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Keyword spotting (KWS) in speech recognition refers to the task of detecting specific words or 

phrases by a system. KWS focuses on identifying and reacting to particular words or commands. 

There are various domains where KWS can be applied, such as voice assistants, security systems, 

automotive systems, healthcare, industrial systems, and various edge devices. In this research, a 

KWS system has been developed to recognize 24 frequently used words in the Odia language 

which includes the digits (0 to 9), seven colours and different directions. The dataset is recorded 

with Zoom H1n mic with 41Khz frequency. This paper proposes three models based on CNN, 

LSTM, and CNN+LSTM for KWS. Mel Frequency Cepstral Coefficients (MFCCs) are used as 

features for each keyword. The models are trained and tested with the dataset we prepared. It 

has been observed that the CNN model performs better than the other two models. The models 

are compressed using a quantization technique, resulting in a 3x reduction in model size after 

quantization. The accuracy of the original model (97%) is preserved after quantization. This 

enables such a model to be deployed on various edge devices. All the models are deployed and 

tested on the Raspberry Pi 3B board. 

Keywords: Keyword Spotting, Odia Language, Speech Recognition, Model Compression, 

Quantization, Edge Computing. 

 

INTRODUCTION 

Speech recognition is the process of converting an audio signal from a human voice into text by a computer. There 

are various applications of speech recognition. Virtual assistants like Google Home, Alexa, Siri, etc., use speech 

recognition to respond to users’ queries. Different electrical and electronic devices at home are controlled through 

voice commands in a smart home. In automotive systems, speech recognition is used for navigation, communication, 

and controlling entertainment systems, reducing the need for manual input by the driver. In most cases, the 

computation required for automatic speech recognition (ASR) takes place in the cloud, for which internet 

connectivity is necessary. However, in situations where there is no internet connectivity, the required computation 

for ASR must be done on the device itself, a process known as on-device computation. Nowadays, technology is 

shifting from cloud-based to on-device computation, making all necessary processes independent of the internet. 

We generally operate any device with some commands, such as in a home automation system, where the command 

“open” will open the door and “close” will close the door of the room. Recognition of such commands by a device is 

called keyword spotting (KWS). In a KWS system, the recognition of a speech command takes place on the device 

itself rather than in the cloud, as shown in Fig. 1. Google has prepared a dataset of forty words for keyword spotting 

in the English language [1]. Keyword spotting helps hearing-impaired people communicate with others using voice 

commands. People with disabilities can operate any device or machine using voice commands. During Covid, people 

had to be isolated and were advised not to touch anything. In such contactless situations, any operation can be 

performed using voice commands. The keyword spotting method is very useful in such scenarios. 

Odia is one of the classical languages of India, mostly spoken in the state of Odisha. There are KWS systems to 

recognize Odia words and digits [2], [3], [4] but these models are not designed for Edge devices. In this research, we 
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have developed deep learning models and compressed them using quantization to enable them to run on Edge 

devices. All our models are deployed and tested on the Raspberry Pi 3B board, which is widely used in the IoT 

ecosystem. This paper is organized as follows: Section 2 discusses related work, Section 3 presents the proposed 

methodology, Section 4 focuses on the analysis of the experimental results, and Section 5 concludes our findings. 

 

Fig.1 On-device computation for KWS 

LITERATURE REVIEW 

Individuals with intellectual disabilities are often eager to use information technologies, but the technologies are 

often not designed to align with their skill sets [5]. Keyword spotting helps people with disabilities to operate the 

technology-enabled machine using voice commands.  A keyword-spotting algorithm has been developed by [6] using 

CNN. They implemented the algorithm in the Movidius Myriad 2 Vision Processing Unit. They have used 10 words 

from the Google speech commands dataset [1] for training, validation and testing the model by splitting 80:10:10. In 

this work they have improved the power consumption, throughput and latency. [7] have developed an isolated word 

recognition system for people with speech disordered using CNN. The model was trained and tested with an Italian 

dataset with 13 labels. They deployed the model on the Raspberry Pi board. They achieved a WER of 15.6%. [8] have 

designed a 65-nanometer CMOS with 32 KB of memory for keyword spotting. The chip is designed to support the 

