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Early detection of heart disease is critical to the patient's survival. An electrocardiogram (ECG) 

is a test that analyses heartbeat variations. ECG is a test that checks on how your heartbeats vary. 

Various cardiac diseases can be detected by the deviation of signals from the typical sinus rhythm 

as well as from mere anomalies. The ECG signal carries minor amplitude variation, thus can 

cause errors as it may be difficult to make a diagnosis on the cardiac conditions. The only way to 

preserve the human lives is by the very accurate recognition method. The ECG signals are utilized 

in an appropriate and accurate way for classifying and predicting the heart diseases through a 

proposed study in this study. In the study, Convolutional Neural networks (CNN), Visual 

Geometry Group (VGG) and Logistic Regression (LR) were employed to predict the heart 

diseases; the results proved out robust and finally, ensemble approaches were developed based 

on the combination of CNN, VGG, LR with Bidirectional Recurrent Neural Network(BRNN), 

Gated Recurrent unit, and Long Short term memory which are used to predict heart diseases and 

performance of each as discussed. 

Keywords: Electrocardiogram, Deep Learning, Heart diseases, Convolutional Neural networks, 

Visual Geometry Group, Logistic Regression (LR) 

 

1. INTRODUCTION: 

Heart failure now causes significant medical problems across the world because more people are reaching senior age. 

Multiple approaches exist today for finding Cardio Vascular diseases. Examining ECG signals makes up one method 

of diagnosis. ECG detects heart electrical activity through a basic medical tool. The heartbeats become visible through 

the graph that ECG produces. The electrical patterns in the ECG display each heartbeat through specific peaks and 

valleys. ECG data provides two important functions: it helps evaluate heart electrical activity by measuring length 

and detects lung demands on heart muscle areas. ECG records the heart's electorical signals when operating between 

0.05 to 100 Hertz with a voltage variation of 1 to 10 mV7. 

Deep learning algorithms proved better than prior methods for processing ECG signals accurately. Deep learning 

works within machine learning to process information like the human brain using neural network algorithms. A 

neural network builds its neurons from extensive data training sessions. The system takes ready data to create an 

effective deep learning model after all training steps are completed. (Prusty et al, 2024). People believe the available 
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machine learning methods for detecting congestive heart failure need better performance. Advanced research and 

development work is needed to improve these systems' performance standards. Researchers need to develop better 

algorithms to enhance the entire performance of machine learning systems. ECG diagnosis systems with machine 

learning face problems creating an entirely steady ECG multi-class diagnosis system(Pachiyamman et al,2024). 

1.1 ElectroCardiogram(ECG) 

An ECG is a non invasive diagnostic and monitoring method that permits to evaluate the heart’s electrocardiography 

activity through biological items’ chest during a definite period of time. Samples them up and records the electrodes 

placed on the skin of specific biological invention parts and continues to store the relevant Record in a particular 

structure. A graphic electrice dated circuit that exhibits alterations in voltage between electrodes applied on a 

patient’s torso to illustrate heart operation is known as an electrocardiogram. An ECG signal records electrical activity 

of the heart and some forms of heart diseases which causes improper heart shape and insufficient blood circulation. 

The electrical currents in circulation are in relation to the action potential of the contractions within the wall of the 

heart. Electrodes are attached to the body’s surface and they are capable of detecting the several potentials which are 

produced in the body by the spreading currents. A biological transducer refers to the electrodes which are made up 

of metals and salts. As applied in practice, the ten electrodes are placed at different parts of the body. This is a 

conventional procedure for acquiring as well as analyzing ECG data(Peiman et al 2024). An average ECG wave in a 

healthy male adult is illustrated in the figure below; As shown in figure 1 below, an ECG wave of a healthy male adult 

is composed of; 

 

Figure 1. A sample ECG Wave. 

The remaining sections are organized as follows. Section 2 summarizes the relevant literature on ML and DL 

techniques to predicting cardiac disease. Section 3 presents methodology and recommendations, while Section 4 

conducts an experimental analysis using performance metrics. Section 5 concludes and discusses future projects. 

1.2 Deep Learning and CNN 

Deep learning is commonly acknowledged as a branch of machine learning. In essence, deep learning is a strong 

machine learning technology that works especially well when handling large volumes of data and challenging 

situations. The performance of an automated classification system that makes use of deep learning algorithms can be 

greatly affected. Deep learning makes use of multi-layered, intricate neural networks. By allowing the system to 

recognize various patterns from the input, these networks help the system make better decisions. An algorithm like 

this simulates how neurons in the human brain communicate and interpret information from the surroundings. One 

type of network that deep learning algorithms use to predict and classify diverse patterns in a variety of issues is a 

convolutional neural network (CNN)(Eleyan al,2024). 

2. RELATED WORKS  

The detection of heart disease through automated Convolutional Neural Networks (CNN) requires the novel 

application of Scale-Invariant Feature Transform (SIFT) for extracting distinctive ECG signal picture features 

according to prusty et al. The research team of Zhang et al. developed heart failure NYHA functional classification 

through deep learning methodology. A deep learning approach with attention mechanism based on CNN-LSTM-SE 

model performs heart failure classification through 2 to 20-second ECG data segments according to ablation tests. 
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Initial signal breakdown using Adaptive DWT produces the first feature set for Deep Convolutional Neural Networks 

(DCNN) to analyze according to [4]. The R-R intervals undergo a first analysis for extraction and then the DCNN 

performs deep feature extraction to obtain characteristics from the R-R intervals. DCNN extracts the third feature 

set from QRS waves following their examination in acquired signals. The detection of heart disease happens through 

the conjunction of all three feature sets while ERBF generates categorized results and accuracy along with F1.Score 

and AUC evaluate the procedure. 

Researchers at Shoughi and his co-team propose a heart condition detection framework that uses the combination of 

ECG signal analysis through convolutional neural networks together with db2 mother wavelet processing and 

synthetic minority over-sampling technique (SMOTE) on the MIT-BIH dataset. This study presents two main 

components: an IoT-based ECG monitoring system which generates data using Node MCU ESP32 along with AD8232 

heart rate sensor and develops an intelligent hybrid algorithm to classify the data. The heart disease detection system 

developed by Golande et al. in 2024 utilizes ensemble methods for feature extraction while deep learning handles the 

classification process. This framework includes processing ECG data before a hybrid process generates new features 

which leads to disease categorization. The reliable filtering technique used for signal pre-processing preserved the 

input signal integrity by reducing artifacts while removing noise. The extraction process for ECG features should 

integrate both automatic general methods and cardiac cycle particular solutions. Our method employed 

Convolutional Neural Network (CNN) and Stationary Wavelet Transform (SWT) for implementing hybrid feature 

engineering. 

The Deep Convolutional Neural Network receives training from Chameleon-Sparrow Search Algorithm (CsSA) per 

Soman et al, 2024 to achieve effective arrhythmia classification through ECG signals. The Daubechies wavelet filter 

processes the data while both EMD and VMD features are extracted from it. The analysis extracted six vital 

characteristics from each ECG category through the application of DWT and PCA techniques. A combination of 

adaptive neuro-fuzzy inference system (ANFIS) classifier was utilized to evaluate the features producing a 99.4% 

overall classification accuracy with 99.3% average sensitivity and 99.8% average specificity (Abagaro et al, 2024). 

Nawaz et al. (2024) presented a sophisticated cardiac heartbeat analysis method that unites Support Vector Machine 

(SVM) with Random Forest (RF), Logistic Regression (LR) and Decision Tree (DT) models for detecting normal or 

abnormal or COVID-19 heart condition patterns. 

Banjarnahor et al, 2024 implemented the decision tree method for decision-making in their machine learning 

approach according to the author. Decision tree analysis yielded promising outcomes since it detected heart disorders 

in their early stages effectively 99% of the time. The diagnostic potential of this technique appears strong for medical 

professionals to detect cardiac abnormalities at an early stage. The CN classifier based on CNN performs Continual 

Normalization using a higher learning rate for easier standard deviation learning of neuron output. The researchers 

employed collected features to determine the classification of ECG signals from five significant arrhythmic forms 

(Begum et al, 2024). CHDdECG represents a deep learning algorithm that extracts pediatric electrocardiogram 

features automatically alongside wavelet transformation characteristics before integrating them with crucial human-

concept features as described by Chen eta l.,2024. CHDdECG demonstrated superior diagnostic accuracy against 

cardiologists for CHD detection while machine-generated electrocardiogram features gained more importance than 

human-based features so CHDdECG might contain knowledge beyond the comprehension of humans. 

Moses et al in 2024 attempted to evaluate how machine learning algorithms handle HRV data as a non-invasive 

biomarker for heart failure differentiation among healthy patients. The analysis incorporates four classification 

methods namely support vector machine and k-nearest neighbor (KNN) in combination with naïve Bayes and 

decision tree (DT). Multiple recent studies from the literature are tabulated in table 1 for utilizing DL approaches 
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Table 1: Recent Studies in the literature for DL based heart disease prediction 

Author Year  Method Dataset Score 

Prusty et al. , 2024[1] CNN, SIFT User collected data 

with three classes 

Arrythmia, Congestive 

Heart Failure and 

Normal Sinus Rhythm  

Accuracy  99.78% 

F1-Score 99.78% 

Pachiyannan et al. 

,2024 [2] 

CNN, Bi-LSTM and 

Attention 

Mechanism (AM) 

UCI heart disease 

dataset 

 

average accuracy rate- 94.28%, 

precision- 87.54%, recall rate- 

96.25%, specificity rate - 91.74%, 

FPR-8.26%, and FNR- 3.75%. 

