
Journal of Information Systems Engineering and Management
2025, 10(25s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

From Theory to Practice: Integrating Problem-Solving Exercises
to Strengthen Computational Thinking

Dr Khushbu R Khandait
Assistant Professor, Department of Information Technology, SPPU, Pune, Maharashtra prabhasw18@gmail.com

ARTICLE INFO ABSTRACT

Received: 28 Dec 2024

Revised: 16 Feb 2025

Accepted: 28 Feb 2025

This research investigates the impact of structured problem-solving exercises and logic-building techniques
on computer science students' academic performance and their ability to apply these skills to real-world
challenges. By integrating problem-solving activities into the curriculum, students can develop critical
thinking, algorithmic thinking, and logical reasoning abilities essential for success in the rapidly evolving
field of computer science. This study uses a quasi-experimental design with pre- and post-assessment tests,
surveys, and interviews to measure students' performance and perceptions. The results show that structured
problem-solving exercises significantly improve students' problem-solving skills, confidence, and ability to
approach complex computational tasks. The findings emphasize the need for curricula that prioritize the
development of these foundational skills for future success in software development, artificial intelligence,
and other tech-related fields.

Keywords: Design Thinking, Logic, Programming, games, prototype

INTRODUCTION

In computer science education, the ability to solve complex problems and think logically is central to both academic
success and career advancement. As the field of computer science evolves, students must develop the capacity to address
increasingly sophisticated challenges, from algorithm optimization to software design. Problem-solving and logic-
building exercises are essential tools in cultivating these abilities. However, despite their importance, there is a growing
concern that traditional teaching methods often fail to adequately incorporate these exercises into the curriculum,
potentially leaving students ill-equipped to handle real-world computational tasks. Problem-solving and logic-building
are fundamental in computer science education, enabling students to think analytically, develop structured solutions,
and implement algorithms effectively.
This study assesses the effectiveness of structured problem-solving techniques in improving students’ analytical
reasoning, algorithmic thinking, and industry readiness by integrating interactive exercises such as games, puzzles, and
real-world applications. Additionally, a structured approach to flowcharts, pseudocode, and real-time application
development is essential for fostering systematic problem-solving techniques. By implementing these objectives in a
structured curriculum, students can develop strong logic-building capabilities, enabling them to approach complex
computational problems with confidence. Table 1 highlights key problem areas in logic-building that impact students’
learning outcomes.

Table 1: Key areas with difficulties for Logic Building
Problem Area Common Challenges Faced by Students Impact on Learning

Algorithm Design Difficulty in breaking down problems into steps Slower problem-solving and
debugging

Logical Thinking Struggles with understanding control flow and
conditions

Inefficient or incorrect code

Debugging & Error
Handling

Unable to systematically trace errors in code Frustration, lack of confidence

Complex Problem
Decomposition

Challenges in dividing large problems into
smaller sub-problems

Difficulty in solving real-world
tasks

The Venn diagram illustrates the interdependence of problem-solving, logic-building, and programming skills, essential
components of computational thinking. Problem-solving focuses on analytical thinking, debugging, and real-world
application, enabling students to break down problems and troubleshoot errors. Logic-building emphasizes flowcharts,
algorithm design, and pattern recognition, helping students develop structured reasoning. Programming skills
encompass coding proficiency, software development, and optimization, translating logical solutions into executable
programs.

43

 J INFORM SYSTEMS ENG, 10(25s)

Figure 1: The Relationship between Problem-Solving, Logic-Building, and Programming Skills

The overlapping sections highlight key relationships: Problem-solving and logic-building foster algorithm development,
logic-building and programming improve efficient code writing, and problem-solving with programming enhances
debugging and troubleshooting. At the core intersection, computational thinking emerges, integrating structured logic,
problem-solving strategies, and programming skills to create real-world solutions. The diagram uses arrows and
annotations for clarity, with bold text enhancing readability in an academic setting.

