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Introduction: Novice programmers often struggle with error resolution, affecting their 

learning and performance. This study analyzes error resolution patterns among first-year 

programming students using the Apriori algorithm. 

Objectives: The study aims to identify common programming errors, analyze resolution 

difficulty and time, and uncover patterns using association rules. It also seeks to provide data-

driven recommendations to enhance programming education. 

Methods: A dataset of 150 first-year students was analyzed, focusing on error frequency, 

severity, and resolution time. The Apriori algorithm was applied to identify associations between 

error type, resolution attempts, and time required. 

Results: Syntax errors (319 occurrences) were the most frequent and resolved quickly, while 

logical (193) and runtime errors (164) were more challenging. Association rules showed that 

highly difficult errors took over 30 minutes to resolve (80% confidence), whereas low-severity 

syntax errors were fixed within 30 minutes (75% confidence). 

Conclusions: The study revealed the relationship between error type, resolution attempts, and 

correction time. Findings suggest tiered instructional strategies, such as automated feedback for 

syntax errors and structured debugging workshops, to improve student proficiency and reduce 

dropout rates. 
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INTRODUCTION 

Programming is a core subject in the Information Technology (IT) curriculum in the Philippines [1], serving as a vital 

skill for various disciplines, including software engineering, data analytics, and artificial intelligence. However, 

introductory programming courses are often associated with high failure and dropout rates. Recent studies indicate 

that global passing rates average around 67%, with failure rates exceeding 50% in some institutions [2]. These 

statistics reveal significant barriers to student success, which can ultimately affect workforce readiness in technology-

driven industries. The complexity of learning programming arises from a combination of cognitive, emotional, and 

technical challenges [3]. In terms of Cognitive load, many students struggle with problem-solving skills and 

fundamental programming concepts. Research suggests that novice programmers often face difficulties in abstract 

thinking, logical reasoning, and debugging, all of which are essential for programming proficiency [4][5]. Students 

frequently experience fear of failure and frustration, particularly in their first year of programming [6]. The need to 

understand syntax, debugging strategies, and conceptual principles can lead to cognitive overload, further hindering 

their learning progress. 

Among these challenges, debugging is recognized as one of the most difficult aspects of programming [7]. Effective 

debugging requires not only programming knowledge but also advanced cognitive skills, such as critical thinking [8]. 

Studies show that while many students acquire basic programming skills, they often lack structured debugging 

strategies, which are crucial for identifying and resolving errors [9]. Without direct guidance from instructors, 
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students tend to rely on a trial-and-error approach, which is inefficient and contributes to the high attrition rates in 

programming courses [10]. 

Despite being perceived as obstacles, errors are an essential part of the learning process [11]. Research suggests that 

errors can serve as opportunities for deeper learning, allowing students to refine their understanding of programming 

concepts [12]. However, for errors to be constructive, students need proper guidance in interpreting and resolving 

them. Syntax errors, the most common type among beginners, are generally easier to correct when appropriate 

feedback tools are available. In contrast, logical and runtime errors are less frequent but significantly more 

challenging due to their conceptual complexity and impact on program execution [13]. 

While previous research has extensively documented the struggles faced by novice programmers, there has been 

limited focus on systematically analyzing error patterns and resolution strategies. Existing studies have primarily 

explored general difficulties in learning to code, but few have examined how specific error types vary in frequency, 

severity, and difficulty. This gap in the literature underscores the need for research that not only identifies common 

programming errors but also analyzes how students resolve them. Understanding these patterns can help educators 

develop more effective teaching strategies. 

To address this gap, this study applied the association rule mining technique specifically the Apriori algorithm to 

analyze programming error data collected from first-year programming students. The research aims to identify 

patterns in error frequency, difficulty, and severity to provide actionable insights for information technology and 

computer science educators. By examining how students resolve different types of errors, this study seeks to bridge 

the gap between error diagnosis and instructional design, ultimately improving programming education outcomes. 

Specifically, this study aims to: (1) determine the most frequent types of programming errors made by first-year 

students, (2) assess the difficulty level of each error type based on student responses and resolutions, (3) evaluate the 

severity of common errors in terms of their impact on student progress and coding functionality, (4) use the Apriori 

algorithm to identify patterns in how students resolve errors, highlighting approaches that lead to effective error 

correction, and (5) propose evidence-based instructional strategies and debugging techniques tailored to the common 

error patterns identified. 

