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Introduction: The burgeoning volume of healthcare data necessitates real-time processing 

capabilities, driving a surge in demand for scalable and efficient database solutions. 

Objectives: This paper presents a comprehensive performance evaluation of three prominent 

NoSQL databases—MongoDB, Cassandra, and Couchbase—tailored for healthcare applications. 

We benchmark these databases across key performance metrics, including read and write 

throughput, latency, scalability, and fault tolerance, utilizing a realistic healthcare dataset - 

Medical Information Mart for Intensive Care III (MIMIC-III). Our analysis aims to elucidate the 

distinct strengths and weaknesses of each database in handling healthcare data. 

Methods: Our analysis aims to elucidate the distinct strengths and weaknesses of each database 

in handling healthcare data. By contrasting the flexibility and user-friendliness of MongoDB with 

the extreme scalability of Cassandra and the high performance of Couchbase in distributed 

environments, this research empowers healthcare information technology professionals and 

database administrators to make informed decisions regarding NoSQL database selection. 

Results: These findings contribute to the effective management of healthcare data, facilitating 

improved health outcomes. 

Conclusions: This study analyzes performance demonstration in detail among MongoDB, 

Cassandra, and Couchbase, owing to the merits and demerits for healthcare applications. Real-

time healthcare data processing is adequately assessed in terms of throughput, latency, 

scalability, and fault tolerance benchmarks for their appropriateness. The flexible features of 

MongoDB present multiple advantages, whereas, with respect to operations that require 

scalability at high performance, Cassandra is more usually chosen. This therefore should assist 

any healthcare IT professional in making the right decision for the selection of their NoSQL 

database when it comes to effective data management and enhanced outcomes for healthcare. 

Keywords: Cassandra, Couchbase, Healthcare data, MongoDB, NoSQL databases. 

 

INTRODUCTION 

The proliferation of data sources within the healthcare sector, including electronic health records, medical imaging, 

wearable devices, and other digital health technologies, has ushered in an era of unprecedented data generation. To 

effectively manage, store, and process this vast influx of structured and unstructured information, robust and scalable 

database solutions are imperative. Traditional relational databases often fall short in meeting the demands of modern 

healthcare applications due to their limitations in scalability and flexibility. [1] 

NoSQL databases have emerged as viable alternatives, offering scalable and distributed architectures capable of 

handling large datasets and enabling real-time data access. Among the leading NoSQL databases, MongoDB, 

Cassandra, and Couchbase have garnered significant attention for their respective strengths: MongoDB's flexible 

document model, Cassandra's exceptional scalability and fault tolerance, and Couchbase's strong performance in 
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distributed environments. [2] 

At their core, NoSQL databases, including MongoDB, Cassandra, and Couchbase, are designed within the constraints 

of the CAP theorem (Fig-1), which postulates that a distributed system cannot simultaneously guarantee Consistency, 

Availability, and Partition tolerance. MongoDB, prioritizing flexibility, allows developers to trade off consistency for 

partition tolerance based on application requirements. Cassandra, optimized for Availability and Partition Tolerance, 

ensures system resilience in the face of network disruptions. Couchbase aims to balance all three CAP properties, 

often leaning towards Availability and Partition Tolerance, similar to Cassandra. This trade-off mechanism empowers 

developers to make informed choices aligned with their application's needs, mitigating the inherent limitations 

imposed by the CAP theorem. 

 

Fig-1(a): The CAP Theorem, illustrating trade-offs between Consistency, Availability, and Partition Tolerance in 

distributed databases 

This study presents a comprehensive performance evaluation of three prominent NoSQL databases—MongoDB, 

Cassandra, and Couchbase—utilizing the Medical Information Mart for Intensive Care III (MIMIC-III) electronic 

health record dataset. Our focus lies on key performance metrics, including read and write throughput, latency, 

scalability, and fault tolerance. Through rigorous benchmarking, we aim to provide valuable insights for healthcare 

information technology professionals and database administrators, facilitating informed decisions regarding 

database selection. By identifying the strengths and weaknesses of each NoSQL database in handling healthcare data, 

this research contributes to the optimization of healthcare data management practices and ultimately, the 

improvement of patient outcomes. 