Zhang et al., 2024  

[3] 

CNN-LSTM-SE Care III(MIMIC –III) accuracy, positive predictive 

value, sensitivity, and specificity 

of the NYHA functional 

classification method were 

99.09, 98.9855, 99.033, and 

99.649%, respectively. 

Dhara et al., 2024 [4] ADWT, DCNN User generated dataset accuracy, F1-score, and AUC. 

Shoughi et al., 2024 

[5] 

SMOTE, CNN, 

DWT 

User generated dataset Accuracy 

Ketu et al., 2024 [6] Adaboost, Bagging, 

RF, KNN, SVM 

User generated dataset Accuracy 

Golande et al., 2024 

[7] 

CNN, SWT, LSTM publicly available 

multi-disease ECG 

dataset. 

Accuracy 

Soman et al., 2024 

[8] 

CNN, CsSA MIT-BIH Arrhythmia 

Database 

accuracy, sensitivity, as well as 

specificity at a rate of 0.947, 

0.929, and 0.964 

Abagaro et al., 2024 

[9] 

DWT, PCA, ANFIS PhysioNet database accuracy of 99.44%, with average 

sensitivity and specificity of 

99.36% and 99.84%, 

respectively. 

Nawaz et al., 2024 

[10 

SVM, RF, LR, DT Abnormal, normal and 

COVID -19 affected 

dataset 

Accuracy-77%, 82%, 78%, and 

83%. 

Zhou et al., 2024 [11] CNN, FCA MIT-BIH Arrhythmia 

Database 

Accuracy 99.6 % 

Banjarnahor et 

al.,[12] 2024 [13] 

DT 16-lead ECG data Accuracy -99% 

Begum t al., 2024 

[13] 

CNN  Arrhythmia Database Accuracy 99.2% 

Chen et al., 2024 [14] DL ECG dataset ROC-AUC, Specificity,  

Moses et al., 

2024[15] 

SVM, KNN, DT PhysioNet database Precision, Recall, Specificity, F1-

Score and Accuracy 
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3. Methodology 

The Study is conducted by combining the various DL approaches as shown below in figure-2.The overview of the each 

of the models used in this study are explained below. 

 

Figure 2 : Workflow of Heart Diseases prediction with DL models 

3.1 Convolutional Neural Networks(CNN) 

The presented CNN model contains eight total layers that include five CNN layers and one flatten layer followed by 

two dense layers. The components inside each CNN layer include 1D max pooling and batch normalization alongside 

1D CNN. ECG waveforms are transmitted to 500 neurons within the first input signal layer preceding distribution to 

subsequent layers. A 1D CNN operates to extract relevant information from incoming inputs which makes it the 

primary layer in the CNN model. After obtaining features in the range of 0 to 1 the batch normalization layer simplifies 

these features when the features have traveled through. The features are delivered to the max pooling layer as a last 

step. The maximum values and strongest features are detected by this kernel through its operational method. The 

procedure decreases data dimensions by filtering out unneeded features. The last four CNN components apply the 

same stepwise process to their operations. A flatten layer produces one-dimensional column vectors from the features 

to prepare the data before it reaches the following dense layers consisting of 2000 and 500 fully connected nerves for 

pre-classification. The output dense layer contains three neurons to represent the three target classes as its final 

connections according to Eleyan et al, 2024. 

3.2 Visual Geometry Group(VGG16) 

VGG-16 is an architecture based on VGG, and VGG has the architecture of a CNN network [50]. With 16 connection 

layers—13 convolution layers and 3 fully connected levels—the VGG- is a  DL neural network. The fully connected 

layers categorize the   based on the attributes that the convolution layers have extracted from the input images 

(Nguyen). The pre-trained VGG16 model can identify a wide range of features because it was trained on a sizable 

dataset of images. On the other hand, the model's output layer is unique to the dataset used for training (Mahmoud 

et al, 2023).  

3.3 Bi-directional Recurrent Neural Networks (BRNN) 

Artificial neural networks (ANN) that analyze input data in both the forward and backward directions are called bi-

directional recurrent neural networks, or Bi-RNNs. Natural language processing (NLP) tasks including text 

classification, named entity recognition, and language translation frequently make use of them. By taking into 
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account both past and future contexts, they can also capture contextual interdependence in the incoming data. The 

ultimate output of bi-RNNs is produced by combining the results of two independent RNNs that process the input 

data in opposite ways. A typical way for merging the outcomes of the forward and reverse RNNs is to combine them. 

Still, other approaches, such as element-wise addition or multiplication, can also be utilized. The particular task at 

hand and the intended characteristics of the finished product may influence the combination method selection 

[Naveneeth et al.2024,Rahman et al.,2024).  

3.4   Gated Recurrent Unit (GRU)  

A GRU network has the Gated Recurrent Unit (GRU) cell as the fundamental unit. Their three primary parts are an 

update gate, a reset gate, and a candidate concealed state. Figure 3 depicts the GRU network with the hidden state 

and the inputs combined by the cell and passed through the reset and update gates. The output needs to be forecast 

in the current timestep and this hidden state will be passed through a thick layer with softmax activation, in order to 

generate output. This acquires a fresh hidden state and advances the next time step. The present GRU cell, an update 

gate decides as of what the next GRU cell will have an information transfer. It helps to remember only the most 

important information. The reset gate decides which data needs to not remain in the GRU network, there should be 

data that needs be removed, and spurious information to discard. In short, it chooses which information to erase at 

the given time. Unlike RNN networks, GRU networks process time series or spoken language step by step to avoid 

the hidden state. The vector captures the information of the previous time steps that are relevant in predicting the 

current time step from the hidden state. The basic idea that gauges the fog for a GRU(Sakla et al, 2023) is allowing 

the network to decide which of the data from last time step is important to the current time step and which can be 

omitted. 

 

Figure 3  GRU Network 

3.5 Long Short Term Memory (LSTM) 

An enhanced RNN called an LSTM employs "gates" to record both short- and long-term memory. These gates aid in 

preventing the gradient disappearing and explosion problems that arise in conventional RNNs. With gates dubbed 

"forget gate," "input gate," and "output gate," LSTM boasts a well-built framework. It is made to efficiently absorb 

and analyze data across a variety of time intervals. A cell state can have information added or removed by an LSTM 

network. Gates serve as monitoring structures for this process. Gates allow information to flow through them. They 

are made up of a point-to-point multiplication operation and a sigmoid neural net layer(Dileep et al, 2023, Bhavekar 

et al.,2024). Table-2 lists the layers used in CNN with BRNN, CNN with GRU and CNN with LSTM.   
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Table 2 Layers in CNN-BRNN, CNN-GRU and CNN-LSTM 

CNN-BRNN CNN-GRU CNN-LSTM 

 

CONV2D_
12 

Input 
[(None,224,
224,3)] 

CONV2D_1
2_input 

Input 
[(None,224,
224,3)] 

CONV2D_
6_input 

Input 
[(None,224,
224,3)] 

 

Input 
Layer 

Input Layer     
Input 
Layer 

     

Float32 
Outp
ut 

[(None,224,
224,3)] 

Float32 
Outp
ut 

[(None,224,
224,3)] 

Float32 
Outp
ut 

[(None,224,
224,3)] 

 

  

  

    

  

    

  

   

CONV2D_
12 

Input 
[(None,224,
224,3)] 

CONV2D_1
2 

Input 
[(None,224,
224,3)] 

CONV2D_
6 

Input 
[(None,224,
224,3)] 

 

Conv 2D | 
Relu 

Conv 2D | 
Relu 

    
Conv 2D | 
Relu 

     

Float32 
Outp
ut 

[(None,222,
222,32)] 

Float32 
Outp
ut 

[(None,222,
222,32)] 

Float32 
Outp
ut 

[(None,222,
222,32)] 

 

  

  

    

  

    

  

   

Max_pooli
ng2d_12 

Input 
[(None,222,
222,32)] 

Max_pooli
ng2d_12 

Input 
[(None,222,
222,32)] 

Max_pooli
ng2d_6 

Input 
[(None,222,
222,32)] 

 

MacxPooli
ng2D 

MacxPooli
ng2D 

    
MacxPooli
ng2D 

     

Float32 
Outp
ut 

[(None,111,1
11,32)] 

Float32 
Outp
ut 

[(None,111,1
11,32)] 

Float32 
Outp
ut 

[(None,111,1
11,32)] 

 

  

  

    

  

    

  

   

CONV2D_
13 

Input 
[(None,111,1
11,32)] 

CONV2D_1
3 

Input 
[(None,111,1
11,32)] 

CONV2D_
7 

Input 
[(None,111,1
11,32)] 

 

Conv2D | 
ReLu 

Conv2D | 
ReLu 

    
Conv2D | 
ReLu 

     

Float32 
Outp
ut 

[(None,109,
109,32)]  

Float32 
Outp
ut 

[(None,109,
109,32)]  

Float32 
Outp
ut 

[(None,109,
109,32)]  
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Max_pooli
ng2d_13 

Input 
[(None,109,
109,32)] 

Max_pooli
ng2d_13 

Input 
[(None,109,
109,32)] 

Max_pooli
ng2d_7 

Input 
[(None,109,
109,32)] 

 

MacxPooli
ng2D 

    
MacxPooli
ng2D 

    
MacxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 
54,54,32)] 