MOTIVATION
The importance of problem-solving and logic-building skills in computer science education has been extensively
discussed in academic research. Studies indicate that first-year engineering students often struggle with programming
due to limited exposure to computational thinking, insufficient problem-solving exercises, and ineffective teaching
methodologies (P. Chenna Reddy, 2015; Varsha T. Lokare, 2018). Traditional teaching approaches often focus on syntax
and theoretical concepts without adequately developing students' logical reasoning and problem-solving abilities,
resulting in a significant skills gap. Consequently, many students, despite completing programming courses, find it
difficult to apply logical thinking to real-world problems and lack the confidence to present solutions effectively in
technical interviews.
A literature review reveals that students with weak problem-solving foundations not only perform poorly in programming
courses but also face challenges in securing job placements and performing well in technical interviews. Many
engineering graduates fall short of industry expectations due to a lack of critical thinking, debugging skills, and systematic
approaches to solving algorithmic problems. Without proper training in logic-building, students tend to memorize code
patterns rather than understanding the underlying reasoning, limiting their adaptability in real-world scenarios. This
study was motivated by a comprehensive survey and feedback from faculty, who reported significant difficulties in
grasping problem-solving concepts and applying logical reasoning in programming tasks. Faculty also highlighted
concerns about the effectiveness of current teaching methods, noting that students often struggle with debugging,
algorithm development, and structured thinking. These challenges negatively impact academic performance and
confidence in technical interviews, underscoring the need for a more structured, engaging, and practical approach to
teaching problem-solving from the very first year of engineering education.

LITERATURE REVIEW

Importance of Problem-Solving in Computer Science
Problem-solving and logical reasoning are fundamental to computer science education, yet many first-year engineering
students struggle with programming due to limited computational thinking exposure and ineffective teaching methods
(P. Chenna Reddy, 2015; Varsha T. Lokare, 2018). Traditional programming instruction often prioritizes syntax and
theory over structured problem-solving, resulting in a significant skills gap. Many students, despite completing
programming courses, lack the ability to apply logical reasoning to real-world problems, impacting their confidence in
technical interviews and job placements.

Challenges in Teaching Problem-Solving
A literature review highlights that students with weak problem-solving skills tend to struggle in programming courses
and fail to meet industry expectations. Many graduates lack critical thinking, debugging skills, and structured approaches
to algorithmic challenges. Faculty members report that students often rely on memorizing code rather than
understanding the logic behind it, making them less adaptable to real-world applications. Additionally, debugging,
algorithm development, and structured thinking remain key problem areas for students, underscoring the need for an
improved teaching approach.

Effective Teaching Strategies: Flowcharts, Pseudocode, and Games
Recent studies highlight the effectiveness of structured techniques in improving problem-solving skills: Algorithmic
Thinking: Adorni et al. (2024) emphasize the importance of engaging students in exercises that promote algorithmic
thinking and logical reasoning.

44

 J INFORM SYSTEMS ENG, 10(25s)

Reverse Problem-Solving: Shabrina et al. (2022) show that backward problem-solving strategies—starting with the goal

and breaking it into smaller steps—help students approach complex problems efficiently.

Gamified Learning: Zhu et al. (2020) demonstrate that interactive, game-based learning increases student motivation
and enhances problem-solving capabilities. These findings suggest that incorporating structured exercises such as
flowcharts, pseudocode, and gamified problem-solving into the curriculum can significantly improve student outcomes.

Problem-Solving Models: A Comparative Analysis
Researchers have proposed various structured problem-solving models, all of which emphasize a systematic approach to
problem-solving: Newell & Simon (1972): Six-phase model (problem identification, understanding, generating solutions,
selecting a solution, implementation, evaluation). Basadur et al. (1994): Four-stage model (problem generation, problem
formulation, problem solving, solution implementation). Huitt (1992): Four stages (input, processing, output, review).
PISA 2012 Framework (OECD, 2013): Categorizes problem-solving into four stages: exploring, representing, planning,
and executing.
While these models differ in structure, they share common elements—problem identification, structured reasoning, and
iterative evaluation—all essential in developing students' problem-solving abilities.

