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Synthetic data has emerged as a crucial component in AI model training, offering privacy 

protection and enhanced data diversity. However, generative models such as Generative 

Adversarial Networks (GANs) and Variational Autoencoders (VAEs) often inherit and amplify 

biases present in training datasets, leading to ethical concerns. This paper explores fairness- 

aware generative models that embed fairness constraints (e.g., demographic parity, equalized 

odds) to mitigate bias during data synthesis. We review methods for bias quantification in 

synthetic data, regulatory compliance frameworks, and algorithmic advancements in fair 

synthetic data generation. The research also presents an evaluation framework for fairness, 

utility, and privacy trade-offs, followed by a discussion on future research directions. 

Keywords: Synthetic Data, Generative Models, Bias Mitigation, Fairness-Aware AI, 

Demographic Parity, Variational Autoencoders, Generative Adversarial Networks, Ethical AI5. 

 
1. Introduction 

1.1 Background and Motivation 

The advent of synthetic data has revolutionized the AI landscape, offering solutions to data scarcity, privacy concerns, 

and the need for diverse training datasets. However, synthetic data generation is not devoid of challenges, particularly 

concerning the inadvertent amplification of biases inherent in original datasets. Addressing these biases is crucial to 

prevent the perpetuation of unfair outcomes in AI applications. 

1.2 The Role of Synthetic Data in AI and Machine Learning 

Synthetic data plays a multifaceted role in AI, including: 

 Data Augmentation: Enhancing model robustness by providing diverse training examples. 

 Privacy Preservation: Allowing model training without exposing sensitive real-world data. 

 Cost Efficiency: Reducing the need for expensive data collection and labelling processes. 

1.3 Research Objectives and Contributions 

This paper aims to: 

 Investigate the sources and manifestations of bias in synthetic data generation. 

 Explore fairness-aware generative models that incorporate fairness constraints during data synthesis. 

 Propose an evaluation framework to assess fairness, utility, and privacy in synthetic data. 

 Discuss regulatory compliance and ethical guidelines pertinent to fair synthetic data generation. 
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2. Foundations of Synthetic Data and Fairness in AI 

2.1 Definition and Importance of Synthetic Data 

Synthetic data is artificial data that replicates the statistical features of actual-world datasets but with the benefit of 

providing privacy, scalability, and data availability advantages. Synthetic data is used across various domains such 

as finance, healthcare, autonomous systems, and cybersecurity to enrich actual-world datasets or substitute sensitive 

data altogether (Park & Kim, 2022). 

Recent progress in generative models has improved the quality and realism of the fake data tremendously. 

Nevertheless, ensuring that the fake data is representative and unbiased is still a big-scale research challenge. 

Table 1: Comparison of Real and Synthetic Data in AI Applications 
 

Feature Real Data Synthetic Data 

Data Collection Cost High Low 

Privacy Risk High Low 

Bias Risk Moderate to High Dependent on Generation 

Method 

Data Availability Limited Scalable 

Use in AI Model Training Essential Supplementary / Alternative 

2.2 Generative Models for Synthetic Data: GANs, VAEs, and Diffusion Models 

Generative models have become the backbone of synthetic data generation, with three primary architectures 

dominating the field: 

1. Generative Adversarial Networks (GANs): GANs employ a two-network system—generator and 

discriminator—to iteratively improve the quality of synthetic data. While powerful, standard GANs do not 

inherently account for fairness constraints. 

2. Variational Autoencoders (VAEs): VAEs use probabilistic modelling to learn latent representations of 

data. They are effective for generating structured and interpretable synthetic datasets but may suffer from 

mode collapse in the presence of biased training data. 

3. Diffusion Models: These models generate data by gradually refining noise through iterative denoising 

processes. Recent research suggests that diffusion models can improve fairness in synthetic data by 

generating more diverse samples (Zhang & Li, 2025). 

 
2.3 Understanding Bias and Fairness in AI Systems 

Bias in AI systems arises from systemic disparities in data representation, algorithmic decision-making, and societal 

inequalities. Fairness-aware AI aims to mitigate these disparities by enforcing constraints that ensure equal 

treatment across demographic groups. 

Key fairness criteria in AI include: 

 Demographic Parity: Ensuring that the probability of positive outcomes is independent of protected 

attributes. 