Float32 
Outp
ut 

[(None, 
54,54,32)] 

Float32 
Outp
ut 

[(None, 
54,54,32)] 

 

  

  

    

  

    

  

   

CONV2D_
14 

Input 
[(None, 
54,54,32)] 

CONV2D_1
4 

Input 
[(None, 
54,54,32)] 

CONV2D_
8 

Input 
[(None, 
54,54,32)] 

 

Conv2D | 
ReLu 

    
Conv2D | 
ReLu 

    
Conv2D | 
ReLu 

     

Float32 
Outp
ut 

[(None, 
54,54,64] 

Float32 
Outp
ut 

[(None, 
54,54,64] 

Float32 
Outp
ut 

[(None, 
52,52, 64] 

 

  

  

    

  

    

  

   

Max_pooli
ng2d_14 

Input 
[(None, 
54,54,64] 

Max_pooli
ng2d_14 

Input 
[(None, 
54,54,64] 

Max_pooli
ng2d_8 

Input 
[(None, 
26,26,64] 

 

MacxPooli
ng2D 

  
  

MacxPooli
ng2D 

  
  

MacxPooli
ng2D 

  
   

Float32 
Outp
ut 

[(None, 
26,26,64] 

Float32 
Outp
ut 

[(None, 
26,26,64] 

Float32 
Outp
ut 

[(None, 
26,26,64] 

 

  

  

    

  

    

  

   

CONV2D_
15 

Input 
[(None, 
26,26,64] 

CONV2D_1
5 

Input 
[(None, 
26,26,64] 

CONV2D_
9 

Input 
[(None, 
24,24,64] 

 

Conv2D | 
ReLu 

    
Conv2D | 
ReLu 

    
Conv2D | 
ReLu 

     

Float32 
Outp
ut 

[(None, 
24,24 ,64] 

Float32 
Outp
ut 

[(None, 
24,24 ,64] 

Float32 
Outp
ut 

[(None, 
24,24 ,64] 

 

  

  

    

  

    

  

   

Max_pooli
ng2d_15 

Input 
[(None, 
24,24 ,64] 

Max_pooli
ng2d_15 

Input 
[(None, 
24,24 ,64] 

Max_pooli
ng2d_9 

Input 
[(None, 
24,24 ,64] 
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MacxPooli
ng2D 

    
MacxPooli
ng2D 

    
MacxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 
12,12,,64] 

Float32 
Outp
ut 

[(None, 
12,12,,64] 

Float32 
Outp
ut 

[(None, 
12,12,,64] 

 

  

  

    

  

    

  

   

CONV2D_
16 

Input 
[(None,12,1
2,64)] 

CONV2D_1
6 

Input 
[(None,12,1
2,64)] 

CONV2D_
10 

Input 
[(None,12,1
2,64)] 

 

Conv2D | 
ReLu 

    
Conv2D | 
ReLu 

    
Conv2D | 
ReLu 

     

Float32 
Outp
ut 

[None, 
10,10,12] 

Float32 
Outp
ut 

[None, 
10,10,12] 

Float32 
Outp
ut 

[None,10,10
,128] 

 

  

  

    

  

    

  

   

Max_pooli
ng2d_16 

Input 
[(None, 
10,10,128)] 

Max_pooli
ng2d_16 

Input 
[(None, 
10,10,128)] 

Max_pooli
ng2d_10 

Input 
[(None, 
10,10,128)] 

 

MacxPooli
ng2D 

    
MacxPooli
ng2D 

    
MacxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 
5,5,128] 

Float32 
Outp
ut 

[(None, 
5,5,128] 

Float32 
Outp
ut 

[(None, 
5,5,128] 

 

  

  

    

  

    

  

   

CONV2D_
17 

Input 
[(None, 
5,4,128] 

CONV2D_1
7 

Input 
[(None, 
5,4,128] 

CONV2D_
11 

Input 
[(None, 
5,5,128] 

 

Conv2D | 
ReLu 

    
Conv2D | 
ReLu 

    
Conv2D | 
ReLu 

     

Float32 
Outp
ut 

[(None, 
3,3,128] 

Float32 
Outp
ut 

[(None, 
3,3,128] 

Float32 
Outp
ut 

[(None, 
3,3,128] 

 

  

  

    

  

    

  

   

Max_pooli
ng2d_17 

Input 
[(None, 
3,3,128] 

Max_pooli
ng2d_17 

Input 
[(None, 
3,3,128] 

Max_pooli
ng2d_11 

Input 
[(None, 
3,3,128] 

 

MacxPooli
ng2D 

    
MacxPooli
ng2D 

    
MacxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 
1,1,128] 

Float32 
Outp
ut 

[(None, 
1,1,128] 

Float32 
Outp
ut 

[(None, 
1,1,128] 
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Flatten_2 Input 
[(None, 
1,1,128] 

Flatten_2 Input 
[(None, 
1,1,128] 

Flatten_1 Input 
[(None, 
1,1,128] 

 

Flatten     Flatten     Flatten      

Float32 
Outp
ut 

[(None, 
128] 

Float32 
Outp
ut 

[(None, 
128] 

Float32 
Outp
ut 

[(None, 
128] 

 

  

  

    

  

    

  

   

Repeat_ve
ctor 

Input 
[(None, 
128] 

Repeat_vec
tor_2 

Input 
[(None, 
128] 

Repeat_vec
tor_1 

Input 
[(None, 
128] 

 

RepeatVect
or 

    
RepeatVect
or 

    
RepeatVect
or 

     

Float32 
Outp
ut 

[(None, 
10,128] 

Float32 
Outp
ut 

[(None, 
1,128] 

Float32 
Outp
ut 

[(None, 
1,128] 

 

  

  

    

  

    

  

   

Reshape Input 
[(None, 
10,128] 

GRU Input 
[(None, 
1,128] 

Lstm_1 Input 
[(None, 
1,128] 

 

Reshape     GRU | tanh     
LSTM| 
tanh 

     

Float32 
Outp
ut 

[(None,1,12
8] 

Float32 
Outp
ut 

[(None,128] Float32 
Outp
ut 

[(None,128]  

  

  

    

  

    

  

   

Bidirection
al (LSTM) 

Input 
[(None,1,12
8] 

Dense_4 Input 
[(None,1,12
8] 

Dense_2 Input [(None,128]  

Bidirection
al (LSTM) 

Input 
[(None,1,12
8] 

Dense 
|ReLu 

    
Dense 
|ReLu 

     

Float32 
Outp
ut 

[(None,,256
] 

Float32 
Outp
ut 

[(None,256] Float32 
Outp
ut 

[(None,256]  

  

  

    

  

    

  

   

Dense Input [(None,256] Dense Input 
[(None,,256
] 

Dropout_1 Input 
[(None,,256
] 

 

Dense 
|ReLu 

    
Dense 
|ReLu 

    Dropout      

Float32 
Outp
ut 

[(None,,256
] 

Float32 
Outp
ut 

[(None,256] Float32 
Outp
ut 

[(None,256]  
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Dropout Input 
[(None,,256
] 

Dropout Input [(None,256] Dense_3 Input [(None,256]  

Dropout     dropout     
Dense | 
sigmoid 

     

Float32 
Outp
ut 

[(None,256) Float32 
Outp
ut 

[(None,256) Float32 
Outp
ut 

[(None,4)  

  

  

    

  

  

  

 

Dense_1 Input (None,256) Dense_5 Input (None,256)  

Dense 
|Sigmoid 

    
Dense 
|Sigmoid 

     

Float32 
Outp
ut 

(None,4) Float32 
Outp
ut 

(None,4)  

 

3.5 Visual Geometry Group(VGG16) 

ConvNets, a type of ANN are sometimes referred to as CNN. An input layer, an output layer, and several hidden layers 

make up a CNN. CNNs, like the VGG16 model are thought to be among the most effective computer vision algorithms 

available today. The model's developers assessed the networks and used architecture with minuscule (3 × 3) 

convolution filters to increase the depth, demonstrating a notable advance above previous state-of-the-art setups. 

They increased the depth to roughly 138 trainable parameters by pushing it to 16–19 weight layers. The sixteen in 

VGG16 stands for sixteen weighted layers. Although VGG16 contains twenty-one layers total—sixteen convolutional 

layers, five Max Pooling layers, and three Dense layers—it only has sixteen weight layers, or learnable parameters 

layers. The most distinctive feature of VGG16 is that its convolution layers of a 3x3 filter with stride 1 are its main 

focus, rather than having a lot of hyper-parameters. The padding and maxpool layer of a 2x2 filter with stride 2 are 

also always employed. The arrangement of the convolution and max pool layers is constant throughout the 

architecture. There are 64 filters in Conv-1 Layer, 128 filters in Conv-2, 256 filters in Conv-3, and 512 filters in Conv-

4 and Conv-5. After a stack of convolutional layers, three Fully-Connected (FC) layers are placed: the first two have 

4096 channels apiece, while the third conducts 1000-way ILSVRC classification, resulting in 1000 channels (one for 

each class). Soft-max layer is the last layer(Ainiwaer et al., 2024). The table 3 lists the layer in VGG –BRNN, VGG-

GRU and VGG-LSTM methods employed for heart disease prediction. 
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Table 3 Layers in VGG with BRNN, VGG and LSTM 

 

3.6 VGG 16-  Cyclical Learning Rate(CLR) 

Training time and model effectiveness are influenced by learning rate. The loss function landscape, which is 

influenced by the dataset and model architecture, determines the learning rate. An ideal learning rate is needed for 

the model to converge more quickly. The ideal learning rate is one which leads to a sharp decline in loss severity. The 

learning rate is best when it decreases more steeply. 

