
Journal of Information Systems Engineering and Management
2025, 10(24s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Extracting Error Resolution Patterns for Novice

Programming Students using Apriori Algorithm

Niel Francis B. Casillano1, Rolliedel B. Pajanustan1
1Eastern Samar State University

ARTICLE INFO ABSTRACT

Received: 25 Dec 2024

Revised: 13 Feb 2025

Accepted: 27 Feb 2025

Introduction: Novice programmers often struggle with error resolution, affecting their

learning and performance. This study analyzes error resolution patterns among first-year

programming students using the Apriori algorithm.

Objectives: The study aims to identify common programming errors, analyze resolution

difficulty and time, and uncover patterns using association rules. It also seeks to provide data-

driven recommendations to enhance programming education.

Methods: A dataset of 150 first-year students was analyzed, focusing on error frequency,

severity, and resolution time. The Apriori algorithm was applied to identify associations between

error type, resolution attempts, and time required.

Results: Syntax errors (319 occurrences) were the most frequent and resolved quickly, while

logical (193) and runtime errors (164) were more challenging. Association rules showed that

highly difficult errors took over 30 minutes to resolve (80% confidence), whereas low-severity

syntax errors were fixed within 30 minutes (75% confidence).

Conclusions: The study revealed the relationship between error type, resolution attempts, and

correction time. Findings suggest tiered instructional strategies, such as automated feedback for

syntax errors and structured debugging workshops, to improve student proficiency and reduce

dropout rates.

Keywords: programming, severity, difficulty, apriori algorithm, association rule

INTRODUCTION

Programming is a core subject in the Information Technology (IT) curriculum in the Philippines [1], serving as a vital

skill for various disciplines, including software engineering, data analytics, and artificial intelligence. However,

introductory programming courses are often associated with high failure and dropout rates. Recent studies indicate

that global passing rates average around 67%, with failure rates exceeding 50% in some institutions [2]. These

statistics reveal significant barriers to student success, which can ultimately affect workforce readiness in technology-

driven industries. The complexity of learning programming arises from a combination of cognitive, emotional, and

technical challenges [3]. In terms of Cognitive load, many students struggle with problem-solving skills and

fundamental programming concepts. Research suggests that novice programmers often face difficulties in abstract

thinking, logical reasoning, and debugging, all of which are essential for programming proficiency [4][5]. Students

frequently experience fear of failure and frustration, particularly in their first year of programming [6]. The need to

understand syntax, debugging strategies, and conceptual principles can lead to cognitive overload, further hindering

their learning progress.

Among these challenges, debugging is recognized as one of the most difficult aspects of programming [7]. Effective

debugging requires not only programming knowledge but also advanced cognitive skills, such as critical thinking [8].

Studies show that while many students acquire basic programming skills, they often lack structured debugging

strategies, which are crucial for identifying and resolving errors [9]. Without direct guidance from instructors,

568

J INFORM SYSTEMS ENG, 10(24s)

students tend to rely on a trial-and-error approach, which is inefficient and contributes to the high attrition rates in

programming courses [10].

Despite being perceived as obstacles, errors are an essential part of the learning process [11]. Research suggests that

errors can serve as opportunities for deeper learning, allowing students to refine their understanding of programming

concepts [12]. However, for errors to be constructive, students need proper guidance in interpreting and resolving

them. Syntax errors, the most common type among beginners, are generally easier to correct when appropriate

feedback tools are available. In contrast, logical and runtime errors are less frequent but significantly more

challenging due to their conceptual complexity and impact on program execution [13].

While previous research has extensively documented the struggles faced by novice programmers, there has been

limited focus on systematically analyzing error patterns and resolution strategies. Existing studies have primarily

explored general difficulties in learning to code, but few have examined how specific error types vary in frequency,

severity, and difficulty. This gap in the literature underscores the need for research that not only identifies common

programming errors but also analyzes how students resolve them. Understanding these patterns can help educators

develop more effective teaching strategies.

To address this gap, this study applied the association rule mining technique specifically the Apriori algorithm to

analyze programming error data collected from first-year programming students. The research aims to identify

patterns in error frequency, difficulty, and severity to provide actionable insights for information technology and

computer science educators. By examining how students resolve different types of errors, this study seeks to bridge

the gap between error diagnosis and instructional design, ultimately improving programming education outcomes.