LSTM model for training and classification. They have trained the model using the TIMIT dataset. They compressed 

the LSTM model using quantization where the 32-bit floating-point operation is represented by an 8-bit fixed point 

operation. [9] have developed an algorithm to search for the efficient architecture of the DNN model for keyword 

spotting. They achieved an accuracy of 97.04% with 184 thousand parameters. [10] have developed a voice user 

interface for speech-impaired people that recognizes the 79 Italian speech commands. They have fine-tuned the 

different variants (tiny, base, small) of the whisper model. They train the model with 65 thousand datasets collected 

from 208 speech-impaired users. The word recognition accuracy they achieved is 95.9% using the whisper-small pre-

trained model. [11] have developed a contactless elevator operation system using CNN-based keyword spotting. The 

CNN model is deployed in the Arduino 33 BLE Sense Board using Tiny ML. They trained the model with a dataset of 

six labels and achieved an accuracy of 83.5%. [12] have developed a lightweight speaker-independent speech 

recognition model for keyword spotting in the French language to control the robotic arm. They have used transfer 

learning by using the model trained on the google dataset [1]. The accuracy they achieve is 94.7%. [13] have developed 

WAV2KWS using transfer learning which uses the WAV2VEC 2.0 [14] model. They have used the google dataset [1] 

for training, validation and testing of the model. They achieve an accuracy of 97.9%. [15] have developed a KWS 

system using the Swin-Transformer [16] model. Speech communication in the worksite plays an important role. The 

adoption of KWS makes it suitable for enhancing communication and reducing errors in decision-making on 

construction sites. [17] have developed a framework for keyword identification on construction sites. The model they 

have used consists of a 1-D CNN model. The model is trained with 12 hours of raw audio data consisting of crane 

signalman speech commands, referred to as 'keywords'. The dataset includes speech commands from 45 volunteers 

representing 13 different ethnolinguistic backgrounds and various accents. The percentage of accuracy they achieved 

is 93.8%. 

PROPOSED SYSTEM 

In KWS, the speech command is captured in .wav format. The captured voice is pre-processed by trimming to remove 

the silent parts at the beginning and end of the speech signal. The Pydub library is used to trim the speech signal. 

Then, the speech is converted into a 16-bit signal and from stereo to mono. After preprocessing the speech signal, the 
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MFCC feature is extracted using the Librosa library. The process of predicting the command in the KWS system is 

shown in Fig. 2. 

 

Fig. 2 KWS Workflow. 
Dataset Preparation 

The dataset is created by capturing the voices of 15 individuals, 10 males and 5 females, as detailed in Table 1. Each 

person utters the words listed in Fig. 3 ten times. The words include numbers (0 to 9), seven colours, and various 

directions. The speech is recorded at a sampling rate of 41,000 Hz using a ZOOM H1n recorder. Table 2 outlines the 

specifications of the recorded speech for the training dataset. There is a total of 3,600 audio samples (15 * 24 * 10). 

The recorded audio files contain silence at the beginning and end, which is removed using the PRAAT tool. 

Table 1: Dataset details 

Male 10 
Female 5 
Age range 20 to 30 
Total audio sample 3600 

Table 2: Speech specification 

Sampling Frequency 44 KHz 
Recording Device Zoom H1N1 
Quantization 16 bits 
Channel Mono 
File format .wav 
Language Odia 

Table 3: Selected words for KWS 

In Odia 
Script 

In English 
Pronunciation 

in Odia 
In Odia In English 

Pronunciation 
in Odia 

ଶୂନ Zero Suna ଉତ୍ତର North Uttara 

ଏକ One Eka ଦକି୍ଷଣ South Dakshina 

ଦୁଇ Two Dui ନନଳ ି Green Neli 

ତନି ି Three Tini ଲାଲ Red Lal 

ଚାର ି Four Chari ସବୁଜ Blue Sabuja 

ପାଞ୍ଚ Five Pancha ହଳଦଆି Yellow Haladia 

ଛଅ Six Chha ନାରଙି୍ଗ Orange Narangi 

ସାତ Seven Sata ବାଇଗଣ ି Violet Baigani 

ଆଠ Eight Aatha ଧଳା White Dhala 

ନଅ Nine Na ଡାହାଣ Right Dahana 

ପୂବବ East Purba ଆଗ Front Aaga 

ପଶି୍ଚମ West Paschima ବାମ Left Bama 

 