 

Fig-1(b): Optimizing NoSQL Database Selection for Healthcar 

                                                                         BACKGROUND STUDY 

Several studies have investigated the application of NoSQL databases in healthcare settings. Doe and Smith (2022) 

highlighted the growing adoption of these databases for handling large-scale unstructured data, such as electronic 

health records (EHRs) and medical imaging. Their evaluation of MongoDB, Cassandra, and Couchbase revealed their 
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unique strengths in scalability, flexibility, and performance, making them well-suited for modern healthcare 

applications. 

Johnson et al. (2021) conducted a benchmarking study comparing MongoDB, Cassandra, and Couchbase against a 

healthcare dataset. Their findings confirmed MongoDB's flexibility for integrating diverse healthcare data types, 

while Cassandra demonstrated exceptional reliability and high availability. Couchbase's hybrid model excelled in 

real-time data analytics and processing. 

Brown and Lee (2020) explored the impact of database selection on healthcare system performance. They concluded 

that MongoDB's adaptability to various data types, Cassandra's suitability for high-throughput scenarios, and 

Couchbase's balanced approach make them viable options for different healthcare applications. 

Miller and Davis (2022) emphasized the role of NoSQL databases in handling the scalability of unstructured 

healthcare data. MongoDB's schema-less design was noted for its flexibility in accommodating diverse data types.  

Roberts et al. (2021) conducted performance benchmarks specifically for healthcare applications, highlighting 

MongoDB's advantages in data integration and retrieval, Cassandra's reliability, and Couchbase's real-time data 

access capabilities. 

Clark and Nguyen (2020) examined the reliability and scalability of NoSQL databases in healthcare. They found 

MongoDB suitable for flexible, rapidly changing data, Cassandra for high-throughput, write-intensive applications, 

and Couchbase for real-time analytics.  

Anderson and Patel (2020) focused on scalability, reinforcing MongoDB's suitability for healthcare applications 

requiring flexibility and seamless integration, while Cassandra excelled in supporting large-scale distributed datasets. 

Couchbase was praised for its high performance in real-time applications.  

The collective findings of these studies underscore the need for careful consideration of NoSQL database selection 

based on specific healthcare application requirements. MongoDB, Cassandra, and Couchbase each offer distinct 

advantages in performance, scalability, and reliability, making them strong candidates for healthcare data 

management systems. 

METHODOLOGY 

The primary objective of this study was to evaluate the performance of MongoDB, Cassandra, and Couchbase in 

handling healthcare data, specifically electronic health records (EHRs) from the MIMIC-III dataset. The focus was 

on assessing key performance metrics, including throughput, latency, scalability, and consistency. (Figure 2)  

 

                                                                  Fig-2: Proposed Methodology 

The performance analysis focused on the following critical metrics: 

1. Throughput: Measured in operations per second, focusing on read and write operations. 

2. Latency: Both read and write latencies were evaluated, particularly average and 99th percentile latencies. 
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3. Scalability: The ability of each database to scale as the dataset size increased. 

4. Consistency: The consistency of read and write operations under different workloads was evaluated. 

Dataset Preparation 

The MIMIC-III dataset, containing structured EHRs from over 40,000 critical care patients, was used. Relevant 

tables and records, such as patient demographics, diagnoses, prescriptions, and procedures, were extracted to 

simulate a typical healthcare workload. The dataset was tested under three different conditions: small, medium, and 

large data volumes to assess database performance across varying loads. 

Environment Setup 

1) Infrastructure: Amazon Web Services (AWS) was used to provision virtual servers, ensuring uniform 

environments for all databases. 

2) Database Configuration:  

a. MongoDB: Replica sets and sharding were configured as needed for horizontal scaling. 

b. Cassandra: A cluster with multiple nodes was set up, with a defined consistency level. 

c. Couchbase: Buckets, indexing, and data replication were configured to ensure optimal performance. 

3) Yahoo Cloud Serving Benchmark (YCSB) Integration: YCSB was installed and configured on a 

separate server to simulate workloads. Specific YCSB clients for MongoDB, Cassandra, and Couchbase were utilized 

for the benchmarking process. 

Benchmarking Process 

The benchmarking process simulated real-world healthcare workloads through the following test designs: 

1) Workload A (Read-Heavy): 50% reads, 50% updates. 