The Role of Values in Problem-Solving
While problem-solving is typically viewed as a logical process, researchers argue that values also play a role: Ethical
Considerations: Huitt (1992) and Basadur et al. (1994) suggest that values shape how problems are formulated and
evaluated. Decision-Making Models: Sheehan & Schmidt (2015) outline how moral reasoning influences problem-
solving, while Keeney (1994) proposes Value-Focused Thinking (VFT), which places values at the center of decision-
making.
Psychological Perspectives: Verplanken & Holland (2002) show that values influence problem-solving when they are
central to an individual’s identity.
While values may influence decision-making, traditional problem-solving models often overlook their integration. This
highlights a gap in research on how values and logical reasoning can coexist in computational problem-solving.

PROBLEM STATEMENT

Despite the recognition of problem-solving and logical reasoning as fundamental to computer science education, many
curricula fail to emphasize structured, practice-oriented exercises. This gap limits students' ability to develop essential
problem-solving skills, impacting their performance in advanced courses and preparedness for careers in the tech
industry. This research aims to integrate effective problem-solving and logic-building exercises into computer science
education to enhance students' logical reasoning, problem-solving abilities, and overall academic success.

OBJECTIVES

This study aims to:
1. Evaluate the impact of structured problem-solving exercises on students' logical reasoning, algorithmic thinking,
and problem-solving abilities.
2. Assess students' perceptions of the effectiveness of logic-building exercises in improving their problem-solving
skills.
3. Compare the academic performance of students exposed to problem-solving exercises with those who follow the
traditional curriculum.
4. Identify the challenges students face when engaging with problem-solving and logic-building tasks and explore
strategies for overcoming these challenges.

METHODOLOGY
Research Design
This study employed a quasi-experimental design with pre- and post-assessment tests to measure the impact of
structured problem-solving exercises on students' performance. Additionally, a cross-sectional survey was conducted to
collect quantitative and qualitative data at a single point in time. The research aimed to assess improvements in problem-
solving skills, logical reasoning, and programming confidence, while also exploring students' perceptions of how these
exercises enhanced their ability to apply computational thinking to real-world challenges. Surveys and interviews
provided further insights into their learning experiences.

Population and Sampling
The sample consisted of 350 undergraduate students from Computer Engineering, Information Technology, AIDS, and
AIML programs at my university. Participants were selected through stratified random sampling to ensure diversity in
programming experience and academic backgrounds. Students were divided into two groups. Experimental Group:
Exposed to problem-solving exercises and Control Group: Followed the traditional curriculum. The target population for
the survey included undergraduate computer science students from a variety of academic streams. The sample was
selected using stratified random sampling to ensure diversity in terms of academic background, programming

45

 J INFORM SYSTEMS ENG, 10(25s)

experience, and exposure to problem-solving exercises. The sample size was 350 participants to ensure sufficient
statistical power for analysing trends and drawing conclusions.

Data Collection
Pre- and Post-Assessments: Students completed problem-solving tests at the beginning and end of the course to
measure improvements in their algorithmic thinking and problem-solving abilities.
Surveys: A survey was administered to assess students' perceptions, confidence levels, and the effectiveness of problem-
solving exercises.
Interviews: A subset of students was interviewed to gain deeper insights into how these exercises influenced their
learning experience and problem-solving approach.

Data Analysis
1. Quantitative Analysis:
Pre- and post-assessment scores were analysed using paired t-tests to compare the performance of the experimental and
control groups.
Survey responses were examined using descriptive and inferential statistics.
2. Qualitative Analysis:
Interview transcripts were analysed using thematic analysis to identify recurring themes related to students' experiences
and perceptions.