The learning rate fluctuates cyclically, always reverting to its starting value, much like adaptive learning rate. A lower 

learning rate can result in the model convergent extremely slowly or diverging from the local minima, whereas a very 

high learning rate leads the model to vary more. By maintaining a high and low learning rate, cyclical learning rate 

(CLR) prevents the model from diverging as it jumps from local minima. The learning rate in CLR varies between the 

base and maximum learning rates. The learning rate can oscillate according to three different functions: the Hann 

window (sinusoidal), the Welch window (parabolic), or the triangle (linear). A more straightforward method of 

adjusting the learning rate is the triangle window(Raja et al, 204). The table 4 lists the VGG models with the CLR in 

BRNN, GRU and LSTM 

                                Table 4  VGG-CLR with BRNN, GRU and LSTM 

BRNN-VGG GRU –VGG LSTM-VGG 

 

Input_8 

Input 
[(None,224
,224,3)] 

Input_2 Input 
[(None,224,
224,3)] 

Input_3 Input 
[(None,224,
224,3)] 

 

Input Layer 
Input 
Layer 

    
Input 
Layer 

     

Float32 
Outp
ut 

[(None,224
,224,3)] 

Float32 
Outp
ut 

[(None,224,
224,3)] 

Float32 
Outp
ut 

[(None,224,
224,3)] 

 

  

  

    

  

    

  

   

Input_7 

Input 
[(None,224
,224,3)] 

Input_1 Input 
[(None,224,
224,3)] 

Input_3 Input 
[(None,224,
224,3)] 

 

Input Layer 
Input 
Layer 

    
Input 
Layer 

     

Float32 
Outp
ut 

[(None,224
,224,3)] 

Float32 
Outp
ut 

[(None,224,
224,32)] 

Float32 
Outp
ut 

[(None,224,
224,3)] 

 

  

  

    

  

    

  

   

Block1_conv1 
Input 

[(None,224
,224,3)] 

Block1_co
nv1 

Input 
[(None,224,
224,3)] 

Block1_co
nv1 

Input 
[(None,224,
224,3)] 

 

Conv2D Conv2D     Conv2D      

Float32 
Outp
ut 

[(None,224
,224,64)] 

Float32 
Outp
ut 

[(None,224,
224,64)] 

Float32 
Outp
ut 

[(None,224,
224,64)] 
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Block1_conv2 
Input 

[(None,224
,224,64)] 

Block1_co
nv2 

Input 
[(None,224,
224,64)] 

Block1_co
nv2 

Input 
[(None,224,
224,64)] 

 

Conv2D Conv2D     Conv2D      

Float32 
Outp
ut 

[(None,224
,224,64)] 

Float32 
Outp
ut 

[(None,224,
224,64)] 

Float32 
Outp
ut 

[(None,224,
224,64)] 

 

  

  

    

  

    

  

   

Block1_pool Input 
[(None,224
,224,64)] 

Block1_po
ol 

Input 
[(None,224,
224,64)] 

Block1_po
ol 

Input 
[(None,224,
224,64)] 

 

MaxPooling2
D 

    
MaxPooli
ng2D 

    
MaxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 
112,112,64)] 

Float32 
Outp
ut 

[(None,112,
112,,64)] 

Float32 
Outp
ut 

[(None,112,
112,,64)] 

 

  

  

    

  

    

  

   

Block2_conv1 Input 
[(None, 
112,112,64)] 

Block2_co
nv1 

Input 
[(None,112,
112,,128)] 

Block2_co
nv1 

Input 
[(None,112,
112,,64)] 

 

Conv2D      Conv2D      Conv2D       

Float32 
Outp
ut 

[(None, 
112,112,128
] 

Float32 
Outp
ut 

[(None,112,
112,,128)] 

Float32 
Outp
ut 

[(None,112,
112,,128)] 

 

  

  

    

  

    

  

   

Block2_conv
2 

Input 
[(None, 
112,112,128
] 

Block2_co
nv2 

Input 
[(None,112,
112,,128)] 

Block2_co
nv2 

Input 
[(None,112,
112,,128)] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 
112,112,128
] 

Float32 
Outp
ut 

[(None,112,
112,,128)] 

Float32 
Outp
ut 

[(None,112,
112,,128)] 
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Block2_pool Input 
[(None, 
112,112,128
] 

Block2_p
ool 

Input 
[(None,112,
112,,128)] 

Block2_p
ool 

Input 
[(None,112,
112,,128)] 

 

Maxpooling2
D 

    
Maxpooli
ng2D 

    
Maxpooli
ng2D 

     

Float32 
Outp
ut 

[(None, 56 
56,128] 

Float32 
Outp
ut 

[(None,56,5
6,128)] 

Float32 
Outp
ut 

[(None,56,5
6,128)] 

 

  

  

    

  

    

  

   

Block3_conv1 Input 
[(None, 56 
56,128] 

Block3_co
nv1 

Input 
[(None,56,5
6,128)] 

Block3_co
nv1 

Input 
[(None,56,5
6,128)] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 56 
56,256] 

Float32 
Outp
ut 

[(None,56,5
6,256)] 

Float32 
Outp
ut 

[(None,56,5
6,256)] 

 

  

  

    

  

    

  

   

Block3_conv
2 

Input 
[(None, 56 
56,256] 

Block3_co
nv2 

Input 
[(None, 56 
56,256] 

Block3_co
nv2 

Input 
[(None, 56 
56,256] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 56 
56,256] 

Float32 
Outp
ut 

[(None, 56 
56,256] 

Float32 
Outp
ut 

[(None, 56 
56,256] 

 

  

  

    

  

    

  

   

Block3_conv
3 

Input 
[(None, 56 
56,256] 

Block3_co
nv3 

Input 
[(None, 56 
56,256] 

Block3_co
nv3 

Input 
[(None, 56 
56,256] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 56 
56,256] 

Float32 
Outp
ut 

[(None, 56 
56,256] 

Float32 
Outp
ut 

[(None, 56 
56,256] 

 

  

  

    

  

    

  

   

Block3_pool Input 
[(None, 56 
56,256] 

Block3_p
ool 

Input 
[(None, 56 
56,256] 

Block3_p
ool 

Input 
[(None, 56 
56,256] 

 

MaxPooling2
D 

    
MaxPooli
ng2D 

    
MaxPooli
ng2D 
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Float32 
Outp
ut 

[(None, 28 
28,256] 

Float32 
Outp
ut 

[(None, 28 
28,256] 

Float32 
Outp
ut 

[(None, 28 
28,256] 

 

  

  

    

  

    

  

   

Block4_conv1 Input 
[(None, 28 
28,256] 

Block4_co
nv1 

Input 
[(None, 28 
28,256] 

Block4_co
nv1 

Input 
[(None, 28 
28,256] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

 

  

  

    

  

    

  

   

Block4_conv
2 

Input 
[(None, 28 
28,512] 

Block4_co
nv2 

Input 
[(None, 28 
28,512] 

Block4_co
nv2 

Input 
[(None, 28 
28,512] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

 

  

  

    

  

    

  

   

Block4_conv
3 

Input 
[(None, 28 
28,512] 

Block4_co
nv3 

Input 
[(None, 28 
28,512] 

Block4_co
nv3 

Input 
[(None, 28 
28,512] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

 

  

  

    

  

    

  

   

Block4_pool Input 
[(None, 28 
28,512] 

Block4_p
ool 

Input 
[(None, 28 
28,512] 

Block4_p
ool 

Input 
[(None, 28 
28,512] 

 

MaxPooling2
D 

    
MaxPooli
ng2D 

    
MaxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 
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Block5_conv1 Input 
[(None, 14 
14,512] 

Block5_co
nv1 

Input 
[(None, 14 
14,512] 

Block5_co
nv1 

Input 
[(None, 14 
14,512] 

 

Conv2D Input   Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

    
Outp
ut 

[(None, 14 
14,512] 

 

  

  

    

  

    

  

   

Block5_conv
2 

Input 
[(None, 14 
14,512] 

Block5_co
nv2 

Input 
[(None, 14 
14,512] 

Block5_co
nv2 

Input 
[(None, 14 
14,512] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

 

  

  

    

  

    

  

   

Block5_conv
3 

Input 
[(None, 14 
14,512] 

Block5_co
nv3 

Input 
[(None, 14 
14,512] 

Block5_co
nv3 

Input 
[(None, 14 
14,512] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

 

                   

Block5_pool Input 
[(None, 14 
14,512] 

Block5_po
ol 

Input 
[(None, 14 
14,512] 

Block5_p
ool 

[(Non
e, 14 
14,51
2] 

Float32  

MaxPooling2
D 

    
MaxPooli
ng2D 

    
MaxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 7 
7,512] 

Float32 
Outp
ut 

[(None, 7 
7,512] 

Float32 
Outp
ut 

[(None, 7 
7,512] 

 

  

  

    

  

    

  

   

Conv2d_21 Input 
[(None, 7 
7,512] 

Conv2d_1
8 

  
[(None, 7 
7,512] 

Conv2d_1
9 

  
[(None, 7 
7,512] 

 

Conv2D|ReL
u 

    
Conv2D|R
eLu 

    
Conv2D|R
eLu 

     

Float32 
Outp
ut 

[(None, 
5,5,32] 