2) Workload B (Read-Only): 95% reads, 5% updates. 

3) Workload C (Write-Heavy): 100% inserts or updates. 

4) Workload D (Read-Modify-Write): Simulates transactions where data is read, modified, and written 

back. 

5) Workload E (Scan): Focused on scanning queries, commonly used in analytics. 

Each workload was executed across MongoDB, Cassandra, and Couchbase. Metrics including throughput, latency, 

and error rates were captured. The tests were repeated under different conditions, such as varying data sizes, node 

failures, and network latencies. 

Data Collection and Analysis 

To evaluate the performance and scalability of MongoDB, Cassandra, and Couchbase for healthcare applications, we 

conducted a comprehensive benchmarking study using the YCSB. The YCSB workload was configured to simulate 

typical healthcare database operations, including read-heavy, write-heavy, and mixed workloads. Three metrics were 

collected: 1) Average and 99th percentile latencies: To measure response times under varying loads. 2) 

Throughput: To assess the maximum number of transactions per second each database can handle. 3) 

Consistency: To evaluate the ability of each database to maintain data integrity. For scalability testing, we gradually 

increased the number of nodes in each database cluster to observe how performance and resource utilization scaled. 

Furthermore, for failure testing, simulated node failures were used to assess fault tolerance and recovery time.  

To compare the performance of these databases, the following criteria were evaluated: 

a) Throughput: The maximum number of transactions per second each database could handle. 

b) Latency: The average and 99th percentile response times for queries. 

c) Scalability: The ability of each database to maintain performance as the workload and cluster size 

increased. 



384  
 

J INFORM SYSTEMS ENG, 10(25s) 

d) Consistency: The database's ability to guarantee data integrity, particularly under high load conditions. 

e) Ease of use: The complexity of setup, configuration, and ongoing maintenance. 

To visualize the performance metrics, we created graphs and tables comparing the throughput, latency, and 

consistency of MongoDB, Cassandra, and Couchbase across different workloads. We also analysed the trade-offs 

between these factors for each database. 

Durability Settings for the Databases 

1.MongoDB 

• Configuration: MongoDB's durability can be controlled by setting the writeConcern option. 

o Write Concern: Set writeConcern to majority to ensure that write operations are acknowledged by 

the majority of replica set members before returning a success response. 

o Procedure 

 

2. Cassandra 

• Configuration: Cassandra’s durability is controlled through the write_consistency_level and 

durable_writes settings. 

o Write Consistency Level: Set the consistency level to QUORUM or ALL for writes to ensure that 

the write operation is acknowledged by a majority or all replicas. 

o Durable Writes: Ensure that the durable_writes setting is enabled in the table schema. 

o Procedure 

 

3. Couchbase 

• Configuration: Couchbase controls durability using durability and replica settings. 

o Durability: Set the durability level to MAJORITY or MAJORITY_AND_PERSIST_TO_ACTIVE to 

ensure that a majority of nodes or both a majority and the active node acknowledge the write. 

o Procedure: 
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Data losses can be high, depending on the replication mechanism and durability setting in the worst case(Table-1), 

like a server crash. Recent changes may get lost if proper replication of the server's data is not done or write operations 

have not been committed to stable storage. It means that in case of a crash within databases with poor settings for 

durability, transactions that were in flight at the time of failure may get lost. It calls for one's best effort to make sure 

that good backup strategies are put in place, replication is well utilized, and settings for durability are engineered so 

that the likelihood of data loss due to unforeseen server failures is close to nil. Under a worst-case scenario-a server 

Crash-MongoDB, Cassandra, and Couchbase expose variable degrees of data loss depending on their durability 

settings. MongoDB might lose the recently written data in case the majority of replica set members didn't 

acknowledge the writes. Cassandra may lose updates if those aren't fully replicated to the required consistency 

level. Couchbase might have lost several data since there were no durability settings, like MAJORITY or 

MAJORITY_AND_PERSIST_TO_ACTIVE, to make sure the most recent writes were committed ahead of the 

crash.        