SURVEY DESIGN AND ADMINISTRATION
The survey included Likert-scale questions (ranging from strongly agree to strongly disagree) to assess students'
experiences and open-ended questions for qualitative insights.
Data Collection Process - Distribution: Administered electronically to 350 undergraduate students via university email
for broad participation.
Informed Consent: Students received a consent form detailing the study's purpose, voluntary participation, and
confidentiality assurances.
Completion Time: Each student had 30 minutes to provide thoughtful responses. Collection Period: The survey remained
open for four weeks to maximize participation, with additional efforts to address initial hesitancy and encourage
engagement.

Demographic Information:
The participants were first-year students from Computer Engineering, Information Technology, AIDS, and AIML
programs. Among these students, only 20% had prior programming knowledge due to their specialization in Information
Technology during their XII standard. They were enrolled in subjects such as Problem Solving and Logic Building, Object-
Oriented Programming, Artificial Intelligence, and other computer-related courses. However, nearly all students lacked
experience with logic-building exercises. To better understand their background and how their prior experiences might
have influenced their engagement with problem-solving exercises, the following demographic data were collected:

Table 2: Demographic Information of Participants for Test

Demographic Factor Description

Year of Study First Year

Prior Programming Experience None, Beginner

Course Enrolment
Algorithms, Data Structures, Object-Oriented Programming, Artificial Intelligence,
Other

Experience with Logic-Building
Exercises

Never, Rarely

Knowledge and Confidence:
Before being exposed to structured problem-solving and logic-building exercises, many students struggled to understand
the core aspects of programming problems. They found it confusing and inefficient to design solutions. Post-course
assessments revealed significant improvements in students' problem-solving abilities. They learned to analyse problems
systematically, break them into logical steps, and design algorithms before coding, moving beyond trial-and-error
approaches. This shift in approach not only enhanced their confidence in tackling complex programming tasks but also
strengthened their ability to debug, optimize, and refine their solutions systematically. The course played a pivotal role
in transforming students from syntax-focused learners into logical problem-solvers, preparing them for real-world
programming challenges.

46

 J INFORM SYSTEMS ENG, 10(25s)

Perceived Effectiveness:
Before adopting the Design Thinking approach, students found it challenging to grasp the problem and its relevance.
However, they gradually learned to identify user needs, refine problem definitions, and generate a diverse range of
solutions. By prototyping and testing the most effective ideas, they developed the ability to analyse problems from
multiple perspectives and explore real-world applications, such as hospital systems and assistive technologies like a blind
person’s stick. This structured methodology helped them develop an open and adaptive mind-set, allowing them to think
beyond conventional solutions. As a result, students became better equipped to think innovatively, adjust their thought
processes within a defined scope, and systematically solve real-world problems.

Figure 2: The Role of Logical Reasoning in Computer Science and Industry Applications.

Learning Experience:
When students initially encountered games and puzzles, they were afraid of the complexity and struggled with the
thought process required for execution. Many found it difficult to analyse problems systematically and felt overwhelmed
by coding challenges. However, after engaging in various practical exercises conducted in the classroom, including real
role-playing activities, they began to develop a clearer understanding of structured thinking. By approaching puzzles and
games with reward-based learning strategies, students learned how to strategically process information, plan solutions,
and execute tasks efficiently. This shift in perspective boosted their confidence and helped them embrace problem-
solving as an engaging and rewarding process.

Findings and Interpretation of Results
The findings are derived from quantitative survey responses and qualitative feedback, highlighting key difficulties
encountered by students and the strategies adopted to overcome them. The following table summarizes the major
challenges identified during the course and the corresponding approaches taken to enhance students' logical reasoning,
problem-solving skills, and overall confidence in programming:

Table 3: Challenges Identified and Approach Taken in problem solving approaches

Issues Found Approach Taken

Fear of Course Introduced scenario-based exercises to build confidence.

Syntax Memorization Without
Understanding Logic

Encouraged students to solve problems without predefined syntax, focusing on logic
first.

Struggle in Understanding the Problem
Statement

Implemented design thinking methodology to help students break down problems.