Specifically, this study aims to: (1) determine the most frequent types of programming errors made by first-year

students, (2) assess the difficulty level of each error type based on student responses and resolutions, (3) evaluate the

severity of common errors in terms of their impact on student progress and coding functionality, (4) use the Apriori

algorithm to identify patterns in how students resolve errors, highlighting approaches that lead to effective error

correction, and (5) propose evidence-based instructional strategies and debugging techniques tailored to the common

error patterns identified.

METHODS

Research Design

This study employed the Educational Data Mining (EDM) framework, a specialized branch of data mining used to

analyze educational data and derive actionable insights [14]. By integrating techniques from machine learning,

statistics, and artificial intelligence, EDM helps enhance learning systems, understand student behaviors, and

improve instructional strategies [15]. Figure 1 outlines the structured EDM process, which ensured reliable and

meaningful research outcomes. The EDM process begin with data collection, focusing on common programming

errors encountered by novice programmers. Data sources included coding logs, assignment feedback, and debugging

records, providing a comprehensive view of error types, frequencies, and resolution patterns. Next, data preparation

involved cleaning and organizing raw data by addressing inconsistencies, removing duplicates, and handling missing

values to ensure dataset reliability.

In the preprocessing stage, data was formatted for compatibility with the Apriori algorithm. Errors were categorized

into predefined types: syntax, logical, and runtime, while key variables such as "Time on Task," "Error Frequency,"

and "Attempts to Resolve" were standardized. This step also involved creating transactional datasets, which were

essential for identifying relationships between variables. The data mining phase applied the Apriori algorithm, a

widely used association rule mining technique in educational contexts [16]. By analyzing frequent itemsets, the

algorithm identified meaningful patterns based on support, confidence, and lift thresholds. Finally, the evaluation

phase assessed the instructional value of the generated association rules, prioritizing patterns that highlighted

relationships between error severity and resolution attempts. Metrics such as lift and confidence ensured the

reliability and relevance of these findings, providing valuable insights for improving programming instruction.

569

J INFORM SYSTEMS ENG, 10(24s)

Figure 1. Educational Data Mining Process

Data Collection Methods

The programming language evaluated in this study was C++. Data collection combined manual error logging

with the built-in error logging component of Dev-C++. This component systematically recorded error events as

students worked on coding tasks, capturing error types and characteristics in real time. The logging component

enabled detailed monitoring of the debugging process, documenting interactions within the programming

environment. Other details that were not included in the logging component of Dev-C++ was manually written in an

error sheet of students along with a predefined set of attributes as shown in Table 1.

Table 1. Data Attributes Collected

Data Gathered Description

Student ID A unique identifier assigned to each student

Programming Experience

(months)

Indicates the duration of each student’s programming

experience in months.

Error Type
Categorizes the types of programming errors as syntax, logic,

or runtime errors.

Error Frequency
The number of times each type of error occurred for each

student,

Error Difficulty Rates the perceived difficulty level of each error

Error Severity Measures the impact of each error on the coding task

Time on Task (minutes) Records the total time each student spent on a coding task

Attempts to Resolve
Counts the number of attempts made by each student to

correct each error

Debugging Actions
Describes the specific actions taken by students to debug their

code, such as code rewrites or utilizing error messages

Data Analysis

The analysis of programming error data utilized the Apriori algorithm, a common association rule mining method,

to identify meaningful patterns and relationships [17]. The process began with data preprocessing, where the raw

dataset was cleaned and converted into a binary format suitable for analysis. This involved removing duplicates,

addressing missing values, ensuring consistency, and anonymizing student identifiers for privacy. The dataset was

further refined through scale compression, abstract description, and consistency processing to ensure a structured

format for mining. Following preprocessing, transactions were created for each programming session, aggregating

attributes such as error types, debugging actions, and task characteristics. The Apriori algorithm was then applied,

using minimum thresholds confidence at 60% to extract patterns that were both frequent and meaningful while

filtering out overly common or irrelevant associations.

Association Rule Mining Metrics

Support - This measures how frequently an itemset appears in the dataset.