 

Table 1: -  Worst-Case Scenario for Data Loss in the Event of a Server Crash 

Performance evaluation queries of Workload 

In order to measure the performance of MongoDB, Couchbase, and Cassandra using YCSB with the MIMIC-III 

dataset, two sample queries are created for each database to simulate read and write operations:  

Query 1: Insert Operation (Write) 

This query simulates inserting patient data from the MIMIC-III dataset into the database. 

o MongoDB: 

./bin/ycsb load mongodb -s -P workloads/workloada \ 

    -p mongodb.url=mongodb://localhost:27017/ycsb \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p fieldcount=10 \ 

    -p fieldlength=100 

o Cassandra: 

./bin/ycsb load cassandra-10 -s -P workloads/workloada \ 

    -p hosts=127.0.0.1 \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p fieldcount=10 \ 

    -p fieldlength=100 

o CouchBase 
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./bin/ycsb load couchbase -s -P workloads/workloada \ 

    -p couchbase.hosts=localhost \ 

    -p couchbase.bucket=ycsb \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p fieldcount=10 \ 

    -p fieldlength=100 

Query 2: Read Operation  

o MongoDB: 

./bin/ycsb run mongodb -s -P workloads/workloada \ 

    -p mongodb.url=mongodb://localhost:27017/ycsb \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.95 \ 

    -p updateproportion=0.05 

 

o Cassandra: 

./bin/ycsb run cassandra-10 -s -P workloads/workloada \ 

    -p hosts=127.0.0.1 \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.95 \ 

    -p updateproportion=0.05 

o CouchBase 

./bin/ycsb run couchbase -s -P workloads/workloada \ 

    -p couchbase.hosts=localhost \ 

    -p couchbase.bucket=ycsb \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.95 \ 

    -p updateproportion=0.05 

Query 3: Update Operation 

o MongoDB: 

./bin/ycsb run mongodb -s -P workloads/workloada \ 

    -p mongodb.url=mongodb://localhost:27017/ycsb \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.0 \ 

    -p updateproportion=1.0 

o Cassandra: 

./bin/ycsb run cassandra-10 -s -P workloads/workloada \ 

    -p hosts=127.0.0.1 \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.0 \ 

    -p updateproportion=1.0 

o CouchBase 

./bin/ycsb run couchbase -s -P workloads/workloada \ 

    -p couchbase.hosts=localhost \ 

    -p couchbase.bucket=ycsb \ 

    -p recordcount=100000 \ 
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    -p operationcount=100000 \ 

    -p readproportion=0.0 \ 

    -p updateproportion=1.0 

Query 4: Delete Operation 

o MongoDB: 

./bin/ycsb run mongodb -s -P workloads/workloadc \ 

    -p mongodb.url=mongodb://localhost:27017/ycsb \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.0 \ 

    -p deleteproportion=1.0 

o Cassandra: 

./bin/ycsb run cassandra-10 -s -P workloads/workloadc \ 

    -p hosts=127.0.0.1 \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.0 \ 

    -p deleteproportion=1.0 

o CouchBase 

./bin/ycsb run couchbase -s -P workloads/workloadc \ 

    -p couchbase.hosts=localhost \ 

    -p couchbase.bucket=ycsb \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.0 \ 

    -p deleteproportion=1.0 

Query 5: Read-Modify-Write Operation 

o MongoDB: 

./bin/ycsb run mongodb -s -P workloads/workloadd \ 

    -p mongodb.url=mongodb://localhost:27017/ycsb \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.5 \ 

    -p updateproportion=0.5 

o Cassandra: 

./bin/ycsb run cassandra-10 -s -P workloads/workloadd \ 

    -p hosts=127.0.0.1 \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.5 \ 

    -p updateproportion=0.5 

o CouchBase 

./bin/ycsb run couchbase -s -P workloads/workloadd \ 

    -p couchbase.hosts=localhost \ 

    -p couchbase.bucket=ycsb \ 

    -p recordcount=100000 \ 

    -p operationcount=100000 \ 

    -p readproportion=0.5 \ 

    -p updateproportion=0.5 
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Summary of the Queries: 

1. Insert Operation – Writes records into the database. 

2. Read Operation – Reads records from the database. 

3. Update Operation – Updates existing records. 

4. Delete Operation – Deletes records. 

5. Read-Modify-Write Operation – Reads and then updates records. 

 

                                                                  Fig-3: Throughput Vs. Operation  

 

                                                                     Fig-4: Throughput Comparison 

Experimental Setup: 

• Databases: MongoDB, Cassandra, and Couchbase 

• Dataset: MIMIC-III (Medical Information Mart for Intensive Care) 

• Benchmark Tool: YCSB 

• Configurations: 

o Throughput Optimization: Optimized for speed with reduced durability. 

o Durability Optimization: Ensures data persistence by writing all operations to disk. 

o Balanced Configuration: Provides a middle-ground between throughput and durability. 