METHODS 

Research Design 

This study employed the Educational Data Mining (EDM) framework, a specialized branch of data mining used to 

analyze educational data and derive actionable insights [14]. By integrating techniques from machine learning, 

statistics, and artificial intelligence, EDM helps enhance learning systems, understand student behaviors, and 

improve instructional strategies [15]. Figure 1 outlines the structured EDM process, which ensured reliable and 

meaningful research outcomes. The EDM process begin with data collection, focusing on common programming 

errors encountered by novice programmers. Data sources included coding logs, assignment feedback, and debugging 

records, providing a comprehensive view of error types, frequencies, and resolution patterns. Next, data preparation 

involved cleaning and organizing raw data by addressing inconsistencies, removing duplicates, and handling missing 

values to ensure dataset reliability. 

In the preprocessing stage, data was formatted for compatibility with the Apriori algorithm. Errors were categorized 

into predefined types: syntax, logical, and runtime, while key variables such as "Time on Task," "Error Frequency," 

and "Attempts to Resolve" were standardized. This step also involved creating transactional datasets, which were 

essential for identifying relationships between variables. The data mining phase applied the Apriori algorithm, a 

widely used association rule mining technique in educational contexts [16]. By analyzing frequent itemsets, the 

algorithm identified meaningful patterns based on support, confidence, and lift thresholds. Finally, the evaluation 

phase assessed the instructional value of the generated association rules, prioritizing patterns that highlighted 

relationships between error severity and resolution attempts. Metrics such as lift and confidence ensured the 

reliability and relevance of these findings, providing valuable insights for improving programming instruction. 
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Figure 1. Educational Data Mining Process 

Data Collection Methods 

The programming language evaluated in this study was C++. Data collection combined manual error logging 

with the built-in error logging component of Dev-C++. This component systematically recorded error events as 

students worked on coding tasks, capturing error types and characteristics in real time. The logging component 

enabled detailed monitoring of the debugging process, documenting interactions within the programming 

environment. Other details that were not included in the logging component of Dev-C++ was manually written in an 

error sheet of students along with a predefined set of attributes as shown in Table 1. 

Table 1. Data Attributes Collected 

Data Gathered Description 

Student ID A unique identifier assigned to each student 

Programming Experience 

(months) 

Indicates the duration of each student’s programming 

experience in months. 

Error Type 
Categorizes the types of programming errors as syntax, logic, 

or runtime errors. 

Error Frequency 
The number of times each type of error occurred for each 

student,  

Error Difficulty Rates the perceived difficulty level of each error 

Error Severity Measures the impact of each error on the coding task 

Time on Task (minutes) Records the total time each student spent on a coding task 

Attempts to Resolve 
Counts the number of attempts made by each student to 

correct each error 

Debugging Actions 
Describes the specific actions taken by students to debug their 

code, such as code rewrites or utilizing error messages 

Data Analysis 

The analysis of programming error data utilized the Apriori algorithm, a common association rule mining method, 

to identify meaningful patterns and relationships [17]. The process began with data preprocessing, where the raw 

dataset was cleaned and converted into a binary format suitable for analysis. This involved removing duplicates, 

addressing missing values, ensuring consistency, and anonymizing student identifiers for privacy. The dataset was 

further refined through scale compression, abstract description, and consistency processing to ensure a structured 

format for mining. Following preprocessing, transactions were created for each programming session, aggregating 

attributes such as error types, debugging actions, and task characteristics. The Apriori algorithm was then applied, 

using minimum thresholds confidence at 60% to extract patterns that were both frequent and meaningful while 

filtering out overly common or irrelevant associations. 

Association Rule Mining Metrics  

Support - This measures how frequently an itemset appears in the dataset.  
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𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑋, 𝑌)

𝑁
 

Confidence - Measures the likelihood of the consequent occurring, given the antecedent.  

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑋, 𝑌)

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑋)
 

Lift - Determines the strength of a rule by comparing its observed support to the expected support 

if the antecedent and consequent were independent.  

𝐿𝑖𝑓𝑡 =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ∗ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑌)
 

Generating and Refining Association Rules 

 The Apriori algorithm identified frequent itemsets that revealed common co-occurring attributes of programming 

errors and debugging behaviors, as shown in Figure 2. From these itemsets, association rules were generated and 

evaluated using support, confidence, and lift metrics. To ensure result quality, an evaluation and pruning process 

eliminated less significant patterns, retaining only those with actionable insights. The refined rules were then 

compiled into a structured knowledge base, offering educators data-driven recommendations to enhance debugging 

instruction. 