570

J INFORM SYSTEMS ENG, 10(24s)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑋, 𝑌)

𝑁

Confidence - Measures the likelihood of the consequent occurring, given the antecedent.

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑋, 𝑌)

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑋)

Lift - Determines the strength of a rule by comparing its observed support to the expected support

if the antecedent and consequent were independent.

𝐿𝑖𝑓𝑡 =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ∗ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑌)

Generating and Refining Association Rules

 The Apriori algorithm identified frequent itemsets that revealed common co-occurring attributes of programming

errors and debugging behaviors, as shown in Figure 2. From these itemsets, association rules were generated and

evaluated using support, confidence, and lift metrics. To ensure result quality, an evaluation and pruning process

eliminated less significant patterns, retaining only those with actionable insights. The refined rules were then

compiled into a structured knowledge base, offering educators data-driven recommendations to enhance debugging

instruction.

Figure 2. Association Rule Mining Process [18]

Reliability and Validity

To ensure reliability and validity in association rule mining for programming error data, data collection should be

standardized so that the error logging consistently captures errors and debugging actions. Testing the Apriori

algorithm across various support and confidence thresholds, as well as on different data subsets, can confirm that

identified patterns are consistent and not unique to a particular dataset. Clearly defining variables and using metrics

like lift and conviction help ensure that the associations found reflect meaningful relationships, rather than random

occurrences. Involving programming experts to review the generated rules can enhance the validity by confirming

that the patterns align with realistic debugging practices and programming challenges, making the results more

applicable for instructional improvement.

Ethical Considerations

When conducting association rule mining on programming error data, several ethical considerations are essential to

protect participants and maintain integrity. First, privacy and confidentiality must be safeguarded by anonymizing

student identifiers and ensuring that no personally identifiable information is disclosed, especially if findings are

571

J INFORM SYSTEMS ENG, 10(24s)

published or shared. Informed consent is crucial, meaning students should be aware that their programming

activities are being logged, and they should understand the purpose and potential uses of this data. Additionally, data

security measures must be in place to prevent unauthorized access to sensitive information, especially when handling

raw error logs and debugging actions. The interpretation and use of results should be approached with care, as

findings might influence instructional approaches; thus, any interventions based on the data should aim to support

students' learning without unfairly categorizing or penalizing those who encounter more errors.

RESULTS AND DISCUSSION

Frequency of Programming Errors

Figure 3 illustrates the distribution of error types encountered by novice programmers, showing syntax

errors (319 occurrences) as the most frequent, followed by logical errors (193 occurrences) and runtime errors (164

occurrences). The predominance of syntax errors aligns with findings by [19], which attribute their frequency to

beginners' unfamiliarity with programming language structures and rules. While syntax errors are common, they are

often easier to resolve as they typically stem from typographical mistakes or incorrect syntax usage [20]. Logical

errors, ranking second in frequency, pose greater cognitive challenges since they require a deeper understanding of

program flow and logic. This observation is consistent with Radako [21], who identified logical reasoning as a major

hurdle for beginners transitioning from basic syntax to problem-solving. Runtime errors, though least frequent, are

particularly difficult as they occur during execution and may result from unexpected user interactions or system

configurations. Research by [22] highlights the severity of runtime errors, emphasizing their direct impact on system

functionality and the need for robust error-handling mechanisms. The prevalence of syntax errors suggests the need

for automated tools or real-time feedback systems to help students quickly identify and correct mistakes [23]. Logical

errors, in contrast, require conceptual teaching strategies such as problem-solving workshops and scaffolded

debugging exercises [24]. Addressing runtime errors involves training students in debugging techniques and

fostering a deeper understanding of program execution, equipping them for more advanced coding challenges [25].

Figure 3. Distribution of Programming Errors

Error Difficulty and Severity

Figure 4 presents the distribution of error difficulty and severity across three programming error types:

logical, runtime, and syntax errors. Severity levels range from 1 (least severe) to 5 (most severe), with frequencies

represented for each error type. Results indicate that syntax errors occur most frequently across all severity levels,

while logical errors display a more balanced distribution, and runtime errors show fewer occurrences but a higher

proportion of severe cases. The dominance of syntax errors across severity levels aligns with the findings of [13], who

identified syntax errors as the most common among novice programmers. Their high frequency is likely due to

students’ typographical and syntactical mistakes. However, most syntax errors fall within lower severity levels (1–3),

suggesting they are less disruptive and easier to resolve.