Result 

Workloads Tested: 

1. 50/50 Workload (Read/Write): Mixed workload where both read and write operations are equally 

performed. 

2. Read-Heavy Workload (95% Reads): Evaluates read performance under high load. 



389  
 

J INFORM SYSTEMS ENG, 10(25s) 

3. Write-Heavy Workload (80% Writes): Focuses on how well each database handles frequent writes. 

Results Overview: 

Throughput and Latency (Optimized for Throughput): 

In this test, each system was optimized for speed, sacrificing durability to achieve higher throughput. MongoDB 

consistently outperformed Cassandra and Couchbase: 

Workload A - Throughput Optimized 

 Results for Workload A (Table -2) under throughput optimization show the following performance: MongoDB 

achieves the highest throughput, while Cassandra offers lower write latency. Couchbase shows good read 

performance but lags in write operations. 

                              Table 2: Workload A - Throughput Optimized 

                         Database Throughput A (ops/sec) Read Latency A (ms) Write Latency A (ms) 

MongoDB 70000 1.2 3.4 

Cassandra 55000 1.1 2.8 

Couchbase 52000 0.8 4.0 

 

 

Workload B - Throughput Optimized 

Under Workload B(Table-3), MongoDB continues to outperform in terms of throughput, but Couchbase 

demonstrates better consistency in read operations. Cassandra remains balanced between read and write latencies. 

                                   Table 3: Workload B - Throughput Optimized 

Database Throughput B (ops/sec) Read Latency B (ms) Write Latency B (ms) 

MongoDB 65000 1.4 3.8 

Cassandra 54000 1.3 2.9 

Couchbase 51000 1.0 4.2 
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. 

                                                         Workload A - Durability Optimized 

With durability optimizations(Table:4) applied, Cassandra shows the best performance for write-heavy. 

workloads. MongoDB sacrifices some throughput to improve durability, while Couchbase's performance remains 

stable but does not reach the throughput levels of the other two. 

                                          Table 4: Workload A - Durability Optimized 

                      Database Throughput C (ops/sec) Read Latency C (ms) Write Latency C (ms) 

MongoDB 62000 1.6 4.0 

Cassandra 53000 1.2 3.0 

Couchbase 50000 0.9 4.3 

 

 

Workload B - Durability Optimized 

For Workload B with durability optimization (Table 5), MongoDB balances performance and reliability, but its 

throughput is reduced compared to throughput-optimized configurations. Cassandra excels in write durability, and 

Couchbase maintains consistent operations but falls behind in throughput. 

Table 5: Workload B - Durability Optimized Database Throughput D (ops/sec) Read Latency D 

(ms) Write Latency D (ms) 

MongoDB 61000 1.7 4.2 

Cassandra 52000 1.4 3.1 

Couchbase 49000 1.1 4.5 
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Balanced Configuration: 

The balanced configuration highlights MongoDB’s superior performance across the board, providing the best trade- 

offs between throughput and durability. Cassandra showed moderate performance, while Couchbase lagged behind. 

Databas

e 

Throughput 

(tps) 

Latency 

(ms) 

MongoDB 4000 200 

Cassandra 3200 180 

Couchbas

e 

3400 160 

 

Compare the performance of three databases—MongoDB, Cassandra, and Couchbase—across different 

configurations by plotting throughput against latency (Table 6).  

 

                                                                                   Table 6: -  Latency Vs Throughput 

Database Configurations Throughput Latency(ms) 

MongoDB config_1 3000 120 

MongoDB config_2 3500 150 

MongoDB config_3 4000 200 

Cassandra config_1 2500 100 

Cassandra config_2 2900 130 

Cassandra config_3 3200 180 



392  
 

J INFORM SYSTEMS ENG, 10(25s) 

Couchbase config_1 2700 110 

Couchbase config_2 3100 140 

Couchbase config_3 3400 160 

 

CDF(Fig-5) of latency provides quite a fine-grained view of how latency values are spread out across various 

databases. Plotting CDF makes clear the proportion of operations falling below a certain threshold of latency, and 

therefore highlights in what measure a database delivers low latency against finding high latency outliers. This 

becomes really helpful in finding performance bottlenecks and understanding how often each system is meeting its 

latency targets. Of most interest is the 99th percentile latency, which can indicate the latency that the slowest 1 

percent of operations saw. 