Lack of Real-World Application
Awareness

Incorporated practical use cases, such as hospital systems and assistive technologies
(e.g., blind person’s stick).

Difficulty in Structuring Thought Process
for Problem-Solving

Used role-playing exercises and puzzles to develop step-by-step logical reasoning.

Hesitation in Participating in Coding
Challenges

Provided reward-based learning, motivating students through competitive problem-
solving.

Inability to Debug or Analyse Mistakes
Effectively

Conducted guided debugging sessions and collaborative learning activities.

Over-Reliance on Theoretical Learning
Shifted focus to hands-on coding challenges, peer discussions, and interactive problem-
solving.

Lack of Confidence in Interviews and
Real-World Problem-Solving

Integrated mock problem-solving interviews to prepare students for real-world
scenarios.

47

 J INFORM SYSTEMS ENG, 10(25s)

Issues Found Approach Taken

Shifting from a trial-and-error approach
to a structured problem-solving mind-set
is Difficult.

A student following the structured design thinking approach presented a well-
organized, User-centered solution in class, whereas a student following the traditional
idea relied on conventional problem-solving methods without iterative refinement.

Difficulty in adapting to different learning
styles

Adapted role playing, playing adversarial games in pair of two for Chess like Problems
and in Groups like Wompus World Problems.

The transition from basic theoretical
exercises to gamified learning was
overwhelming for Students.

Engaged with peer discussions, collaborative activities, and hands-on applications, they
gradually became more comfortable in breaking down problems, thinking critically, and
approaching challenges with confidence.

The survey results indicated a significant improvement in students' problem-solving confidence, with mean scores
increasing from 2.3 to 4.1 and a strong positive correlation (r = 0.72) between structured exercises and academic
performance. Paired t-tests confirmed a statistically significant enhancement (p < 0.05) in logical reasoning skills.
Thematic analysis of open-ended responses highlighted the effectiveness of scenario-based exercises and design thinking
methodologies in enhancing students' problem-solving abilities. Students reported that reward-based learning,
debugging sessions, and collaborative problem-solving significantly boosted their confidence and adaptability to real-
world applications. As a result, they developed independent thinking skills and the ability to translate theoretical
knowledge into practical solutions, preparing them for technical interviews and industry challenges.

LIMITATIONS OF THE STUDY
Despite the structured implementation of problem-solving approaches, certain limitations exist:

• Self-Reported Data: Since the study is based on survey responses from 350 students, it may be influenced by
self-assessment biases, where students might have overestimated or underestimated their improvements in problem-
solving skills.

• Generalizability: The findings are specific to the students who participated in the study, and while the
structured exercises proved effective, the results may not be fully generalizable to all computer science students across
different institutions or educational settings.

• Survey Design Constraints: Although Likert-scale questions and open-ended responses provided insights
into student challenges and progress, problem-solving skills are complex and may not be fully captured through survey-
based methods alone. Future research could incorporate practical coding assessments to further validate these findings.

Table 4: Summary of Methodology
Methodological
Aspect

Description Purpose

Research Design
Quasi-experimental with surveys and
assessments

To evaluate problem-solving effectiveness

Participants
Undergraduate students from multiple CS
streams

To ensure diversity in responses

Sampling Technique Stratified random sampling To avoid selection bias

Data Collection Method Surveys, interviews, and pre/post-assessments
To gather both quantitative and qualitative
insights

Survey Structure
Multiple-choice, Likert scale, open-ended
questions

To capture different perspectives

Data Analysis Statistical and thematic analysis To identify trends and patterns

Ethical Considerations Informed consent, participant anonymity To ensure ethical research practices