Feature Extraction 
The MFCC method is commonly used in speech and audio processing for feature extraction. The spectral 
characteristics of sound are captured by MFCC, making them suitable for machine learning applications like speech 
recognition and music analysis. MFCCs represent the shape of the power spectrum of a sound signal. They are 
obtained by initially converting the raw audio signal into the frequency domain using techniques such as the Discrete 
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Fourier Transform (DFT). Then the mel-scale is applied to approximate human auditory perception of sound 
frequency. Cepstral coefficients are then computed from the mel-scaled spectrum, as demonstrated in equation 1. 
MFCCs are valuable because they highlight important features of the audio signal for human speech perception while 
filtering out less relevant information. Consequently, they are effective for tasks such as speaker recognition, emotion 
detection, and speech-to-text conversion. Fig. 4 shows the complete MFCC feature extraction process. The speech 
signal, the Fourier transform of the speech signal, and the MFCC features of digits zero to three are shown in Fig. 5. 
 
                    𝑀𝐹𝐶𝐶𝑠 = 𝐷𝐶𝑇(log⁡(𝑀𝑒𝑙⁡𝐹𝑖𝑙𝑡𝑒𝑟⁡𝐵𝑎𝑛𝑘⁡(|𝐹𝐹𝑇(𝑊𝑖𝑛𝑑𝑜𝑤𝑒𝑑⁡𝐹𝑟𝑎𝑚𝑒)|2)))                 (1) 

 

 

Fig. 4 . MFCC feature extraction process 

Model Architecture 

In this research, three different models are implemented and the results of different models are studied. The 

architecture of different models is as follows: 

CNN 

The model comprises three fully connected two-dimensional convolution layers, each utilizing a max pooling function 

to reduce input dimension. The input and hidden layers employ the RELU activation function, while the output layer 

uses the softmax function. Batch normalization is applied to the input and hidden layers. A 3x3 kernel with a stride 

of two is utilized. The first two convolutional layers have 16 feature maps, and the last convolutional. 

 

Fig. 5 Speech Signal, Fourier Transform and MFCC feature of digit Zero to Three 

layer has 64 feature maps. The model's hyperparameters include a batch size of 32, no dropout, and a learning rate 

of 0.001. Training is carried out using the Adam optimizer over 100 epochs. The model's architecture is depicted in 

Fig. 6. 
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Fig.6 CNN model architecture used for KWS 

LSTM 

LSTM is widely used for speech recognition. It is also used in low-powered devices like FPGA-controlled devices 

[18]. Our model consists of 3 LSTM layers of dimension 128. Softmax function is used in the output layer. The 

model has 128 feature maps in all the LSTM layers. The hyperparameters used in the model are Batch Size as 32, no 

dropout and Learning Rate as 0.001. We train the network using the Adam optimizer. The model is trained with 

100 epochs. Fig. 7 represents the architecture of the model. 

 

Fig.7 LSTM model architecture used for KWS 

CNN and LSTM 

Our architecture comprises two fully connected two-dimensional convolutional layers followed by two LSTM layers. 

Each convolutional layer employs a max pooling function to decrease the input dimensions. The RELU activation 

function is utilized in both the input and hidden layers, while the output layer employs the Softmax function. Batch 

normalization is implemented in the input and hidden layers. The convolutional kernels are sized at 4, with a stride 

of 2. The first convolutional layer contains 32 feature maps, and the second layer contains 64 feature maps. The 

hyperparameters for the model include a batch size of 32, no dropout, and a learning rate of 0.001. We train the 

network using the Adam optimizer. The model is trained with 100 epochs. Fig. 8 represents the architecture of the 

model. 

 

Fig.8 CNN+LSTM model architecture used for KWS 

Model Compression 

Generally, the size of deep learning models is too big and can only be deployed in the cloud or on a high-

performance computer. The Edge devices have very little memory and storage space. In order to deploy the deep 

learning models on edge devices, the size of the model needs to be smaller. There are various techniques to 

compress the DL model. We have compressed our model using the quantization technique. 