Float32   
[(None, 
5,5,32] 

Float32   
[(None, 
5,5,32] 
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maxPooling2
D_18 

Input 
[(None, 
5,5,32] 

maxPoolin
g2D_18 

  
[(None, 
5,5,32] 

maxPooli
ng2D_19 

  
[(None, 
5,5,32] 

 

maxPooling2
D 

    
maxPoolin
g2D 

    
maxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 
2,2,32] 

Float32 
Outp
ut 

[(None, 
2,2,32] 

Float32 
Outp
ut 

[(None, 
2,2,32] 

 

  

  

    

  

    

  

   

Flatten_6 Input 
[(None, 
2,2,32] 

Flatten_3 Input 
[(None, 
2,2,32] 

Flatten_3 Input 
[(None, 
2,2,32] 

 

Flatten     Flatten     Flatten      

Float32 
Outp
ut 

[(None, 
128] 

Float32 
Outp
ut 

[(None, 
128] 

Float32 
Outp
ut 

[(None, 
128] 

 

  

  

    

  

    

  

   

Rpeat_vector
_6 

Input 
[(None, 
128] 

Rpeat_vec
tor_3 

Input 
[(None, 
128] 

Rpeat_vec
tor_4 

Input 
[(None, 
128] 

 

 

Repeat vector     
Repeat 
vector 

    
Repeat 
vector 

     

Float32 
Outp
ut 

[(None,10 
128] 

Float32 
Outp
ut 

[(None,10 
128] 

Float32 
Outp
ut 

[(None,10 
128] 

 

  

  

    

  

    

  

   

Bidirectional
_2(lstm_4) 

Input 
[(None,10 
128] 

Gru_1 Input 
[(None,10 
128 

Lstm_2 Input 
[(None,10 
128 

 

Bidirectional 
LSTM 

    
GRU | 
tanh 

    
LSTM | 
tanh 

     

Float32 
Outp
ut 

[(None,256
)] 

Float32 
Outp
ut 

[(None, 
128] 

Float32 
Outp
ut 

[(None, 
128] 

 

  

  

    

  

    

  

   

Dense_12 Input 
[(None,256
)] 

Dense_6 Input 
[(None,128)
] 

Dense_8 Input 
[(None,128)
] 

 

Dense |ReLu     
Dense 
|ReLu 

    
Dense 
|ReLu 
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Float32 
Outp
ut 

[(None,256
)] 

Float32 
Outp
ut 

[(None,256
)] 

Float32 
Outp
ut 

[(None,256
)] 

 

  

  

    

  

    

  

   

Dropout_6 Input 
[(None,256
)] 

Dropout_
3 

Input 
[(None,256
)] 

Dropout_
4 

Input 
[(None,256
)] 

 

dropout     dropout     dropout      

Float32 
Outp
ut 

[(None,256
)] 

Float32 
Outp
ut 

[(None,256
)] 

Float32 
Outp
ut 

[(None,256
)] 

 

  

  

    

  

    

  

   

Dense_13 Input 
[(None,256
)] 

Dense_7 Input 
[(None,128)
] 

Dense_9 Input 
[(None,128)
] 

 

Dense 
|softmax 

    
Dense 
|ReLu 

    
Dense 
|ReLu 

     

Float32 
Outp
ut 

[(None,4)] Float32 
Outp
ut 

[(None,4)] Float32 
Outp
ut 

[(None,4)]  
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BRNN-VGG GRU –VGG LSTM-VGG 

 

Input_12 Input [(None,2

24,224,3

)] 

Input_10 Input [(None,2

24,224,3

)] 

Input_14 Input [(None,2

24,224,3

)] 

Input 

Layer 

Input 

Layer 

  Input 

Layer 

  

Float32 Output [(None,2

24,224,3

)] 

Float32 Output [(None,2

24,224,3

)] 

Float32 Output [(None,2

24,224,3

)] 

 
 

  
 

  
 

 

Input_11 Input [(None,2

24,224,3

)] 

Input_9 Input [(None,2

24,224,3

)] 

Input_13 Input [(None,2

24,224,3

)] 

Input 

Layer 

Input 

Layer 

  Input 

Layer 

  

Float32 Output [(None,2

24,224,3

)] 

Float32 Output [(None,2

24,224,3

2)] 

Float32 Output [(None,2

24,224,3

)] 

 
 

  
 

  
 

 

Block1_ 

conv1 

Input [(None,2

24,224,3

)] 

Block1_ 

conv1 

Input [(None,2

24,224,3

)] 

Block1_ 

conv1 

Input [(None,2

24,224,3

)] 

Conv2D Conv2D   Conv2D   

Float32 Output [(None,2

24,224,6

4)] 

Float32 Output [(None,2

24,224,6

4)] 

Float32 Output [(None,2

24,224,6

4)] 

 
 

  
 

  
 

 

Block1_ 

conv2 

Input [(None,2

24,224,6

4)] 

Block1_ 

conv2 

Input [(None,2

24,224,6

4)] 

Block1_ 

conv2 

Input [(None,2

24,224,6

4)] 

Conv2D Conv2D   Conv2D   

Float32 Output [(None,2

24,224,6

4)] 

Float32 Output [(None,2

24,224,6

4)] 

Float32 Output [(None,2

24,224,6

4)] 

         

Block1_ 

pool 

Input [(None,2

24,224,6

4)] 

Block1_ 

pool 

Input [(None,2

24,224,6

4)] 

Block1_ 

pool 

Input [(None,2

24,224,6

4)] 

MaxPool

ing2D 

  MaxPool

ing2D 

  MaxPool

ing2D 
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Float32 Output [(None, 

112,112, 

64)] 

Float32 Output [(None,1

12,112,,6

4)] 

Float32 Output [(None,1

12,112,,6

4)] 

 
 

  
 

  
 

 

Block2_ 

conv1 

Input [(None, 

112,112,6

4)] 

Block2_ 

conv1 

Input [(None,1

12,112,,1

28)] 

Block2_ 

conv1 

Input [(None,1

12,112,,6

4)] 

Conv2D    Conv2D    Conv2D    

Float32 Output [(None, 

112,112,1

28] 

Float32 Output [(None,1

12,112,,1

28)] 

Float32 Output [(None,1

12,112,,1

28)] 

 
 

  
 

  
 

 

Block2_ 

conv2 

Input [(None, 

112,112,1

28] 

Block2_ 

conv2 

Input [(None,1

12,112,,1

28)] 

Block2_ 

conv2 

Input [(None,1

12,112,,1

28)] 

Conv2D    Conv2D    Conv2D    

Float32 Output [(None, 

112,112,1

28] 

Float32 Output [(None,1

12,112,,1

28)] 

Float32 Output [(None,1

12,112,,1

28)] 

 
 

  
 

  
 

 

Block2_ 

pool 

Input [(None, 

112,112,1

28] 

Block2_ 

pool 

Input [(None,1

12,112,,1

28)] 

Block2_ 

pool 

Input [(None,1

12,112,,1

28)] 

Maxpooli

ng2D 

  Maxpooli

ng2D 

  Maxpooli

ng2D 

  

Float32 Output [(None, 

56 

56,128] 

Float32 Output [(None,5

6,56,128)

] 

Float32 Output [(None,5

6,56,128)

] 

 
 

  
 

  
 

 

Block3_ 

conv1 

Input [(None, 

56 

56,128] 

Block3_ 

conv1 

Input [(None,5

6,56,128)

] 

Block3_ 

conv1 

Input [(None,5

6,56,128)

] 

Conv2D   Conv2D   Conv2D   

Float32 Output [(None, 

56 

56,256] 

Float32 Output [(None,5

6,56,256

)] 

Float32 Output [(None,5

6,56,256

)] 

 
 

  
 

  
 

 

Block3_ 

conv2 

Input [(None, 

56 

56,256] 

Block3_ 

conv2 

Input [(None, 

56 

56,256] 

Block3_ 

conv2 

Input [(None, 

56 

56,256] 
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Conv2D   Conv2D   Conv2D   

Float32 Output [(None, 

56 

56,256] 

Float32 Output [(None, 

56 

56,256] 

Float32 Output [(None, 

56 

56,256] 

         

Block3_ 

conv3 

Input [(None, 

56 

56,256] 

Block3_ 

conv3 

Input [(None, 

56 

56,256] 

Block3_ 

conv3 

Input [(None, 

56 

56,256] 

Conv2D   Conv2D   Conv2D   

Float32 Output [(None, 

56 

56,256] 

Float32 Output [(None, 

56 

56,256] 

Float32 Output [(None, 

56 

56,256] 

 
 

  
 

  
 

 

Block3_ 

pool 

Input [(None, 

56 

56,256] 

Block3_ 

pool 

Input [(None, 

56 

56,256] 

Block3_ 

pool 

Input [(None, 

56 

56,256] 

MaxPool

ing2D 

  MaxPool

ing2D 

  MaxPool

ing2D 

  

Float32 Output [(None, 

28 

28,256] 

Float32 Output [(None, 

28 

28,256] 

Float32 Output [(None, 

28 

28,256] 

 
 

  
 

  
 

 

Block4_ 

conv1 

Input [(None, 

28 

28,256] 

Block4_ 

conv1 

Input [(None, 

28 

28,256] 

Block4_ 

conv1 

Input [(None, 

28 

28,256] 

Conv2D   Conv2D   Conv2D   

Float32 Output [(None, 

28 

28,512] 

Float32 Output [(None, 

28 

28,512] 