VISUAL REPRESENTATION OF STRATEGIC AND COGNITIVE LEARNING

The integration of technology in education fosters strategic thinking and problem-solving skills, which are essential for
future professionals in the IT and Computer Science domains. To analyse the impact of adversarial and self-improvement
games on cognitive development, an observational study was conducted among Semester 1 students from IT and
Computer Science inter-class competitions. Figure 1 illustrates students engaged in chess, a classic adversarial game that
requires critical thinking, strategic planning, and decision-making under pressure. Each match was allotted 10 minutes,
where participants competed against one another to assess their analytical abilities in a competitive environment. In
contrast, Figure 2 showcases students solving the Rubik’s Cube, a self-improvement game that enhances spatial
intelligence, pattern recognition, and algorithmic problem-solving. Participants were given 5 minutes to completely solve
the cube, regardless of its initial state scrambled or pre-solved. This experiment highlights the diverse cognitive

48

 J INFORM SYSTEMS ENG, 10(25s)

approaches in competitive and self-directed learning environments, emphasizing the role of structured challenges in
technology-driven research and management within education.

RESULTS AND DISCUSSION

 The results indicated that students exposed to structured problem-solving exercises showed significant improvement
in their problem-solving abilities, logical reasoning, and overall academic performance. The experimental group reported
higher levels of confidence in tackling complex programming problems, as well as greater satisfaction with their learning
experience.
 This section also discussed challenges faced by students, such as difficulties in understanding complex exercises, and
proposed strategies for overcoming these challenges, including more detailed explanations of the exercises, additional
practice opportunities, and peer collaboration.

Figure 5: Comparison of Problem-Solving Abilities before and After Structured Exercises.
From the approach applied, it was observed that 78% of students showed significant improvement in problem-solving
skills after implementing structured exercises, and 22% of students had limited improvement, similar to the traditional
theory-based approach. The chart visually emphasized the effectiveness of hands-on, scenario-based learning over
conventional methods.

CONCLUSION
This study highlighted the crucial role of integrating problem-solving and logic-building exercises into the computer
science curriculum, with a strong emphasis on design thinking to enable students to develop practical, out-of-the-box
solutions. The findings indicated that these structured exercises significantly improved students' ability to analyse
problems, apply algorithmic thinking, and confidently tackle real-world programming challenges. Given the increasing
demand for strong problem-solving skills in the tech industry, it became clear that computer science education needed
to shift from traditional, theory-based learning to interactive, scenario-driven approaches.

Fig 3. Students playing Chess with time

Limit
Fig 4. Scrambled Cube Solving with Timer

49

 J INFORM SYSTEMS ENG, 10(25s)

Future research should explore the long-term impact of these exercises on students' professional growth and investigate
how different instructional methodologies can further enhance logical reasoning, adaptability, and problem-solving
proficiency in real-world applications.

FUTURE APPLICATION

The logic-building approach introduced in this course equipped students with the ability to think independently and
systematically tackle unseen, real-world problems. Rather than relying on predefined solutions, students developed the
capacity to analyse challenges, break them into logical steps, and formulate structured solutions applicable across various
domains. This methodology enabled them to map theoretical problem-solving techniques to practical applications,
enhancing their ability to develop effective solutions in fields such as software development, automation, artificial
intelligence, and system design. By fostering adaptability and critical thinking, this approach ensured that students were
well-prepared to address complex industry challenges with confidence and innovation.

REFERENCES

[1] Adorni, G., et al. (2024). "A Framework for Analysing Computational Thinking Exercises." Journal of Computer
Science Education.

[2] Shabrina, A., et al. (2022). "The Effect of Backward Problem-Solving Strategies in Computer Science Education."
International Journal of Educational Technology.

[3] Zhu, X., et al. (2020). "Enhancing Problem-Solving Skills through Game-Based Learning in Computer Science
Courses." Computer Science Education Journal.

[4] P. C. Reddy, “Analysis of Teaching Computer Programming in Indian Context,” Journal of Engineering Education
Transformations, vol. 28, no. 4, pp. XX-XX, Apr. 2015.

[5] V. T. Lokare, P. M. Jadhav, and S. S. Patil, “An Integrated Approach for Teaching Object-Oriented Programming
(C++) Course,” Journal of Engineering Education Transformations, vol. 31, no. 3, pp. XX-XX, Jan. 2018.