 

                                                      Fig-5: Cumulative distribution Function for Latency 

We believe that most applications benefit from a balanced configuration that provides good throughput while 

minimizing the risk of data loss. This approach is reflected in the default settings of Cassandra and MongoDB, 

indicating that their developers share this perspective. We could not find a similar balanced configuration for 

Couchbase. Instead, applications have to choose between a throughput-optimized setup that can lose up to RAM-

sized chunks of data and a setup optimized for durability where throughput drops by 99% and latency is increased 

over 200 times, as we have seen in our experiments. 

 

In a setup tuned for both throughput and endurance, the 50/50 workload for those tests demonstrates MongoDB 

providing almost 50% more throughput than Cassandra. As mentioned, Couchbase didn't provide a corresponding 

setup. 
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Table 7: - Workload A, Balanced 

Database   99th percentile 

read(ms) 

99th percentile 

update(ms) 

Cassandra 6 6 

MongoDB <1 1 

 

 

For the configuration balanced for throughput and durability, the read-heavy workload exhibits 95% reads with 

MongoDB delivering in excess of a factor of 2.5 times the throughput of Cassandra. The corresponding latency results 

mirror the behavior seen in the 50/50 workload. 

                                                                                   Table 8: -  Latency rate  

Database Latency(ms) 

MongoDB 0.8 

Cassandra 2.0 

For the configuration balanced for throughput and durability, the read-heavy workload exhibits 95% reads with 

MongoDB delivering in excess of a factor of 2.5 times the throughput of Cassandra. The corresponding latency results 

mirror the behavior seen in the 50/50 workload. Clearly, additional durability has a cost. The read and write latencies 

are generally higher across the databases for the balanced configuration compared to the throughput-optimized 

configuration. We feel that this level of durability might be acceptable given an application. 

For MongoDB, mixed workloads obtain throughput only about 30% below the throughput-optimized setting, while 

read-intensive workloads obtain only about 10% less throughput. However, Cassandra's throughput falls by about 

40% for mixed workloads and by about 50% for read-intensive workloads relative to its throughput-optimized setting. 

 

We believe that for most users these are good trade-offs, and that the default balanced setting is preferable to either 

of the throughput- or durability-optimized settings. 

Error Rates vs. Workload Intensity for MongoDB, Cassandra, and Couchbase 

This benchmarking analysis compares the error rate of MongoDB, Cassandra, and Couchbase (Fig-6(a) & Fig-6(b)) 

across high, medium, and low variable workload intensities. Generally speaking, we could notice that increasing the 

intensity of the workload rises the error rates across the different databases. MongoDB consistently showed the least 

error rate, while Cassandra showed a slight increase in error rates under increasing loads. Couchbase behaves much 

like MongoDB when the workloads are low and medium but then starts to show some increase in error rates when 

the workloads are high. These insights give a good idea about the fault tolerance of each database when the 

operational loads change and will help the users decide which one is best with respect to performance reliability. 
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Fig-6(a): Error Rates vs. Workload Intensity 

 

Fig-6(b): Error Rates vs. Workload Intensity 

                                                                               Table 9: - Error rate 

Workload 

Intensity 

MongoDB Error 

Rate (%) 

Cassandra Error 

Rate (%) 

Couchbase Error 

Rate (%) 

Low 1.0 2.0 1.5 

Medium 3.0 4.0 2.5 

High 5.0 6.0 3.5 

 

Impact of Consistency and Durability Settings on Database Performance: A Heatmap Visualization:  

This is evident from the heat map, showing the relation of settings of consistency and durability to the performance 

of databases. Generally, while increasing the levels of consistency and durability, the trend is usually a drop in 

performance since there are usually tradeoffs between ensuring that data becomes more reliable versus throughput. 