Float32 Output [(None, 

28 

28,512] 

 
 

  
 

  
 

 

Block4_ 

conv2 

Input [(None, 

28 

28,512] 

Block4_ 

conv2 

Input [(None, 

28 

28,512] 

Block4_ 

conv2 

Input [(None, 

28 

28,512] 

Conv2D   Conv2D   Conv2D   

Float32 Output [(None, 

28 

28,512] 

Float32 Output [(None, 

28 

28,512] 

Float32 Output [(None, 

28 

28,512] 

 
 

  
 

  
 

 

Block4_ 

conv3 

Input [(None, 

28 

28,512] 

Block4_ 

conv3 

Input [(None, 

28 

28,512] 

Block4_ 

conv3 

Input [(None, 

28 

28,512] 
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Conv2D   Conv2D   Conv2D   

Float32 Output [(None, 

28 

28,512] 

Float32 Output [(None, 

28 

28,512] 

Float32 Output [(None, 

28 

28,512] 

 
 

  
 

  
 

 

Block4_ 

pool 

Input [(None, 

28 

28,512] 

Block4_ 

pool 

Input [(None, 

28 

28,512] 

Block4_ 

pool 

Input [(None, 

28 

28,512] 

MaxPool

ing2D 

  MaxPool

ing2D 

  MaxPool

ing2D 

  

Float32 Output [(None, 

14 

14,512] 

Float32 Output [(None, 

14 

14,512] 

Float32 Output [(None, 

14 

14,512] 

 
 

  
 

  
 

 

Block5_ 

conv1 

Input [(None, 

14 

14,512] 

Block5_ 

conv1 

Input [(None, 

14 

14,512] 

Block5_ 

conv1 

Input [(None, 

14 

14,512] 

Conv2D Input  Conv2D   Conv2D   

Float32 Output [(None, 

14 

14,512] 

Float32 Output   Output [(None, 

14 

14,512] 

 
 

  
 

  
 

 

Block5_ 

conv2 

Input [(None, 

14 

14,512] 

Block5_ 

conv2 

Input [(None, 

14 

14,512] 

Block5_ 

conv2 

Input [(None, 

14 

14,512] 

Conv2D   Conv2D   Conv2D   

Float32 Output [(None, 

14 

14,512] 

Float32 Output [(None, 

14 

14,512] 

Float32 Output [(None, 

14 

14,512] 

 
 

  
 

  
 

 

Block5_ 

conv3 

Input [(None, 

14 

14,512] 

Block5_ 

conv3 

Input [(None, 

14 

14,512] 

Block5_ 

conv3 

Input [(None, 

14 

14,512] 

Conv2D   Conv2D   Conv2D   

Float32 Output [(None, 

14 

14,512] 

Float32 Output [(None, 

14 

14,512] 

Float32 Output [(None, 

14 

14,512] 
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Block5_ 

pool 

Input [(None, 

14 

14,512] 

Block5_ 

pool 

Input [(None, 

14 

14,512] 

Block5_ 

pool 

[(None, 

14 

14,512] 

Float32 

MaxPool

ing2D 

  MaxPool

ing2D 

  MaxPool

ing2D 

  

Float32 Output [(None, 7 

7,512] 

Float32 Output [(None, 7 

7,512] 

Float32 Output [(None, 7 

7,512] 

 
 

  
 

  
 

 

Conv2d_ 

23 

Input [(None, 7 

7,512] 

Conv2d_ 

22 

 [(None, 7 

7,512] 

Conv2d_ 

24 

 [(None, 7 

7,512] 

Conv2D|

ReLu 

  Conv2D|

ReLu 

  Conv2D|

ReLu 

  

Float32 Output [(None, 

5,5,32] 

Float32  [(None, 

5,5,32] 

Float32  [(None, 

5,5,32] 

 
 

  
 

  
 

 

maxPooli

ng2D_23 

Input [(None, 

5,5,32] 

maxPooli

ng2D_22 

 [(None, 

5,5,32] 

maxPooli

ng2D_2

4 

 [(None, 

5,5,32] 

maxPooli

ng2D 

  maxPooli

ng2D 

  maxPooli

ng2D 

  

Float32 Output [(None, 

2,2,32] 

Float32 Output [(None, 

2,2,32] 

Float32 Output [(None, 

2,2,32] 

 
 

  
 

  
 

 

Flatten_

8 

Input [(None, 

2,2,32] 

Flatten_

7 

Input [(None, 

2,2,32] 

Flatten_

9 

Input [(None, 

2,2,32] 

Flatten   Flatten   Flatten   

Float32 Output [(None, 

128] 

Float32 Output [(None, 

128] 

Float32 Output [(None, 

128] 

 
 

  
 

  
 

 

Rpeat_v

ector_8 

Input 

 

[(None, 

128] 

Rpeat_v

ector_7 

Input 

 

[(None, 

128] 

Rpeat_v

ector_9 

Input 

 

[(None, 

128] 

Repeat 

vector 

  Repeat 

vector 

  Repeat 

vector 

  

Float32 Output [(None,1

0 128] 

Float32 Output [(None,1

0 128] 

Float32 Output [(None,1

0 128] 

 
 

  
 

  
 

 

Bidirecti

onal_3(l

stm_5) 

Input [(None,1

0 128] 

Gru_2 Input [(None,1

0 128 

Lstm_6 Input [(None,1

0 128 
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Bidirecti

onal 

LSTM 

  GRU | 

tanh 

  LSTM | 

tanh 

  

Float32 Output [(None,2

56)] 

Float32 Output [(None, 

128] 

Float32 Output [(None, 

128] 

 
 

  
 

  
 

 

Dense_1

6 

Input [(None,2

56)] 

Dense_1

4 

Input [(None,1

28)] 

Dense_1

8 

Input [(None,1

28)] 

Dense 

|ReLu 

  Dense 

|ReLu 

  Dense 

|ReLu 

  

Float32 Output [(None,2

56)] 

Float32 Output [(None,2

56)] 

Float32 Output [(None,2

56)] 

 
 

  
 

  
 

 

Dropout

_8 

Input [(None,2

56)] 

Dropout

_7 

Input [(None,2

56)] 

Dropout

_9 

Input [(None,2

56)] 

Dropout   dropout   dropout   

Float32 Output [(None,2

56)] 

Float32 Output [(None,2

56)] 

Float32 Output [(None,2

56)] 

 
 

  
 

  
 

 

Dense_1

7 

Input [(None,2

56)] 

Dense_1

5 

Input [(None,2

56)] 

Dense_1

9 

Input [(None,1

28)] 

Dense 

|softmax 

  Dense 

|ReLu 

  Dense 

|ReLu 

  

Float32 Output [(None,4

)] 

Float32 Output [(None,4

)] 

Float32 Output [(None,4

)] 

 

3.7 VGG-Attention Mechanism(AM) 

In order to enhance the encoder-decoder model's machine translation performance, the attention mechanism was 

included. By combining all of the encoded input vectors into a weighted combination and assigning the highest 

weights to the most relevant vectors, the attention mechanism was designed to allow the decoder to make flexible use 

of the most relevant segments of the input sequence(Xu et al, 2024) . The table 5 lists the VGG with attention 

mechanism (AM) in BRNN, GRU and LSTM. 

  

 

 

 

 

 

 

 



312  

 

J INFORM SYSTEMS ENG, 10(25s) 

Table 5  VGG-AM with BRNN, GRU and LSTM 

VGG-BRNN-
AM 

VGG
-
GRU
-AM 

VGG-
LSTM-AM 

 

Input_20 

Input 
[(None,224
,224,3)] 

Input_16 Input 
[(None,224,
224,3)] 

Input_18 Input 
[(None,224,
224,3)] 

 

Input Layer 
Input 
Layer 

    
Input 
Layer 

     

Float32 
Outp
ut 

[(None,224
,224,3)] 

Float32 
Outp
ut 

[(None,224,
224,3)] 

Float32 
Outp
ut 

[(None,224,
224,3)] 

 

  

  

    

  

    

  

   

Input_19 

Input 
[(None,224
,224,3)] 

Input_15 Input 
[(None,224,
224,3)] 

Input_17 Input 
[(None,224,
224,3)] 

 

Input Layer 
Input 
Layer 

    
Input 
Layer 

     

Float32 
Outp
ut 

[(None,224
,224,3)] 

Float32 
Outp
ut 

[(None,224,
224,32)] 

Float32 
Outp
ut 

[(None,224,
224,3)] 

 

  

  

    

  

    

  

   

Block1_ conv1 
Input 

[(None,224
,224,3)] 

Block1_ 
conv1 

Input 
[(None,224,
224,3)] 

Block1_ 
conv1 

Input 
[(None,224,
224,3)] 

 

Conv2D Conv2D     Conv2D      

Float32 
Outp
ut 

[(None,224
,224,64)] 

Float32 
Outp
ut 

[(None,224,
224,64)] 

Float32 
Outp
ut 

[(None,224,
224,64)] 

 

  

  

    

  

    

  

   

Block1_ conv2 
Input 

[(None,224
,224,64)] 

Block1_ 
conv2 

Input 
[(None,224,
224,64)] 

Block1_ 
conv2 

Input 
[(None,224,
224,64)] 

 

Conv2D Conv2D     Conv2D      

Float32 
Outp
ut 

[(None,224
,224,64)] 

Float32 
Outp
ut 

[(None,224,
224,64)] 