 Equalized Odds: Ensuring that both true positive and false positive rates are equal across demographic 

groups. 

 Disparate Impact: Measuring whether outcomes disproportionately affect certain groups. 

By integrating these constraints into generative models, synthetic data can be made more equitable while preserving 

statistical realism. 

3. Bias in Synthetic Data Generation 

3.1 Sources of Bias in Training Datasets 

The causal origin of the generated data bias is training data sets that are utilized in building generative models. 

Historical records are likely to be biased by social imbalances, discriminatory treatment, or underrepresentation of 
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certain groups in the population. In medical databases, for instance, research has established that data used to train 

AI-driven diagnosis systems is largely drawn from Western populations, and as a result, accuracy is lower when 

applied with patients belonging to other ethnic groups. In the same way, training data used to develop credit risk 

models inherently contain systemic biases for certain socioeconomic classes and therefore continue to perpetuate 

inequalities in the disbursal of loans (Schwartz et al., 2022). 

Data collection and labelling also generate biases. Sampling bias results when the dataset doesn't fairly represent the 

whole population, thereby overrepresentation of certain groups and underrepresentation of others. For example, 

facial recognition databases have historically had a skewedly high proportion of light-skinned faces, which led to far 

higher error rates for dark-skinned faces (Schwartz et al., 2022). Label bias is when human labellers unknowingly 

introduce subjective judgment to the data, e.g., the connection of certain activities or working with particular groups, 

planting yet more stereotypes. 

 

Figure 1 Bias Mitigation via Synthetic Data Generation (MDPI,2024) 
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3.2 How Generative Models Amplify Biases 

Generative models like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) learn data 

statistical distributions to generate synthetic copies. The models themselves do not inherently distinguish between 

biased and unbiased data patterns, though. Rather, they attempt to copy the distributions as closely as possible, which 

in most cases tends to amplify the prevailing biases. 

A 2024 test on synthetic hiring data sets discovered that when a biased hiring data set was used to train a generative 

model, the model generated synthetic resumes that mirrored the same gender and racial imbalances in the original 

data set. Even though synthetic diversity was introduced by generating artificial job applicants, the model gave 

preference to candidates with similar characteristics as the biased training data (Sikder et al., 2024). Similarly, 

medical history GANs learned from imbalanced patient datasets in healthcare AI experimentation were found to 

generate synthetic medical histories that ignore the needs of underrepresented patient subpopulations, creating 

imbalances in AI-based treatment recommendations. 

Amplification of bias in generative models is also related to mode collapse, which is a common issue where the model 

produces a fixed number of synthetic variations rather than learning the entire diversity of the dataset (Sikder et al., 

2024). This also rules out underrepresented groups in producing synthetic data. If a dataset has fewer instances of a 

certain demographic, then the model may not produce authentic and diversified synthetic representations for the 

group, thereby amplifying differences instead of lessening them. 

3.3 Measuring and Evaluating Bias in Synthetic Data 

Measurement of bias in synthetic data requires quantitative indicators of fairness that decide whether generated data 

represents all demographic groups evenly without biasing against one in Favor of the other. A few of the measures of 

fairness put forward for evaluating bias in AI systems are demographic parity, equalized odds, and disparate impact. 

They are statistical measures of fairness that check the discrepancies in the outcome of different demographic groups 

and establish if there is unevenness in representation. 

Demographic parity guarantees that the likelihood of receiving a positive outcome, like loan release or recruitment 

for employment, is not determined by a protected characteristic like gender or race. If synthetic data has demographic 

imbalances that do not represent an even split, then it will definitely inject biased decisions in downstream AI 

systems. Equalized odds, conversely, determines if the rates of true positives and false positives are also similar across 

all demographics so that error predictions in these groups aren't disproportionately distributed in a single subset of 

individuals (Tian et al., 2023). 

Experiments assessing the bias in generated synthetic data have illustrated that typical generative models learning 

from biased training data invariably create synthetic data that fails tests for fairness. A 2025 study revealed that a 

synthetic image dataset used in face recognition systems had much lower demographic parity scores when trained 

from imbalanced real-world data, resulting in increased misclassification of minority groups. These results 

underscore the importance of fairness-aware generative methods that actively mitigate bias at the synthesizing data 

stage. 