Quantization refers to the process of reducing the precision of the numbers used to represent an ML model’s 

parameters such as weights and activations [19]. In this research, the model is quantized by representing float32 by 

INT8 (Fig. 9). The models are quantized using TensorFlow. A fractional number is quantized using Equation 2 and 

de-quantized during inference using Equation 3. 

𝑋𝑞𝑢𝑎𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑(𝑠𝑐𝑎𝑙𝑒 × 𝑋 + 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡)                                         (2) 

𝑋𝑑𝑒𝑞𝑢𝑎𝑛𝑡 =
𝑋𝑞𝑢𝑎𝑛𝑡−𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡

𝑠𝑐𝑎𝑙𝑒
                                                                       (3) 

𝑠𝑐𝑎𝑙𝑒 =
255

𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋)
                                                                              (4) 

𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡 = −𝑟𝑜𝑢𝑛𝑑(𝑠𝑐𝑎𝑙𝑒 × 𝑚𝑖𝑛(𝑋)) − 128                                 (5) 
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Fig. 9 Float32 to INT8 Compression 

RESULTS  

The dataset is split into 80%, 10% and 10% for training, testing and validation.  Table 3 represents the accuracy, 

precision, recall and F1-score for our CNN, LSTM and CNN+LSTM models. It is observed that CNN performs better 

than other models for our dataset. The accuracy and loss graph of CNN, LSTM and CNN+LSTM is shown in Fig. 10. 

The Fig. 11 represents the confusion matrix of CNN, LSTM and CNN+LSTM models for fifteen classes. The size of 

these three models before quantization and after quantization is shown in Table 4. It has been observed that the size 

of the models is reduced by 3 times after quantization. Table 5 represents the accuracy of models before quantization 

and after quantization. The accuracy of the models is preserved after quantization. We have performed the memory 

profiling of all the quantized models. The peak memory utilization for CNN and LSTM is 12.35 KB and 12.92 KB for 

the CNN+LSTM model as shown in Fig. 12. The memory size of most of the edge devices is more than 100 KB. So, 

our models can easily be deployed on any edge device for on-device inference. 

Table 3: Accuracy, Precision, Recall, F1-Score of CNN, LSTM and CNN+LSTM model 

Model Accuracy Precision Recall F1-Score 
CNN 97 97 97 97 

LSTM 85.6 87 86 86 
CNN+LSTM 96 97 96 96 

Table 4: Size of models before and after quantization 

Model Model size without 
quantization (in KB) 

Model size with quantization 
(in KB) 

CNN 1599 521 
LSTM 4040 1358 

CNN+LSTM 3107 1035 
Table 5: Accuracy of model before and after quantization 

Model Model Accuracy without 
quantization 

Model Accuracy with 
quantization 

CNN 97 97 
LSTM 85.6 86 

CNN+LSTM 96 96 
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Fig. 10 (A) CNN model Accuracy; (B) CNN model Loss; (C) LSTM model Accuracy; 
(D) LSTM model Loss; (E) CNN+LSTM model Accuracy; (F) CNN+LSTM model Loss 

 

 

Fig. 11 (A) Confusion Matrix of CNN model; (B) Confusion Matrix of LSTM model; 

(C) Confusion Matrix CNN_LSTM model 
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Fig. 12 Comparison of peak memory utilization of CNN, LSTM and CNN+LSTM models 

CONCLUSION 

This study demonstrates the feasibility of implementing an efficient keyword-spotting system for the Odia language 

on edge devices. Three different models are designed and tested on the Raspberry Pi 3B device. The models are 

trained and tested with the dataset developed by us as there is no Odia dataset available for KWS in the public domain. 

Among the three models, the CNN model performs better than the other two models. After quantization of the 

models, there is a 3x reduction in the model size. It is found in the memory profiling that the peak memory utilization 

is 12.35 KB for the CNN and LSTM model and 12.92 KB for the CNN+LSTM model which is the maximum as 

compared to the other two models. Generally, the memory provided by any edge device is around 256 KB. Thus, our 

model can run on a standard edge device without compromising the accuracy of inference. 
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