[6] J. Funke, “Problem solving: What are the important questions?” Cognitive Processing, vol. 15, no. 1, pp. 1–3, 2014.
[7] D. H. Jonassen, “Instructional design models for well-structured and ill-structured problem-solving learning

outcomes,” Educational Technology Research and Development, vol. 45, no. 1, pp. 65–94, 1997.
[8] R. E. Mayer and M. C. Wittrock, “Problem-solving,” in Handbook of Educational Psychology, 2nd ed., P. A.

Alexander and P. H. Winne, Eds. New York, NY, USA: Routledge, 2006, pp. 287–303.
[9] L. Collins, R. Sibthorp, and J. Gookin, “Developing problem-solving skills through experiential education: A study

of National Outdoor Leadership School courses,” Journal of Experiential Education, vol. 39, no. 3, pp. 221–238,
2016.

[10] T. Litzinger, P. Van Meter, C. M. Firetto, L. J. Passmore, C. B. Masters, and E. R. Turns, “A cognitive study of
problem-solving in engineering education,” Journal of Engineering Education, vol. 99, no. 4, pp. 337–353, 2010.

[11] M. O’Loughlin and E. S. McFadzean, “Creative problem-solving approaches for managers and teams,” Management
Decision, vol. 37, no. 7, pp. 558–567, 1999.

[12] W. Huitt, “Problem-solving and decision-making: Consideration of individual differences using the Myers-Briggs
Type Indicator,” Journal of Psychological Type, vol. 24, no. 1, pp. 33–44, 1992.

[13] M. Basadur, H. Ellspermann, and F. Evans, “A new methodology for formulating ill-structured problems,” Omega,
vol. 22, no. 6, pp. 627–645, 1994.

[14] J. Morton, The Power of Problem-Solving: A Guide for Managers and Executives. London, UK: McGraw-Hill, 1997.
A. Newell and H. A. Simon, Human Problem-Solving. Englewood Cliffs, NJ, USA: Prentice-Hall, 1972.

[15] Y. Chua, O. Tan, and W. Liu, “Problem-based learning: Exploring learning experiences and outcomes,” Educational
Psychology Review, vol. 28, no. 4, pp. 617–645, 2016.

[16] OECD, PISA 2012 Results: Creative Problem Solving – Students’ Skills in Tackling Real-Life Problems. Paris,
France: OECD Publishing, 2013.

[17] R. Keeney, “Value-focused thinking: A path to creative decision-making,” Operations Research, vol. 42, no. 3, pp.
389–405, 1994.

[18] S. Sheehan and P. Schmidt, “Moral motivation and ethical decision-making: The role of values in professional
settings,” Journal of Business Ethics, vol. 132, no. 3, pp. 571–589, 2015.

[19] J. Shin, D. H. Jonassen, and S. McGee, “Problem-solving and creativity: The influence of means-ends analysis,”
Educational Technology Research and Development, vol. 51, no. 1, pp. 5–20, 2003.

[20] B. Verplanken and R. W. Holland, “Motivated decision-making: Effects of values on choices,” Journal of Personality
and Social Psychology, vol. 82, no. 3, pp. 434–447, 2002.
A. Argandoña, “The role of values in decision-making,” Journal of Business Ethics, vol. 50, no. 3, pp. 251–265, 2003.

[21] D. T. Hall and G. A. Davis, “The evolution of values-based leadership,” Leadership Quarterly, vol. 18, no. 4, pp. 395–
408, 2007.

[22] B. L. Kirkman, “The role of personal values in leadership: A review and future research agenda,” Leadership &
Organization Development Journal, vol. 38, no. 2, pp. 248–264, 2017

[23] J. Sheehan and P. Schmidt, “Ethical decision-making in accounting education: A values-based approach,”
Accounting Education, vol. 24, no. 5, pp. 417–433, 2015.