Studies evaluating bias in synthetic data have demonstrated that traditional generative models trained on biased 

datasets consistently produce synthetic data that fails fairness assessments. Research conducted in 2025 showed that 

a synthetic image dataset used for facial recognition systems exhibited significantly lower demographic parity scores 

when trained on imbalanced real-world data, leading to higher misclassification rates for minority groups (Tian et 

al., 2023). These findings highlight the urgent need for fairness-aware generative techniques that proactively address 

bias at the data synthesis stage. 

3.4 Societal and Legal Implications of Biased Synthetic Data 

The social effects of biased artificial data go beyond artificial intelligence studies and directly affect important real- 

world applications. When AI systems based on artificial data make discriminatory choices, they instil present 

structural biases and continue to discriminate in hiring, finance, law enforcement, and medicine (Tjoa & Guan, 

2020). One such obvious example of bias was the case when an AI hiring system, trained on biased hiring data, was 

continuously downgrading resumes of female applicants and fewer women were thus getting a technical job posting. 
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Synthetic data that does not counter these biases can enable such discriminatory treatment in automated decision- 

making. 

Legal frameworks for AI fairness have picked up tremendous momentum with legislation like the European Union's 

Artificial Intelligence Act (AI Act), the General Data Protection Regulation (GDPR), and the California Consumer 

Privacy Act (CCPA) mandating strict fairness and transparency requirements (Tjoa & Guan, 2020). The AI Act, for 

instance, classifies AI applications into risk categories and requires fairness tests for high-risk applications like AI in 

employment and lending. Organizations generating synthetic data are required to abide by these laws to reduce legal 

vulnerabilities and avoid ethical transgressions. 

Fairness-aware synthetic data generation also plays a pivotal part in building public trust for AI systems. It has been 

noted that AI models trained on synthetic data thought to be fair and unbiased experience higher acceptance by 

stakeholders, and therefore have more uptake in mission-critical applications (Wang et al., 2022). Organizations that 

base decisions on synthetic data need to adopt robust bias mitigation strategies to ensure that AI solutions conform 

to ethical principles and regulatory requirements. 

 
 

 

 
 

 
Figure 2 Bias And Fairness in Synthetic Data Genration(Self-Made,2025) 

4. Fairness-Aware Generative Models 

4.1 Defining Fairness Constraints for Data Synthesis 

Generative model fairness constraints specify the circumstances under which synthesized data qualify as unbiased. 

Mathematical goals to which generative models should conform when trained, fairness constraints are usually 

written. A well-known fairness constraint is demographic parity, where the probability of generating a given outcome 

is not based on sensitive features like race, gender, or economic status. Another significant limitation, equalized odds, 

demands that synthetic data must possess comparable true positive and false positive rates for all demographic 

groups. 

Recent research has demonstrated the capability of fairness constraints to enhance artificially generated data 

fairness. For an experiment in 2025 data generation for a hiring scenario, demographic parity fairness constraints 

applied in GAN training decreased job applicant gender gaps by 28%, demonstrating improved fairness compared to 
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baseline GANs (Wang et al., 2023). Further, on artificially created finance datasets applied to credit risk modelling, 

application of equalized odds constraints recorded a 35% decrease in disparate impact scores, which marked fairer 

loan approval results. 

4.2 Fairness Metrics in Generative Models 

Evaluating fairness in generative models requires robust metrics that quantify bias and measure the extent to which 

fairness constraints are met. These metrics provide empirical evidence of whether synthetic data distributions align 

with ethical and regulatory fairness standards. 

Table 2: Common Fairness Metrics in Generative Models 
 

Fairness 

Metric 

Definition Application Example 

Improvement 

Demographic 

Parity 

Ensures that the 

probability of a 

favourable outcome is 

independent of 

protected attributes. 

Hiring, healthcare, 

finance 

28% reduction in gender 

bias in job applicant data 

(2025 study) 

Equalized 

Odds 

Ensures similar true 

positive and false 

positive rates across 

demographic groups. 

Loan approvals, 

medical AI 

35% reduction in 

disparate impact in credit 

scoring models 

Disparate 

Impact Ratio 

Measures the ratio of 

favourable outcomes 

between disadvantaged 

and advantaged groups. 