 

 

 

 

 

Figure 2. Association Rule Mining Process [18] 

Reliability and Validity 

To ensure reliability and validity in association rule mining for programming error data, data collection should be 

standardized so that the error logging consistently captures errors and debugging actions. Testing the Apriori 

algorithm across various support and confidence thresholds, as well as on different data subsets, can confirm that 

identified patterns are consistent and not unique to a particular dataset. Clearly defining variables and using metrics 

like lift and conviction help ensure that the associations found reflect meaningful relationships, rather than random 

occurrences. Involving programming experts to review the generated rules can enhance the validity by confirming 

that the patterns align with realistic debugging practices and programming challenges, making the results more 

applicable for instructional improvement. 

Ethical Considerations 

When conducting association rule mining on programming error data, several ethical considerations are essential to 

protect participants and maintain integrity. First, privacy and confidentiality must be safeguarded by anonymizing 

student identifiers and ensuring that no personally identifiable information is disclosed, especially if findings are 
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published or shared. Informed consent is crucial, meaning students should be aware that their programming 

activities are being logged, and they should understand the purpose and potential uses of this data. Additionally, data 

security measures must be in place to prevent unauthorized access to sensitive information, especially when handling 

raw error logs and debugging actions. The interpretation and use of results should be approached with care, as 

findings might influence instructional approaches; thus, any interventions based on the data should aim to support 

students' learning without unfairly categorizing or penalizing those who encounter more errors. 

 

RESULTS AND DISCUSSION 

Frequency of Programming Errors 

Figure 3 illustrates the distribution of error types encountered by novice programmers, showing syntax 

errors (319 occurrences) as the most frequent, followed by logical errors (193 occurrences) and runtime errors (164 

occurrences). The predominance of syntax errors aligns with findings by [19], which attribute their frequency to 

beginners' unfamiliarity with programming language structures and rules. While syntax errors are common, they are 

often easier to resolve as they typically stem from typographical mistakes or incorrect syntax usage [20]. Logical 

errors, ranking second in frequency, pose greater cognitive challenges since they require a deeper understanding of 

program flow and logic. This observation is consistent with Radako [21], who identified logical reasoning as a major 

hurdle for beginners transitioning from basic syntax to problem-solving. Runtime errors, though least frequent, are 

particularly difficult as they occur during execution and may result from unexpected user interactions or system 

configurations. Research by [22] highlights the severity of runtime errors, emphasizing their direct impact on system 

functionality and the need for robust error-handling mechanisms. The prevalence of syntax errors suggests the need 

for automated tools or real-time feedback systems to help students quickly identify and correct mistakes [23]. Logical 

errors, in contrast, require conceptual teaching strategies such as problem-solving workshops and scaffolded 

debugging exercises [24]. Addressing runtime errors involves training students in debugging techniques and 

fostering a deeper understanding of program execution, equipping them for more advanced coding challenges [25]. 

 

 

 

 

 

 

 

 

Figure 3. Distribution of Programming Errors 

Error Difficulty and Severity  

Figure 4 presents the distribution of error difficulty and severity across three programming error types: 

logical, runtime, and syntax errors. Severity levels range from 1 (least severe) to 5 (most severe), with frequencies 

represented for each error type. Results indicate that syntax errors occur most frequently across all severity levels, 

while logical errors display a more balanced distribution, and runtime errors show fewer occurrences but a higher 

proportion of severe cases. The dominance of syntax errors across severity levels aligns with the findings of [13], who 

identified syntax errors as the most common among novice programmers. Their high frequency is likely due to 

students’ typographical and syntactical mistakes. However, most syntax errors fall within lower severity levels (1–3), 

suggesting they are less disruptive and easier to resolve. 

Logical errors exhibit a more evenly distributed severity pattern, with higher-severity cases (4 and 5) 

occurring more frequently than in syntax errors. This supports the research of [26], which highlights that logical 

errors stem from deeper misunderstandings of program flow and problem-solving, making them more challenging 
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to correct. Meanwhile, runtime errors, though less frequent, have a significant proportion of high-severity cases. This 

finding is consistent with [27], who noted that runtime errors often involve complex interactions between code 

execution and logical structures, posing significant challenges for novices. 

The results suggest the need for tiered instructional strategies. For syntax errors, automated tools and 

integrated development environments (IDEs) with real-time feedback can help students quickly identify and correct 

mistakes. Logical errors, due to their higher severity and conceptual complexity, require teaching strategies that 

emphasize program design and logical reasoning, such as pseudocode development and structured problem-solving 

exercises. Given that runtime errors involve both execution and logic, students should be trained in advanced 

debugging techniques, including debugging tools and systematic error reproduction. Gradual progression from 

resolving low-severity errors to tackling more severe issues can help students build confidence and improve problem-

solving skills. 

