability. 

 

The BiLSTM framework [13] This approach uses BiLSTM in conjunction with an attention strategy to identify several 

opcode vulnerabilities in smart contracts. First, we preprocessed the data to turn the opcode into a feature matrix 

that could be fed into the neural network. We then classified multiple-label smart contracts using the BiLSTM model, 

which is based on the attention mechanism. The technique suggested in this research for multiple vulnerability 

detection tasks in smart contracts is effective, as demonstrated by the testing findings, which demonstrate that the 

model can detect several vulnerabilities simultaneously and that all evaluation indicators surpassed roughly 80%. 

MEVD based model [14]: To find known, high-risk vulnerabilities in smart contracts, apply the multi-scale encoder 

vulnerability detection (MEVD) technique. First, we build a new surface feature encoder (SFE) that improves the 

semantic content of code features by leveraging the gating mechanism. The global structure and local detail features 

of the smart contract code are then recorded by a dual-branch encoder that we create by combining a base 

transformer encoder (BTE) with a detail CNN encoder (DCE). Lastly, we use the deep residual shrinkage network 

(DRSN) to identify model features that are associated with susceptibility. With an average detection accuracy of 90%, 

experimental findings on three different kinds of high-risk vulnerability datasets demonstrate how well the MEVD 

method works in comparison to state-of-the-art techniques.  

Optimized CodeBERT [1]- Through the use of deep learning techniques, optimised CodeBERT creates Lightning Cat, 

a tool for detecting the SCs vulnerabilities. Three models of deep learning are optimized by the solution. We present 

an efficient technique for preparing data that identifies the semantic characteristics of vulnerabilities in smart 

contracts. We obtain code snippets of functions that include vulnerabilities during the data preprocessing step in 

order to extract vulnerability features. With the primary objective of enhancing the model's semantic analysis skills, 

we additionally use the pre-trained CodeBERT model for data preprocessing. This paper's Lightning Cat vulnerability 

detection tool outperforms other tools in terms of detection performance, according to the findings of the 

experimental evaluation. The lightning cat optimised CodeBERT model , which is superior to the Optimized-LSTM 

models and Optimized-CNN models. 

DISCUSSION 

We propose a unique method for vulnerability identification from the perspective of feature representation space 

optimization. Unlike previous approaches, we do not combine multiple models to enhance the model's overall 

performance in feature learning. To maximize the model's ability to represent features, however, construct the metric 

learning triplet loss function on top of the conventional binary cross-entropy loss function. Contracts belonging to 

the same category are closer together while contracts belonging to different categories are farther apart because of 

feature space optimization, which also improves the model's detection accuracy and helps to somewhat mitigate the 

high false-positive rate of the previous method. The suggested plan improves vulnerability detection's 

interpretability. Using the smart contract's source code as the input data, we can identify the root cause of the 

vulnerability and filter out its salient characteristics by applying word vectorization and attention mechanisms. To 

find vulnerabilities in contract source code, we built a sizable dataset. From the Etherscan website, we gathered 

165,000 validated contracts, which we then classified using Slither and Mythril. The detection performance of the 
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technique is outstanding. We contrasted this model's performance with that of other deep learning-based techniques 

and conventional approaches based on symbolic analysis in order to accurately assess its performance. 
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