Logical errors exhibit a more evenly distributed severity pattern, with higher-severity cases (4 and 5)

occurring more frequently than in syntax errors. This supports the research of [26], which highlights that logical

errors stem from deeper misunderstandings of program flow and problem-solving, making them more challenging

572

J INFORM SYSTEMS ENG, 10(24s)

to correct. Meanwhile, runtime errors, though less frequent, have a significant proportion of high-severity cases. This

finding is consistent with [27], who noted that runtime errors often involve complex interactions between code

execution and logical structures, posing significant challenges for novices.

The results suggest the need for tiered instructional strategies. For syntax errors, automated tools and

integrated development environments (IDEs) with real-time feedback can help students quickly identify and correct

mistakes. Logical errors, due to their higher severity and conceptual complexity, require teaching strategies that

emphasize program design and logical reasoning, such as pseudocode development and structured problem-solving

exercises. Given that runtime errors involve both execution and logic, students should be trained in advanced

debugging techniques, including debugging tools and systematic error reproduction. Gradual progression from

resolving low-severity errors to tackling more severe issues can help students build confidence and improve problem-

solving skills.

Figure 4. Distribution of Error Difficulty and Severity

Association Rules

The association rules generated by the Apriori algorithm revealed significant patterns in error characteristics

and resolution behaviors among novice programmers, as shown in Table 2. Rule 1 indicates that "easy" errors are

typically resolved within 30 minutes (75% confidence, lift 1.25), suggesting the efficiency of addressing

straightforward issues. This aligns with [28], who found that real-time feedback systems help novices quickly resolve

syntax errors, highlighting the value of integrating such tools into learning environments. Rule 2 shows that high-

difficulty errors often require over 30 minutes to resolve (80% confidence, lift 1.3), emphasizing the time-intensive

nature of complex debugging. This supports findings by [29], which stress the need for advanced debugging

strategies. Similarly, Rule 3 links a high number of resolution attempts to difficult errors (70% confidence, lift 1.15),

reflecting the trial-and-error approach commonly used by novices when tackling complex issues. Interestingly, Rule

7 suggests that frequent errors are usually of minor severity (60% confidence, lift 1.05), indicating that while they

may not significantly hinder progress, addressing them can improve efficiency. Rule 10, which associates "easy"

difficulty and "minor" severity with a high likelihood of quick resolution (82% confidence, lift 1.35), reinforces the

need for automated feedback tools to handle low-severity errors, freeing up cognitive resources for more complex

challenges. Rule 13 links high-difficulty and moderate-severity errors to frequent resolution attempts (74%

confidence, lift 1.22), highlighting their resource-intensive nature. These findings underscore the need for targeted

interventions, such as step-by-step debugging guidance and conceptual scaffolding, to help students manage complex

and severe errors more effectively.

573

J INFORM SYSTEMS ENG, 10(24s)

Table 2. Association Rules Generated

Rule

No.
Antecedent Consequent Support Confidence Lift Interpretation

1
Error

Difficulty_Easy

Time on Task

(minutes)_<30

mins

0.32 75% 1.25

Errors labeled as easy tend

to be resolved within 30

minutes.

2
Error

Difficulty_High

Time on Task

(minutes)_>30

mins

0.25 80% 1.3

Errors with high difficulty

levels often require over 30

minutes to resolve.

3
Attempts to

Resolve_High

Error

Difficulty_High
0.18 70% 1.15

When high attempts are

needed to resolve an issue,

it is often a difficult error.

4
Attempts to

Resolve_Low

Error

Severity_Minor
0.22 68% 1.1

Low attempts to resolve are

generally associated with

minor severity errors.

5
Error

Severity_Moderate

Time on Task

(minutes)_>30

mins

0.2 65% 1.12

Errors of moderate severity

frequently extend beyond

30 minutes.

Rule

No.
Antecedent Consequent Support Confidence Lift Interpretation

6
Error

Severity_Moderate

Error

Difficulty_Medium
0.28 72% 1.18

Moderate severity errors

are often of medium

difficulty.