 

 

 

 

 

 

 

 

 

Figure 4. Distribution of Error Difficulty and Severity 

Association Rules 

The association rules generated by the Apriori algorithm revealed significant patterns in error characteristics 

and resolution behaviors among novice programmers, as shown in Table 2. Rule 1 indicates that "easy" errors are 

typically resolved within 30 minutes (75% confidence, lift 1.25), suggesting the efficiency of addressing 

straightforward issues. This aligns with [28], who found that real-time feedback systems help novices quickly resolve 

syntax errors, highlighting the value of integrating such tools into learning environments. Rule 2 shows that high-

difficulty errors often require over 30 minutes to resolve (80% confidence, lift 1.3), emphasizing the time-intensive 

nature of complex debugging. This supports findings by [29], which stress the need for advanced debugging 

strategies. Similarly, Rule 3 links a high number of resolution attempts to difficult errors (70% confidence, lift 1.15), 

reflecting the trial-and-error approach commonly used by novices when tackling complex issues. Interestingly, Rule 

7 suggests that frequent errors are usually of minor severity (60% confidence, lift 1.05), indicating that while they 

may not significantly hinder progress, addressing them can improve efficiency. Rule 10, which associates "easy" 

difficulty and "minor" severity with a high likelihood of quick resolution (82% confidence, lift 1.35), reinforces the 

need for automated feedback tools to handle low-severity errors, freeing up cognitive resources for more complex 

challenges. Rule 13 links high-difficulty and moderate-severity errors to frequent resolution attempts (74% 

confidence, lift 1.22), highlighting their resource-intensive nature. These findings underscore the need for targeted 

interventions, such as step-by-step debugging guidance and conceptual scaffolding, to help students manage complex 

and severe errors more effectively. 
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Table 2. Association Rules Generated 

Rule 

No. 
Antecedent Consequent Support Confidence Lift Interpretation 

1 
Error 

Difficulty_Easy 

Time on Task 

(minutes)_<30 

mins 

0.32 75% 1.25 

Errors labeled as easy tend 

to be resolved within 30 

minutes. 

2 
Error 

Difficulty_High 

Time on Task 

(minutes)_>30 

mins 

0.25 80% 1.3 

Errors with high difficulty 

levels often require over 30 

minutes to resolve. 

3 
Attempts to 

Resolve_High 

Error 

Difficulty_High 
0.18 70% 1.15 

When high attempts are 

needed to resolve an issue, 

it is often a difficult error. 

4 
Attempts to 

Resolve_Low 

Error 

Severity_Minor 
0.22 68% 1.1 

Low attempts to resolve are 

generally associated with 

minor severity errors. 

5 
Error 

Severity_Moderate 

Time on Task 

(minutes)_>30 

mins 

0.2 65% 1.12 

Errors of moderate severity 

frequently extend beyond 

30 minutes. 

Rule 

No. 
Antecedent Consequent Support Confidence Lift Interpretation 

6 
Error 

Severity_Moderate 

Error 

Difficulty_Medium 
0.28 72% 1.18 

Moderate severity errors 

are often of medium 

difficulty. 

7 
Error 

Frequency_High 

Error 

Severity_Minor 
0.15 60% 1.05 

Highly frequent errors tend 

to be of minor severity 

8 
Error 

Difficulty_Medium 

Attempts to 

Resolve_Medium 
0.3 75% 1.2 

Medium-difficulty errors 

generally require a 

moderate number of 

attempts to resolve 

9 
Error 

Severity_Minor 

Time on Task 

(minutes)_<30 

mins 

0.34 78% 1.3 

Minor severity errors are 

usually resolved in less 

than 30 minutes 

10 

Error 

Difficulty_Easy, 

Error 

Severity_Minor 

Time on Task 

(minutes)_<30 

mins 

0.27 82% 1.35 

Easy errors with minor 

severity are very likely to 

take less than 30 minutes 

11 
Error 

Severity_High 

Error 

Frequency_Low 
0.18 66% 1.2 

Errors of high severity tend 

to occur less frequently 

12 

Time on Task 

(minutes)_>30 

mins 

Error 

Severity_Moderate 
0.21 67% 1.15 

When tasks take over 30 

minutes, the errors 

involved are often of 

moderate severity 

13 

Error 

Difficulty_High, 

Error 

Severity_Moderate 

Attempts to 

Resolve_High 
0.19 74% 1.22 

High-difficulty errors of 

moderate severity often 

require a high number of 

attempts to resolve. 