Float32 
Outp
ut 

[(None,224,
224,64)] 
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Block1_ pool Input 
[(None,224
,224,64)] 

Block1_ 
pool 

Input 
[(None,224,
224,64)] 

Block1_ 
pool 

Input 
[(None,224,
224,64)] 

 

MaxPooling2
D 

    
MaxPooli
ng2D 

    
MaxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 
112,112,64)
] 

Float32 
Outp
ut 

[(None,112,
112,,64)] 

Float32 
Outp
ut 

[(None,112,
112,,64)] 

 

  

  

    

  

    

  

   

Block2_ conv1 Input 
[(None, 
112,112,64)
] 

Block2_ 
conv1 

Input 
[(None,112,
112,,128)] 

Block2_co
nv1 

Input 
[(None,112,
112,,64)] 

 

Conv2D      Conv2D      Conv2D       

Float32 
Outp
ut 

[(None, 
112,112,128
] 

Float32 
Outp
ut 

[(None,112,
112,,128)] 

Float32 
Outp
ut 

[(None,112,
112,,128)] 

 

  

  

    

  

    

  

   

Block2_ conv2 Input 
[(None, 
112,112,128
] 

Block2_ 
conv2 

Input 
[(None,112,
112,,128)] 

Block2_ 
conv2 

Input 
[(None,112,
112,,128)] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 
112,112,128
] 

Float32 
Outp
ut 

[(None,112,
112,,128)] 

Float32 
Outp
ut 

[(None,112,
112,,128)] 

 

  

  

    

  

    

  

   

Block2_ pool Input 
[(None, 
112,112,128
] 

Block2_ 
pool 

Input 
[(None,112,
112,,128)] 

Block2_ 
pool 

Input 
[(None,112,
112,,128)] 

 

Maxpooling2
D 

    
Maxpooli
ng2D 

    
Maxpooli
ng2D 

     

Float32 
Outp
ut 

[(None, 56 
56,128] 

Float32 
Outp
ut 

[(None,56,5
6,128)] 

Float32 
Outp
ut 

[(None,56,5
6,128)] 

 

  

  

    

  

    

  

   

Block3_ conv1 Input 
[(None, 56 
56,128] 

Block3_ 
conv1 

Input 
[(None,56,5
6,128)] 

Block3_ 
conv1 

Input 
[(None,56,5
6,128)] 

 

Conv2D     Conv2D     Conv2D      
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Float32 
Outp
ut 

[(None, 56 
56,256] 

Float32 
Outp
ut 

[(None,56,5
6,256)] 

Float32 
Outp
ut 

[(None,56,5
6,256)] 

 

  

  

    

  

    

  

   

Block3_ conv2 Input 
[(None, 56 
56,256] 

Block3_ 
conv2 

Input 
[(None, 56 
56,256] 

Block3_ 
conv2 

Input 
[(None, 56 
56,256] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 56 
56,256] 

Float32 
Outp
ut 

[(None, 56 
56,256] 

Float32 
Outp
ut 

[(None, 56 
56,256] 

 

  

  

    

  

    

  

   

Block3_ conv3 Input 
[(None, 56 
56,256] 

Block3_ 
conv3 

Input 
[(None, 56 
56,256] 

Block3_ 
conv3 

Input 
[(None, 56 
56,256] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 56 
56,256] 

Float32 
Outp
ut 

[(None, 56 
56,256] 

Float32 
Outp
ut 

[(None, 56 
56,256] 

 

  

  

    

  

    

  

   

Block3_ pool Input 
[(None, 56 
56,256] 

Block3_ 
pool 

Input 
[(None, 56 
56,256] 

Block3_ 
pool 

Input 
[(None, 56 
56,256] 

 

MaxPooling2
D 

    
MaxPooli
ng2D 

    
MaxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 28 
28,256] 

Float32 
Outp
ut 

[(None, 28 
28,256] 

Float32 
Outp
ut 

[(None, 28 
28,256] 

 

  

  

    

  

    

  

   

Block4_ conv1 Input 
[(None, 28 
28,256] 

Block4_ 
conv1 

Input 
[(None, 28 
28,256] 

Block4_ 
conv1 

Input 
[(None, 28 
28,256] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 
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Block4_ conv2 Input 
[(None, 28 
28,512] 

Block4_ 
conv2 

Input 
[(None, 28 
28,512] 

Block4_ 
conv2 

Input 
[(None, 28 
28,512] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

 

  

  

    

  

    

  

   

Block4_ 
conv3 

Input 
[(None, 28 
28,512] 

Block4_ 
conv3 

Input 
[(None, 28 
28,512] 

Block4_ 
conv3 

Input 
[(None, 28 
28,512] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

Float32 
Outp
ut 

[(None, 28 
28,512] 

 

  

  

    

  

    

  

   

Block4_ pool Input 
[(None, 28 
28,512] 

Block4_ 
pool 

Input 
[(None, 28 
28,512] 

Block4_ 
pool 

Input 
[(None, 28 
28,512] 

 

MaxPooling2
D 

    
MaxPooli
ng2D 

    
MaxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

 

  

  

    

  

    

  

   

Block5_ conv1 Input 
[(None, 14 
14,512] 

Block5_ 
conv1 

Input 
[(None, 14 
14,512] 

Block5_ 
conv1 

Input 
[(None, 14 
14,512] 

 

Conv2D Input   Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

    
Outp
ut 

[(None, 14 
14,512] 
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Block5_ conv2 Input 
[(None, 14 
14,512] 

Block5_ 
conv2 

Input 
[(None, 14 
14,512] 

Block5_ 
conv2 

Input 
[(None, 14 
14,512] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

 

  

  

    

  

    

  

   

Block5_ conv3 Input 
[(None, 14 
14,512] 

Block5_ 
conv3 

Input 
[(None, 14 
14,512] 

Block5_ 
conv3 

Input 
[(None, 14 
14,512] 

 

Conv2D     Conv2D     Conv2D      

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

Float32 
Outp
ut 

[(None, 14 
14,512] 

 

  

  

    

  

    

  

   

Block5_ pool Input 
[(None, 14 
14,512] 

Block5_ 
pool 

Input 
[(None, 14 
14,512] 

Block5_ 
pool 

[(Non
e, 14 
14,51
2] 

Float32  

MaxPooling2
D 

    
MaxPooli
ng2D 

    
MaxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 7 
7,512] 

Float32 
Outp
ut 

[(None, 7 
7,512] 

Float32 
Outp
ut 

[(None, 7 
7,512] 

 

  

  

    

  

    

  

   

Conv2d_ 27 Input 
[(None, 7 
7,512] 

Conv2d_2
5 

  
[(None, 7 
7,512] 

Conv2d_1
9 

  
[(None, 7 
7,512] 

 

Conv2D|ReLu     
Conv2D|R
eLu 

    
Conv2D|R
eLu 

     

Float32 
Outp
ut 

[(None, 
5,5,32] 

Float32   
[(None, 
5,5,32] 

Float32   
[(None, 
5,5,32] 

 

  

  

    

  

    

  

   

maxPooling2
D_27 

Input 
[(None, 
5,5,32] 

maxPooli
ng2D_25 

  
[(None, 
5,5,32] 

maxPooli
ng2D_19 

  
[(None, 
5,5,32] 

 

maxPooling2
D 

    
maxPooli
ng2D 

    
maxPooli
ng2D 

     

Float32 
Outp
ut 

[(None, 
2,2,32] 

Float32 
Outp
ut 

[(None, 
2,2,32] 

Float32 
Outp
ut 

[(None, 
2,2,32] 
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Flatten_12 Input 
[(None, 
2,2,32] 

Flatten_1
0 

Input 
[(None, 
2,2,32] 

Flatten_11 Input 
[(None, 
2,2,32] 

 

Flatten     Flatten     Flatten      

Float32 
Outp
ut 

[(None, 
128] 

Float32 
Outp
ut 

[(None, 
128] 

Float32 
Outp
ut 

[(None, 
128] 

 

  

  

    

  

    

  

   

Rpeat_vector
_12 

Input 
[(None, 
128] 

Rpeat_vec
tor_10 

Input 
[(None, 
128] 

Rpeat_vec
tor_11 

Input 
[(None, 
128] 

 

 

Repeat vector     
Repeat 
vector 

    
Repeat 
vector 

     

Float32 
Outp
ut 

[(None,10 
128] 

Float32 
Outp
ut 

[(None,10 
128] 

Float32 
Outp
ut 

[(None,10 
128] 

 

  

  

    

  

    

  

   

Dense_26 Input 
[(None,10 
128] 

Dense_20 Input 
[(None,10 
128] 

Dense_23 Input 
[(None,10 
128] 

 

Dense | 
softmax 

    
Dense | 
softmax 

    
Dense | 
softmax 

     

Float32 
Outp
ut 

[(None,10,1
28] 

Float32 
Outp
ut 

[(None,10,1
28] 

Float32 
Outp
ut 

[(None,10,1
28] 

 

  

  

    

  

    

  

   

Bidirectional_
42(lstm_8) 

Input 
[(None,10 
128] 

Gru_3 Input 
[(None,10 
128 

Lstm_7 Input 
[(None,10 
128 

 

Bidirectional 
LSTM 

    
GRU | 
tanh 

    
LSTM | 
tanh 

     

Float32 
Outp
ut 

[(None,256
)] 

Float32 
Outp
ut 

[(None, 
128] 

Float32 
Outp
ut 

[(None, 
128] 

 

  

  

    

  

    

  

   

Dense_27 Input 
[(None,256
)] 