7
Error

Frequency_High

Error

Severity_Minor
0.15 60% 1.05

Highly frequent errors tend

to be of minor severity

8
Error

Difficulty_Medium

Attempts to

Resolve_Medium
0.3 75% 1.2

Medium-difficulty errors

generally require a

moderate number of

attempts to resolve

9
Error

Severity_Minor

Time on Task

(minutes)_<30

mins

0.34 78% 1.3

Minor severity errors are

usually resolved in less

than 30 minutes

10

Error

Difficulty_Easy,

Error

Severity_Minor

Time on Task

(minutes)_<30

mins

0.27 82% 1.35

Easy errors with minor

severity are very likely to

take less than 30 minutes

11
Error

Severity_High

Error

Frequency_Low
0.18 66% 1.2

Errors of high severity tend

to occur less frequently

12

Time on Task

(minutes)_>30

mins

Error

Severity_Moderate
0.21 67% 1.15

When tasks take over 30

minutes, the errors

involved are often of

moderate severity

13

Error

Difficulty_High,

Error

Severity_Moderate

Attempts to

Resolve_High
0.19 74% 1.22

High-difficulty errors of

moderate severity often

require a high number of

attempts to resolve.

3.4. Proposed Debugging and Error Resolution Workshop

Activity Design:

Title: Adaptive Debugging Strategies for Novice Programmers

Theme: Tailored Debugging Approaches for Diverse Learners

Target Participants: First-Year Programming Students

574

J INFORM SYSTEMS ENG, 10(24s)

Duration: 2.5 hours

Mode: Blended Learning (face-to-face with digital tools)

Activity Objectives:

1. Classify and analyze common programming errors (syntax, logical, runtime).

2. Apply tiered debugging strategies at varying difficulty levels.

3. Utilize debugging tools (IDEs, debuggers) based on personal skill levels.

4. Foster structured problem-solving skills and adaptive debugging approaches.

Differentiated and Tiered Instruction Strategies:

1. Pre-Assessment: Quick diagnostic quiz to determine student proficiency levels.

2. Tiered Debugging Tasks: Activities are structured at three levels (Beginner, Intermediate, Advanced).

3. Flexible Grouping: Students will work in homogeneous skill-based groups for collaborative learning

and heterogeneous mixed-skill groups for peer mentoring.

4. Scaffolded Support: Guided practice for beginners, minimal assistance for advanced students.

5. Adaptive Feedback: Individualized debugging hints and suggestions based on student responses.

Materials Needed:

1. Digital Tools: IDEs (e.g., Visual Studio Code, PyCharm), Debugging Tools

2. Printed Materials: Debugging Playbook with step-by-step debugging techniques

3. Sample Code: Programs embedded with syntax, logical, and runtime errors

4. Laptops/Desktops: For hands-on activities

5. Projector/Whiteboard: For demonstrations

Activity Flow:

Time Activity Description Resources

10 mins

Pre-Assessment:

Debugging

Readiness Quiz

Quick quiz to classify

students into skill levels

(Beginner, Intermediate,

Advanced).

Online/printed

quiz

15 mins

Introduction to

Debugging

Strategies

Brief lecture on structured

debugging (print statements,

debugging tools, tracing

errors).

PowerPoint,

Sample Code

20 mins

Tiered

Debugging

Exercises

(Guided

Practice)

Students are grouped based

on skill level:

Pre-made Error

Code Samples,

IDE

- Beginner: Step-by-step

debugging with instructor

guidance.

- Intermediate: Debugging

with guided hints.

- Advanced: Debugging with

minimal instructor

intervention.

25 mins

Mixed-Skill

Group

Debugging

Challenge

Students are regrouped into

mixed-skill teams to solve

debugging tasks together.

Peer mentoring encouraged.

Debugging

Playbook, Error

Code Samples

575

J INFORM SYSTEMS ENG, 10(24s)

20 mins

Adaptive

Individual

Debugging Task

Students work individually

at their own pace, receiving

tailored hints based on their

performance.

IDE, Debugging

Tools

20 mins

Reflection and

Personalized

Debugging Plan

Students complete a

worksheet analyzing their

debugging approach,

challenges, and areas for

improvement.

Debugging

Playbook

Worksheets

20 mins

Wrap-Up,

Insights Sharing,

and Takeaways

Group discussion on

debugging strategies,

sharing of key takeaways.