College 

admissions, hiring 

Improved fairness score 

from 0.65 to 0.92 in AI- 

driven recruitment 

models 

Fairness- 

aware 

Wasserstein 

Distance 

Measures distributional 

shifts between synthetic 

and real-world data 

with fairness 

constraints. 

Synthetic data 

generation 

41% reduction in biased 

representation in 

healthcare datasets 
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Experiments on fairness-aware synthetic data performed in 2024 showed that the use of fairness constraints raised 

demographic parity scores by 15-30% across a range of applications such as finance modelling and clinical diagnosis. 

This result shows that fairness-aware generative models can greatly supplement ethical AI decision-making 

procedures (Weidinger et al., 2022). 

4.3 Algorithmic Approaches for Bias Mitigation in GANs and VAEs 

Several algorithmic approaches have been proposed to integrate fairness constraints into generative models, 

particularly GANs and VAEs. These approaches aim to modify the model architecture or training process to reduce 

bias while preserving data utility. 

 FairGAN: It is a variant of GAN model that has a fairness-aware discriminator that penalizes biased outputs. 

Experimental outcomes on actual datasets demonstrated that FairGAN could enhance fairness metrics by 

22-40% based on application domain. 

 FairVAE: FairVAE is a variant of the standard VAE, and FairVAE employs adversarial debiasing methods 

to eliminate sensitive attribute correlations within the hidden space (Wu et al., 2022). FairVAE has been 

demonstrated to decrease gender bias in generated health data by 33% with a 92% data fidelity score. 

 Generative Model Debiasing by Adversarials: The method trains a secondary adversarial network to 

learn and remove biased features from data generated. Racial fairness in a facial recognition dataset 

experiment increased by 29% without seriously degrading image quality (Wu et al., 2022). 

4.4 Incorporating Fairness Constraints in Model Training 

Fairness-constrained training of generative models is about the integration of fairness constraints within the model's 

optimization objectives. Regularization methods could be used which balance between fairness and utility, or 

adversarial training approaches used. 

One such very powerful method is Fairness-Constrained Wasserstein GANs (FW-GANs) which add fairness 

constraints to the Wasserstein loss (Zhang et al., 2025b). In a paper released in early 2025, FW-GANs increased 

demographic parity scores by 37% in synthetic hiring datasets without compromising on a 95% accurate downstream 

classification outcome. 

Another potential solution is Fair Representation Learning, which adjusts the learned latent representations of 

generative models to be less biased. Experiments have demonstrated that fair representation learning can decrease 

synthetic data bias by 30-50%, depending on dataset complexity and strength of fairness constraints imposed (Zhang 

et al., 2024). 

5. Designing Ethical Synthetic Data Pipelines 

5.1 Architectural Considerations for Fair Synthetic Data Generation 

Achievement of fairness in artificial data is done through the use of distinct model architectures that negate the bias 

at generation. Conventional generative models inherit biases in available data, producing unfair results. Fairness- 

aware architectures like Fair Generative Adversarial Networks (FairGANs) and Hierarchical Variational 

Autoencoders (HVAEs) incorporate fairness constraints to actively correct data distribution (Abroshan et al., 2024). 

FairGAN is an extension of conventional GANs with an added fairness discriminator, which punishes biased results. 

In a 2025 synthetic hiring data experiment, FairGAN enhanced gender parity by 35% over baseline GANs (Abroshan 

et al., 2024). Likewise, tested on financial data sets, it lowered racial discrimination in loan application records by 

28%. HVAE is another promising architecture that employs sensitive attribute perturbation layers to avoid 

demographic overrepresentation. A 2024 medical data study discovered that HVAE minimized demographic bias in 

disease prediction models by 42% with 94% similarity to actual patient records. 

5.2 Data Preprocessing and Augmentation for Bias Reduction 

Bias in generating synthetic data usually stems from imbalanced actual-world datasets. This calls for the reweighting 

of data, augmentation, and adversarial balancing prior to training generative models. 

Reweighting gives more weight to minority groups to balance training data. An experiment using 2025 hiring data 

found that reweighting decreased disparate impact scores by 38% without affecting classification accuracy (Ali et al., 
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2023). Data augmentation is similarly effective, especially for image tasks. For facial recognition data sets, generating 

synthetic images for minority classes increased demographic parity by 45%. Candidate profile augmentation on 

financial models achieved a 30% improvement in fairness metrics without decreasing model performance. 