Dense_21 Input 
[(None,128)
] 

Dense_24 Input 
[(None,128)
] 

 

Dense |ReLu     
Dense 
|ReLu 

    
Dense 
|ReLu 

     

Float32 
Outp
ut 

[(None,256
)] 

Float32 
Outp
ut 

[(None,256
)] 

Float32 
Outp
ut 

[(None,256
)] 
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Dropout_12 Input 
[(None,256
)] 

Dropout_
10 

Input 
[(None,256
)] 

Dropout_
11 

Input 
[(None,256
)] 

 

dropout     dropout     dropout      

Float32 
Outp
ut 

[(None,256
)] 

Float32 
Outp
ut 

[(None,256
)] 

Float32 
Outp
ut 

[(None,256
)] 

 

  

  

    

  

    

  

   

Dense_28 Input 
[(None,256
)] 

Dense_22 Input 
[(None, 
256)] 

Dense_25 Input 
[(None,256
)] 

 

Dense 
|softmax 

    
Dense 
|ReLu 

    
Dense 
|ReLu 

     

Float32 
Outp
ut 

[(None,4)] Float32 
Outp
ut 

[(None,4)] Float32 
Outp
ut 

[(None,4)]  

 

4. Findings and Discussions  

4.1 Dataset Description 

The study uses a “cardiovascular ECG Images” dataset, which is freely downloadable from Kaggle. The dataset 

consists of the ECG images of patients with Myocardial Infarction, abnormal heartbeat and normal heart beat. The 

sample ECG images from the different category are shown in figure 4 

 

                    (a)                                               (b)                                        (c) 

Figure 4  Sample ECG Images (a)Myocardial Infarction  (b)Abnormal Heart Beat  (c) Normal heart beat 

4.2 Performance Metrics  

Accuracy, precision, recall, F1-Score, Mean Absolute Error (MAE), Mean Squared Error (MAE), and Area Under 

Curve-Receiver Operating Characteristics (AUC-ROC) are among the performance indicators used to evaluate the 

efficacy of the suggested model. 

(i) Accuracy 

One typical performance indicator used in classification tasks is accuracy. Accuracy is defined as the proportion of 

correctly identified cases to all items in the dataset. The Metric is calculated by dividing the total number of 

predictions the model made by the total number of accurate forecasts. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑃+𝑇𝑃+𝐹𝑁
                          (1)                         
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(ii) Precision 

Precision, also referred to as positive predictive value, is the ratio of correctly predicted positive observations to the 

total number of expected positives. 

                                (2) 

(iii) Recall (Sensitivity, True Positive Rate) 

Recall is defined as the proportion of correctly anticipated positive observations to all observations made in the 

actual class. 

                                      (3) 

(iv) F1 Score 

The F1 score is the harmonic mean of recall and precision. The F1-score is a statistic that takes precision and recall 

into account(Balaji et al., 2024). It has the following definition: 

                    (4) 

(v) Mean Absolute Error(MAE) 

Within the field of ML/DL, absolute error denotes the extent of discrepancy between an observation's predicted value 

and its actual value. The size of mistakes for the entire group is determined by the MAE, which takes the average of 

absolute errors for a set of observations and forecasts. MAE is also known as the L1 loss function. 

                     (5) 

Where  n is the number of observation,  𝑦𝑖  is the actual value of the ith observation, and 𝑦𝑖̂ is the predicted value of 

the ith observation.  

(vi) Mean Squared Error(MSE)  

In machine learning, especially in regression analysis MSE is a primary statistic. It is an essential instrument for 

assessing the efficacy and precision of predictive models. The regressive loss metric mean square error (MSE) is used. 

The difference between the model's predictions and the ground truth, squared and averaged over the dataset, is the 

MSE. It is employed to determine the degree to which the expected and actual values agree. Similar to RMSE, a 

smaller value denotes a better fit and penalizes significant errors or outliers severely.  

                   (6) 

where yi is the ith observed value, pi is the corresponding predicted value for yi, and n is the number of observations. 

The symbol κ denotes the execution of a summation across all values of i(Kamnath et a., 2024) 

(vii) The AUC-ROC  Curve  

It is employed to evaluate the performance of the classification issues at different threshold values. AUC is a metric 

or degree of separability as opposed to ROC, which is a probability curve. It illustrates the degree to which the model 

can discriminate based on class. AUC evaluates the quality of a model. The bigger the AUC, the more adept the model 

is in distinguishing between areas with and without damage. TPR is shown on the y-axis and FPR is shown on the x-

axis to create the ROC curve(Rimal et al, 2024). The True Positive Rate (TPR) and False Positive Rate (FPR) are as 

follows.  
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𝑇𝑃𝑅 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (6) 

                                    FPR =1-Specicifity 

                          Where  Specificity  =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                         (7) 

                                           FRP=
𝐹𝑃

𝑇𝑁+𝐹𝑃
                                                                      (8)                                  

 

Figure 5  : Performance Indicators (CNN with BRNN, LSTM and GRU) 

Figure 5 shows the performances of CNN-BRNN, CNN-GRU and CNN LSTM with regard to accuracy, precision, 

recall, F1-Score, AUC-ROC, MAE and MSE.  It is found that the CNN with GRU outperforms the other combination 

of methods.  The error values are found to be less in the case of CNN-GRU.  

 

 Figure 6  Performance Indicators (VGG with BRNN, LSTM and GRU) 

From the figure 6 , it is clear that the VGG with GRU outperforms the other two  methods in predicting the heart 

diseases. The loss value is found to be less in this case.  

Accuracy Precision Recall F1-Score AUC-ROC MAE MSE

CNN-BRNN 0.9301 0.9366 0.9301 0.9289 0.9867 0.0806 0.1022

CNN-LSTM 0.8978 0.9103 0.8978 0.8946 0.9754 0.1126 0.1344

CNN-GRU 0.9677 0.9679 0.9677 0.9675 0.9972 0.0322 0.0323

CNN with BRNN, LSTM and GRU

Accurac
y

Precisio
n

Recall
F1-

Score
AUC-
ROC

MAE MSE

VGG-BRNN 0.9462 0.9466 0.9462 0.9454 0.9891 0.0645 0.0860

VGG-LSTM 0.9301 0.9329 0.9301 0.9304 0.9903 0.0806 0.1022

VGG-GRU 0.959 0.9543 0.9501 0.9514 0.992 0.0506 0.0623

VGG with BRNN, LSTM, GRU
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 Figure 7 Performance Indicators (VGG-CLR with BRNN, LSTM and GRU) 

From the figure 7, it is evident that the VGG with the cyclical learning rate with LSTM performs better than the 

other two methods.  

 

 Figure 8:  Performance Indicators (VGG-CLR-AM with BRNN, LSTM and GRU) 

From the figure 8, it is found that VGG- GRU improved with the learning rate and attention mechanism outperforms 

the VGG-LSTM and VGG BRNN with a learning rate and attention mechanism. The MAE and MSE also found to be 

less compared to the other two methods. GRU is faster and requires fewer memory resources than LSTM; however 

on datasets with longer sequences, LSTM performs better. GRU is significantly more efficient than LSTM. The notion 

that a human pays more attention to specific areas of its environment while identifying something in it gave rise to 

the AM in DL approaches. Natural language processing makes extensive use of this model structure in a variety of 

applications. Nonetheless, a small number of research works have combined with AM and GRU to predict heart 

diseases. Moreover, the AM executes prediction processes by focusing on meaningful information rather than 

considering all elements equally(RAo et al,2024). The overall pattern demonstrated that, even if the differences 

between classifiers were substantial, the use of CLR and AM enhance DL models' discriminative capacity for heart 

disease prediction. 

 

 

Accurac
y

Precisio
n

Recall
F1-

Score
AUC-
ROC

MAE MSE

VGG-BRNN-CLR 0.8226 0.8613 0.8226 0.8207 0.9813 0.2312 0.371

VGG-LSTM-CLR 0.8656 0.887 0.8656 0.838 0.9814 0.1828 0.2796

VGG-GRU-CLR 0.828 0.8526 0.828 0.8219 0.9784 0.2312 0.3495

VGG-CLR with BRNN, LSTM, GRU

Accurac
y

Precisio
n

Recall F1-Score
AUC-
ROC

MAE MSE

VGG-BRNN-CLR- AM 0.8548 0.8734 0.8548 0.8494 0.9777 0.2643 0.4226

VGG-LSTM-CLR-AM 0.828 0.8563 0.828 0.8324 0.962 0.2742 0.543

VGG-GRU-CLR-AM 0.876 0.884 0.861 0.858 0.987 0.23 0.445

VGG-CLR-AM with BRNN, LSTM, GRU



322  

 

J INFORM SYSTEMS ENG, 10(25s) 

V. CONCLUSION AND FUTURE WORK  

This research combines various DL algorithms with the purpose of improving their operational outcomes. This 

research integrates CNN and VGG models together with LSTM and CNN-BRNN along with CNN-GRU. The research 

results show CNN-GRU and VGG-GRU alone deliver better performance than other investigated approaches. The 

CLR and AM serve as components in a study to boost the classifier performance capabilities. The VGG hybrid 

classifiers generate better results than CNN classifiers when CLR and AM are applied to them. Multiple ways exist to 

boost the performance of hybrid classifiers by implementing CLR alongside AM algorithms along with optimized 

features. The research can continue by examining how the hybrid classifiers perform with optimizer techniques and 

feature extraction methods. 
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