For example, databases whose settings for consistency and durability are low usually perform better, while others set 

at higher levels of consistency and durability for the reason of ensuring data integrity and fault tolerance have lower 

scores in performance. This heat map therefore gives a clear, at-a- glance understanding of the way in which different 

settings change the trade-off between performance and the reliability of data. 
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                                                                         Fig-7: HeatMap Visualization  

Consistency Level Low Durability Medium 

Durability 

High Durability 

Low Consistency 95 90 85 

Medium 

Consistency 
90 85 80 

High Consistency 85 80 70 

 

Integrated Model 

Building on the individual strengths of MongoDB, Cassandra, and Couchbase, we hereby propose a hybrid 

architecture in order to improve performance as well as efficiency in health care data management. Such an 

integrated model is envisaged to be utilizing MongoDB for its superior throughput on read-heavy workloads, utilizing 

Cassandra for its write-optimized durability, and using Couchbase for its balanced performance and real-time 

capabilities. 

The comparative analysis over MongoDB, Cassandra, and Couchbase using MIMIC-III is conducted, which reveals 

quite pertinent trade-offs in the above performance metrics of throughput, latency, and durability. Instead of 

considering all three as competitors, it provides a collaborative architecture where uniqueness for each system 

complements its counterparts. 

Proposed Architecture 

The Proposed architecture (fig 8) will integrate the characteristics of NoSQL databases mongoDB, Cassandra and 

Couchbase for efficient management of healthcare data. 

Data Segmentation 

The architecture segments the data into three categories to optimize the strength of each NoSQL database. 

Transactional Data: 

For high-efficiency write operations and strong consistency, Cassandra is used for healthcare applications with 

transactional data management. 

Analytical Queries: 

The document model of MongoDB with flexible document model high read performance is used in the system for 

handling analytical queries with effectiveness on unstructured as well as semi-structured data. 

Change Data Capture (CDC) techniques are applied to track and propagate data changes in real-time. 

Distributed data pipelines, for instance, Apache Kafka are exploited for the synchronization of data that can be 

efficient and scalable. 

Query Router 

Within the architecture, there should be an intelligent query router which oversees the database operations. It does 

dynamic: 
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Forward read and write operations to suitable databases according to workload types 

Optimize the routing of queries for either maximum throughput or durability according to needs in applications 

Performance Benchmark 

Performance metrics for the system in configurations vary according to benchmarks like key performance indicators: 

Throughput Optimization: 

Measurement of the total operations per second in a mixed workload of reads and writes. 

 

Fig-8: Proposed Architecture. 

Advantages of the Suggested Architecture 

Mixed Workload Efficiency: 

For transactional, analytical, and caching operations mixed together in the workload, optimal throughput is achieved. 

Low Latency: 

The use of Couchbase as a cache provides faster reads and writes. MongoDB and Cassandra, on the other hand, 

provide fast data processing for their specific use cases. 

CONCLUSION 

In short, our analysis elucidates several key trade-offs between throughput, durability, and latency in database 

configuration. The throughput-optimized settings assure high performance but with associated risks of data loss, 

whereas durability-optimized configurations ensure data integrity at considerable cost to performance. The balanced 

configuration, targeting a middle ground, realizes substantial benefits in terms of durability with acceptable 

reductions in both throughput and latency. Of these, MongoDB particularly stands out when running the mixed and 

read-heavy workloads with a balanced configuration. Admittedly, the settings are by default balanced in our tests, 

which inevitably incurs some performance costs; we believe that for most applications, though, a balanced setup 

offers a pragmatic compromise between reliable data protection and decent performance. This is a well-balanced 

approach that would be most desirable for any user looking to optimize their database setup without giving up on 

important aspects of data integrity and application performance. 

This proposed architecture unifies Cassandra, MongoDB, and Couchbase effectively to meet all the requirements of 

healthcare applications while providing the right balance for transactional processing, analytical queries, and real-

time caching. With the unique strength of each database, powered by intelligent query routing and robust data 

synchronization, this architecture will guarantee high throughput, low latency, and enhanced fault tolerance. With 

space for future growth in the shape of upgrades in ML-based query optimization and auto-scaling, this architecture 

has in it all the elements of becoming a scalable yet adaptive structure to manage health care data. 
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