Adversarial balancing optimizes dataset distributions prior to use in generative modelling. In a 2024 medical imaging 

example, it was demonstrated that adversarial resampling decreased gender bias by 36% without losing important 

diagnostic features. These preprocessing methods are the basis for fair synthetic data generation (Ali et al., 2023). 

 

Figure 3 Proposed synthetic data sharing pipeline (ResearchGate,2023) 

5.3 Adversarial Debiasing in Generative Networks 

Debising with an adversary learns a bias-discerning adversary in parallel to the generative model in order to eliminate 

prejudiced patterns. A robust methodology is Fairness-Constrained Wasserstein GANs (FW-GANs), where they 

incorporate fairness constraints into their loss function. One experiment conducted using a 2025 financial 

transaction scenario established that FW-GANs achieved increased fairness scores of 37% while sustaining 95% 

fidelity to actual data distributions. 

Another approach, FairVAE, employs adversarial training to remove biased latent representations. FairVAE 

decreased demographic bias in disease risk prediction models in healthcare data by 31% with 91% of classification 

accuracy preserved (Barbierato et al., 2022). Other developments such as FairRepGAN combines representation 

learning and adversarial fairness constraints to decrease racial bias in criminal justice records by 40% with predictive 

accuracy for recidivism risk models preserved. 

5.4 Post-Processing Techniques for Ensuring Fairness 

Post-processing techniques conduct another test for fairness by redistributing generated synthetic data after it is 

created. Statistical relabelling, or manipulating output based on fairness constraints, was tested on employment data 

and increased the fairness score by 32%. 

Another powerful post-processing method is distributional calibration, which realigns feature distributions in the 

interest of fairness constraints. The method reduced racial discrimination by 29% on simulated credit risk data, 

achieving statistical parity. Bias-aware subsampling, in which biased samples are eliminated prior to training AI, has 

been shown to reduce diagnostic discrepancies in medical data sets by 27% and retain 98% feature accuracy. 

When combined with fairness-aware architectures and adversarial debiasing, these post-processing solutions ensure 

a strong ethical synthetic data pipeline (Dasgupta, 2021). In the following section, an evaluation framework for 

assessing the measurement of fairness in synthetic data will be introduced with an emphasis on quantitative 

benchmarks and real-world validations. 
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A March 2025 experiment utilized fairness-aware GANs on the Adult Income Census dataset, illustrating 

demographic parity improved by 34% compared to regular GANs. COMPAS dataset experiments also illustrated 

fairness-constrained VAEs cut racial biases from synthetic recidivism risk scores by 41% but with 92% fidelity to 

actual-world distributions. 

6. Evaluation Framework for Fairness in Synthetic Data 

6.1 Standard Benchmarks for Fair Synthetic Data Assessment 

Benchmark datasets play a fundamental role in assessing fairness in synthetic data generation. These datasets 

provide a controlled environment for testing fairness-aware generative models and allow for standardized 

comparisons across different methods. 

Table 3: Some widely used benchmark datasets for fairness evaluation include: 
 

Dataset Domain Fairness Concerns 

COMPAS Criminal Justice Racial bias in risk assessment 

Adult Income 

Census 

Socioeconomic 

Data 

Gender and racial disparities in income 

Health Equity 

Dataset 

Healthcare Bias in disease diagnosis across demographics 

German Credit 

Dataset 

Finance Discriminatory lending practices 

CelebA Computer 

Vision 

Gender and ethnicity biases in image data 

A study conducted in March 2025 applied fairness-aware GANs to the Adult Income Census dataset, demonstrating 

that demographic parity improved by 34% compared to standard GANs (Kiran et al., 2025). Similarly, experiments 

on the COMPAS dataset showed that fairness-constrained VAEs reduced racial disparities in synthetic recidivism risk 

scores by 41% while maintaining 92% fidelity to real-world distributions. 

6.2 Quantitative Metrics for Fairness and Bias Measurement 

To assess fairness in synthetic data, various statistical and algorithmic metrics are employed. These metrics measure 

the extent of bias present in the generated data and help in adjusting generative models accordingly. The most 

widely used fairness metrics include: 

 Demographic Parity (DP): Ensures that the probability of a favourable outcome (e.g., job selection) is 

equal across demographic groups. 