 

3.4. Proposed Debugging and Error Resolution Workshop 

Activity Design: 

Title: Adaptive Debugging Strategies for Novice Programmers 

Theme: Tailored Debugging Approaches for Diverse Learners 

Target Participants: First-Year Programming Students 



574  
 

J INFORM SYSTEMS ENG, 10(24s) 

Duration: 2.5 hours 

Mode: Blended Learning (face-to-face with digital tools) 

Activity Objectives: 

1. Classify and analyze common programming errors (syntax, logical, runtime). 

2. Apply tiered debugging strategies at varying difficulty levels. 

3. Utilize debugging tools (IDEs, debuggers) based on personal skill levels. 

4. Foster structured problem-solving skills and adaptive debugging approaches. 

Differentiated and Tiered Instruction Strategies: 

1. Pre-Assessment: Quick diagnostic quiz to determine student proficiency levels. 

2. Tiered Debugging Tasks: Activities are structured at three levels (Beginner, Intermediate, Advanced). 

3. Flexible Grouping: Students will work in homogeneous skill-based groups for collaborative learning 

and heterogeneous mixed-skill groups for peer mentoring. 

4. Scaffolded Support: Guided practice for beginners, minimal assistance for advanced students. 

5. Adaptive Feedback: Individualized debugging hints and suggestions based on student responses. 

Materials Needed: 

1. Digital Tools: IDEs (e.g., Visual Studio Code, PyCharm), Debugging Tools 

2. Printed Materials: Debugging Playbook with step-by-step debugging techniques 

3. Sample Code: Programs embedded with syntax, logical, and runtime errors 

4. Laptops/Desktops: For hands-on activities 

5. Projector/Whiteboard: For demonstrations 

Activity Flow: 

Time Activity Description Resources 

10 mins 

Pre-Assessment: 

Debugging 

Readiness Quiz 

Quick quiz to classify 

students into skill levels 

(Beginner, Intermediate, 

Advanced). 

Online/printed 

quiz 

15 mins 

Introduction to 

Debugging 

Strategies 

Brief lecture on structured 

debugging (print statements, 

debugging tools, tracing 

errors). 

PowerPoint, 

Sample Code 

20 mins 

Tiered 

Debugging 

Exercises 

(Guided 

Practice) 

Students are grouped based 

on skill level: 

Pre-made Error 

Code Samples, 

IDE 

- Beginner: Step-by-step 

debugging with instructor 

guidance. 

- Intermediate: Debugging 

with guided hints. 

- Advanced: Debugging with 

minimal instructor 

intervention. 

25 mins 

Mixed-Skill 

Group 

Debugging 

Challenge 

Students are regrouped into 

mixed-skill teams to solve 

debugging tasks together. 

Peer mentoring encouraged. 

Debugging 

Playbook, Error 

Code Samples 
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20 mins 

Adaptive 

Individual 

Debugging Task 

Students work individually 

at their own pace, receiving 

tailored hints based on their 

performance. 

IDE, Debugging 

Tools 

20 mins 

Reflection and 

Personalized 

Debugging Plan 

Students complete a 

worksheet analyzing their 

debugging approach, 

challenges, and areas for 

improvement. 

Debugging 

Playbook 

Worksheets 

20 mins 

Wrap-Up, 

Insights Sharing, 

and Takeaways 

Group discussion on 

debugging strategies, 

sharing of key takeaways. 

Debugging Playbook is 

distributed as a resource. 

Debugging 

Playbook 

 

Assessment and Deliverables 

1. Group Challenge: Number of errors resolved and peer collaboration effectiveness. 

2. Individual Task: Debugged code submissions with personalized debugging strategies. 

3. Reflection Worksheet: Self-evaluation of debugging approaches. 

4. Deliverable: 

o Completed Debugging Playbook with personal debugging strategies. 

o Debugged code files with structured solutions. 

Expected Outcome: 

1. Improved debugging skills tailored to individual competency levels. 

2. Increased confidence in error identification and resolution. 

3. Development of structured, adaptive debugging approaches for real-world programming tasks. 

CONCLUSION 

This study successfully analyzed novice programmers' error resolution patterns using the Apriori algorithm, 

highlighting key challenges faced by first-year programming students. Findings revealed that syntax errors are the 

most frequent but easier to resolve, while logical and runtime errors, though less common, are more complex and 

time-consuming. The association rules uncovered meaningful relationships, such as the connection between error 

difficulty and resolution time, as well as the frequency of attempts made for error correction. The study underscores 

the need for targeted instructional strategies to enhance programming education. Automated feedback systems can 

efficiently address frequent syntax errors, while structured problem-solving exercises and debugging workshops are 

essential for managing logical and runtime errors. By implementing tiered instructional approaches, educators can 

provide timely support, reducing cognitive overload and dropout rates among novice programmers 
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