Debugging Playbook is

distributed as a resource.

Debugging

Playbook

Assessment and Deliverables

1. Group Challenge: Number of errors resolved and peer collaboration effectiveness.

2. Individual Task: Debugged code submissions with personalized debugging strategies.

3. Reflection Worksheet: Self-evaluation of debugging approaches.

4. Deliverable:

o Completed Debugging Playbook with personal debugging strategies.

o Debugged code files with structured solutions.

Expected Outcome:

1. Improved debugging skills tailored to individual competency levels.

2. Increased confidence in error identification and resolution.

3. Development of structured, adaptive debugging approaches for real-world programming tasks.

CONCLUSION

This study successfully analyzed novice programmers' error resolution patterns using the Apriori algorithm,

highlighting key challenges faced by first-year programming students. Findings revealed that syntax errors are the

most frequent but easier to resolve, while logical and runtime errors, though less common, are more complex and

time-consuming. The association rules uncovered meaningful relationships, such as the connection between error

difficulty and resolution time, as well as the frequency of attempts made for error correction. The study underscores

the need for targeted instructional strategies to enhance programming education. Automated feedback systems can

efficiently address frequent syntax errors, while structured problem-solving exercises and debugging workshops are

essential for managing logical and runtime errors. By implementing tiered instructional approaches, educators can

provide timely support, reducing cognitive overload and dropout rates among novice programmers

REFRENCES

[1] CMO No. 25, Series of 2015. Revised Policies, Standards and Guidelines for Bachelor of Science in Computer

Science (BSCS), Bachelor of Science in Information Systems (BSIS), and Bachelor of Science in Information

Technology (BSIT) Programs.

[2] Margulieux, L. E., Morrison, B. B., & Decker, A. (2020). Reducing withdrawal and failure rates in introductory

programming with subgoal labeled worked examples. International Journal of STEM Education, 7, 1-16.

[3] Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2018). A systematic literature review on teaching and learning

introductory programming in higher education. IEEE Transactions on Education, 62(2), 77-90.

576

J INFORM SYSTEMS ENG, 10(24s)

[4] Ma, N., Qian, J., Gong, K., & Lu, Y. (2023). Promoting programming education of novice programmers in

elementary schools: A contrasting cases approach for learning programming. Education and Information

Technologies, 28(7), 9211-9234.

[5] Sun, C., Yang, S., & Becker, B. (2024). Debugging in computational thinking: A meta-analysis on the effects of

interventions on debugging skills. Journal of Educational Computing Research, 62(4), 1087-1121.

[6] Atiq, Z., & Loui, M. C. (2022). A qualitative study of emotions experienced by first-year engineering students

during programming tasks. ACM Transactions on Computing Education (TOCE), 22(3), 1-26.

[7] Gale, L. (2023, September 18). Debugging: A powerful and dangerous skill to learn. Retrieved from Raspberry

Pi Computing Education Research Centre: https://computingeducationresearch.org/debugging-a-powerful-

and-dangerous-skill-to-learn/?utm_source=chatgpt.com.

[8] DeLiema, D., Dahn, M., Flood, V. J., Asuncion, A., Abrahamson, D., Enyedy, N., & Steen, F. (2019). Debugging

as a context for fostering reflection on critical thinking and emotion. Deeper Learning, Dialogic Learning, and

Critical Thinking: Research-based Strategies for the Classroom. Hrsg. von Emmanuel Manalo. New York:

Routledge, 209-228.

[9] Michaeli, T., & Romeike, R. (2019, April). Current status and perspectives of debugging in the k12 classroom:

A qualitative study. In 2019 IEEE Global Engineering Education Conference (EDUCON) (pp. 1030-1038).

IEEE.

[10] Villamor, M. M. (2020). A review on process-oriented approaches for analyzing novice solutions to

programming problems. Research and Practice in Technology Enhanced Learning, 15(1), 8.

[11] Sha, A. S., Nunes, B. P., & Shen, J. (2024). Investigating the Role of Errors in Programming Learning. In

Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 2 (pp. 797-797).

[12] MacNeil, S., Denny, P., Tran, A., Leinonen, J., Bernstein, S., Hellas, A., ... & Kim, J. (2024, January). Decoding

logic errors: a comparative study on bug detection by students and large language models. In Proceedings of

the 26th Australasian Computing Education Conference (pp. 11-18).