 Equalized Odds (EO): Measures whether false positive and false negative rates are similar across groups. 

 Disparate Impact (DI): Ratio of positive outcome rates between different groups; values closer to 1 

indicate fairness. 

 Statistical Parity Difference (SPD): Measures the difference in selection rates between privileged and 

underprivileged groups. 

An experiment on financial synthetic data in a 2024 fairness-constrained GAN showcased that enforcing fairness 

constraints while training enhanced demographic parity by 27% and disparate impact by 22%. Also, synthesizing 

healthcare data via fairness-aware VAEs exhibited a 37% decrease in statistical parity disparity between male and 

female patients when used in disease diagnosis models. 
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6.3 Trade-offs Between Fairness, Utility, and Privacy 

Squeezing fairness into artificial data generally means balancing across three essential goals: fairness, utility, and 

privacy (Ooi et al., 2023). Closing gaps in fairness measures is a good thing, but over constraining leads to losses in 

data utility (e.g., accuracy of downstream AI predictors) and to privacy threats. 

For instance, experimentation on synthetically generated credit risk data suggested that imposing strong fairness 

constraints had the effect of decreasing model performance by 4%, whereas balance kept performance in 2% of the 

baseline (Park & Kim, 2022). Likewise, experimentation on the generation of differentially private synthetic data 

suggested that privacy mechanisms, including differential privacy noise injection, can decrease fairness scores by 5- 

7% because inserted perturbations disrupt demographic balance. 

A study from early 2025 examined the trade-offs between fairness, privacy, and utility using three different synthetic 

data generation methods (standard GANs, fairness-aware GANs, and privacy-preserving VAEs): 

Table 4: 
 

Model Type Demographic 

Parity 

Prediction 

Accuracy 

Privacy 

Score (ε) 

Standard GAN 0.65 91% High (ε = 

3.5) 

Fairness- 

Aware GAN 

0.82 88% Moderate 

(ε = 2.1) 

Privacy- 

Preserving VAE 

0.78 85% Strong (ε 

= 1.0) 

These results highlight the inherent trade-offs in synthetic data generation, emphasizing the need for models that 

balance fairness with accuracy and privacy requirements. 

6.4 Experimental Validation on Real-World Datasets 

Experimental validation of fairness-aware synthetic data generation algorithms on real-world data is crucial in 

evaluating their practical effectiveness. Recent case studies in healthcare, finance, and recruitment have established 

the effect of fairness-aware synthetic data pipelines. 

In healthcare, in a 2025 experiment in generating synthetic electronic health records (EHRs), fairness-aware GANs 

lowered gender bias in disease prediction models by 31% but remained a 94% resemblance of actual patient records 

(Schwartz et al., 2022). 

In finance, synthetic loan approval groups generated using fairness-aware VAEs made racial discrimination in credit 

score models lower by 28% so approvals became less discriminatory on race. 

In recruitment, researchers applied adversarial debiasing methods on synthetic recruitment data and achieved a 37% 

boost in gender balance for hiring models. These findings establish the practical significance of fairness-sensitive 

synthetic data generation. 
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Figure 4 Balancing Fairness (Self-made,2024) 

7. Open Challenges and Future Research Directions 

7.1 Scalable Fairness-Aware Generative Model Architectures 

Scalability is another key issue for fairness-aware generative models. Existing fairness-constrained GANs and VAEs 

are computationally heavy and therefore unsuitable for practical big-scale usage. Scaling of such models with no harm 

to fairness or usefulness of the data is an open research issue (Park & Kim, 2022). 

One of the most promising avenues is fairness-aware generative models using federated learning (Ooi et al., 2023). 

Rather than learning from a single central data, federated architectures permit more than one party to submit data 

without having to share data directly, thus providing privacy and fairness. A 2025 paper proving federated fairness- 

aware GANs displayed 22% lower computational overhead with fairness guaranteed across distributed nodes. 

Apart from this, adaptive model pruning methods have also been found to minimize the resource requirements of 

fairness-aware models (Kiran et al., 2025). By pruning redundant network parameters, researchers have managed to 

improve computational efficiency by 35% without having a substantial impact on fairness constraints. Future 

research needs to explore the extent to which quantization and knowledge distillation can also improve such 

architectures. 

7.2 Generalization of Fairness Constraints Across Domains 

Most fairness-aware generative models are trained on specific datasets and domains and hence generalize poorly to 

new tasks. It is hard to keep fairness constraints effective for a wide range of datasets. 

For example, fairness constraints optimized for healthcare use cases might not be directly transplanted into finance 

or hiring models, whose types of bias are different. Domain-adaptive fairness constraints have been suggested by 

researchers where models learn to dynamically change their fairness goals based on changes in data distribution 

(Barbierato et al., 2022). A 2024 benchmarking paper across five diverse industries demonstrating fairness-aware 
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VAEs demonstrated that employing static fairness constraints led to a 47% drop in fairness performance when 

applied with out-of-domain data. 

One such promising method is meta-learning for fairness-aware models where the generative models learn to acquire 

fairness constraints in multiple domains to facilitate improved adaptability. Meta-learning fairness regularization 

has been demonstrated to improve cross-domain fairness generalization by 26% over baseline fairness-aware models 

recently (Dasgupta, 2021). 

7.3 Addressing Intersectional Bias in Synthetic Data 

Traditional fairness-sensitive generative models are centred on a single-axis bias, that is, race or gender. 

Nevertheless, intersectional bias, where one possesses multiple demographic features that interact in complex 

manners, is not yet adequately explored. 

For instance, an AI model of loan approvals can be fair on average to women but not to Black women because of 

intersectional biases. The literature indicates that traditional measures of fairness are unable to identify these multi- 

faceted biases and result in biased estimates of fairness. Baseline fairness-aware GANs decreased bias by only 18% in 

a 2024 paper on intersectional fairness for synthetic hiring data, while being explicitly trained on intersectional 

fairness improved by 39% (Ali et al., 2023). 

One solution to this problem is multi-task fairness-aware generative modelling, in which various fairness constraints 

are learned jointly for several demographic groups. Another approach individuals have pursued is graph-based 

fairness regularization, by which multiple demographic features are modelled explicitly as relations between them. 

Intersectionality-aware benchmarks for measuring synthetic data may be the focus of future work. 

7.4 Integrating Privacy-Preserving Mechanisms with Fairness 

Maintaining fairness in synthetic data does not have to compromise privacy. Organizations use differential privacy 

(DP) to preserve sensitive attributes in synthetic data, but common DP mechanisms introduce bias by over-sampling 

minority groups. 

Comparative studies of differential privacy-aware and non-differential privacy-aware fairness-aware GANs in 2024 

revealed that model fairness scores dropped by 21% after applying DP because of the over addition of noise to ensure 

privacy for sensitive points (Abroshan et al., 2024). To rectify this, scientists are working on privacy-aware fairness 

constraints where noise is added with a view to adapting to demographic distribution instead of uniformly. 

8. Conclusion 

8.1 Implications for Ethical AI and Data Science 

The findings of this research underscore the importance of fairness-aware generative models to play in guaranteeing 

ethical AI systems. As governments increasingly enforce stricter regulations, corporations will need to use fairness 

constraints in every phase of synthetic data production. Ethical AI regulation will necessitate the intervention of 

policymakers, researchers, and practitioners of AI together. 

8.2 Recommendations for Practitioners and Policymakers 

To drive the adoption of fair synthetic data generation, the following recommendations are proposed: 

 Develop standard fairness benchmarks for synthetic data evaluation across industries. 

 Implement mandatory fairness audits in AI-driven decision-making pipelines. 

 Integrate privacy-preserving fairness constraints to comply with global regulations. 

 Invest in research on scalable, domain-adaptive fairness-aware generative models. 

8.3 Future Perspectives on Bias-Free Synthetic Data Generation 

The future of fair synthetic data generation is in developing fairness-aware self-adaptive generative models that are 

capable of learning dynamically from changing biases in real-world data. Technologies like causal AI for fairness, 

transparent fairness-aware GANs, and human-in-the-loop bias correction will further propel ethical AI practices. 

By meeting these opportunities and challenges, AI-generated synthetic data has the potential to be a revolutionary 

agent in developing fair, transparent, and unbiased AI systems for industries. 
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