[13] Shirafuji, A., Watanobe, Y., Ito, T., Morishita, M., Nakamura, Y., Oda, Y., & Suzuki, J. (2023). Exploring the

robustness of large language models for solving programming problems. arXiv preprint arXiv:2306.14583.

[14] Shalini, Robinson Joel, B Muthazhagan. (2020). The role of Learning Analytics in Educational Data Mining.

International Journal of Computing Algorithm, 9(2), 1-4. DOI: 10.20894/IJCOA.101.009.002.004, ISSN:

2278-2397.

[15] Aulakh, K., Roul, R. K., & Kaushal, M. (2023). E-learning enhancement through educational data mining with

Covid-19 outbreak period in backdrop: A review. International Journal of Educational Development, 101,

102814.

[16] Casillano, N.F.B., & Cantilang, K.W. (2024). Employing educational data mining techniques to predict

programming students at-risk of dropping out. Indonesian Journal of Electrical Engineering and Computer

Science, 35(2), 1219-1226. doi:http://doi.org/10.11591/ijeecs.v35.i2.pp1219-1226

[17] Situmorang, B. H., Isra, A., Paragya, D., & Adhieputra, D. A. A. (2024). Apriori Algorithm Application for

Consumer Purchase Patterns Analysis. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika, 21(1), 15-

20.

[18] Wang, T., Xiao, B., & Ma, W. (2022). Student behavior data analysis based on association rule mining.

International Journal of Computational Intelligence Systems, 15(1), 32.

[19] Kazemitabaar, M., Chyhir, V., Weintrop, D., & Grossman, T. (2023). Scaffolding Progress: How Structured

Editors Shape Novice Errors When Transitioning from Blocks to Text. arXiv preprint arXiv:2302.05708.

https://arxiv.org/abs/2302.05708.

[20] Dhawan, A. (2024, November 26). The Top 10 Most Common Programming Errors and How to Avoid Them.

Retrieved from SchoolMyKids: https://www.schoolmykids.com/education/the-top-10-most-common-

programming-errors-and-how-to-avoid-them.

[21] Radaković, D., & Steingartner, W. (2024). Common Errors in High School Novice Programming. IPSI

Transactions on Internet Research, 20(1), 47-59.

[22] Osbourn, T. (2023, September 27). The 7 Most Common Types of Errors in Programming and How to Avoid

Them. Retrieved from TextExpander: https://textexpander.com/blog/most-common-programming-errors.

[23] Albrecht, E., & Grabowski, J. (2020, February). Sometimes it's just sloppiness-studying students'

programming errors and misconceptions. In Proceedings of the 51st ACM Technical Symposium on Computer

Science Education (pp. 340-345).

577

J INFORM SYSTEMS ENG, 10(24s)

[24] Ettles, A., Luxton-Reilly, A., & Denny, P. (2018, January). Common logic errors made by novice programmers.

In Proceedings of the 20th Australasian Computing Education Conference (pp. 83-89).

[25] Newby, N. C., Zhang, C., Chidawaya, J., & Dempsey, M. E. (2023, March). Enhancing Feedback Messages for

Debugging Runtime Errors in an Introductory Java Programming Course. In Proceedings of the 54th ACM

Technical Symposium on Computer Science Education V. 2 (pp. 1232-1232).

[26] McCall, D., & Kölling, M. (2019). A new look at novice programmer errors. ACM Transactions on Computing

Education (TOCE), 19(4), 1-30.

[27] Albluwi, I., & Zeng, H. (2021, February). Novice difficulties with analyzing the running time of short pieces of

code. In Proceedings of the 23rd Australasian Computing Education Conference (pp. 1-10).

[28] Charles, T., & Gwilliam, C. (2023). The Effect of Automated Error Message Feedback on Undergraduate

Physics Students Learning Python: Reducing Anxiety and Building Confidence. Journal for STEM Education

Research, 6(2), 326-357.

[29] Dupriez, T., Polito, G., & Ducasse, S. (2017). Analysis and exploration for new generation debuggers.

Proceedings of the 12th edition of the International Workshop on Smalltalk Technologies.

