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Objectives: This paper presents a comprehensive performance evaluation of three prominent
NoSQL databases—MongoDB, Cassandra, and Couchbase—tailored for healthcare applications.
We benchmark these databases across key performance metrics, including read and write
throughput, latency, scalability, and fault tolerance, utilizing a realistic healthcare dataset -
Medical Information Mart for Intensive Care III (MIMIC-III). Our analysis aims to elucidate the
distinct strengths and weaknesses of each database in handling healthcare data.
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Methods: Our analysis aims to elucidate the distinct strengths and weaknesses of each database
in handling healthcare data. By contrasting the flexibility and user-friendliness of MongoDB with
the extreme scalability of Cassandra and the high performance of Couchbase in distributed
environments, this research empowers healthcare information technology professionals and
database administrators to make informed decisions regarding NoSQL database selection.

Results: These findings contribute to the effective management of healthcare data, facilitating
improved health outcomes.

Conclusions: This study analyzes performance demonstration in detail among MongoDB,
Cassandra, and Couchbase, owing to the merits and demerits for healthcare applications. Real-
time healthcare data processing is adequately assessed in terms of throughput, latency,
scalability, and fault tolerance benchmarks for their appropriateness. The flexible features of
MongoDB present multiple advantages, whereas, with respect to operations that require
scalability at high performance, Cassandra is more usually chosen. This therefore should assist
any healthcare IT professional in making the right decision for the selection of their NoSQL
database when it comes to effective data management and enhanced outcomes for healthcare.
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INTRODUCTION

The proliferation of data sources within the healthcare sector, including electronic health records, medical imaging,
wearable devices, and other digital health technologies, has ushered in an era of unprecedented data generation. To
effectively manage, store, and process this vast influx of structured and unstructured information, robust and scalable
database solutions are imperative. Traditional relational databases often fall short in meeting the demands of modern
healthcare applications due to their limitations in scalability and flexibility. [1]

NoSQL databases have emerged as viable alternatives, offering scalable and distributed architectures capable of
handling large datasets and enabling real-time data access. Among the leading NoSQL databases, MongoDB,
Cassandra, and Couchbase have garnered significant attention for their respective strengths: MongoDB's flexible
document model, Cassandra's exceptional scalability and fault tolerance, and Couchbase's strong performance in
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distributed environments. [2]

At their core, NoSQL databases, including MongoDB, Cassandra, and Couchbase, are designed within the constraints
of the CAP theorem (Fig-1), which postulates that a distributed system cannot simultaneously guarantee Consistency,
Availability, and Partition tolerance. MongoDB, prioritizing flexibility, allows developers to trade off consistency for
partition tolerance based on application requirements. Cassandra, optimized for Availability and Partition Tolerance,
ensures system resilience in the face of network disruptions. Couchbase aims to balance all three CAP properties,
often leaning towards Availability and Partition Tolerance, similar to Cassandra. This trade-off mechanism empowers
developers to make informed choices aligned with their application's needs, mitigating the inherent limitations
imposed by the CAP theorem.

all clients see current the system continues
data regardiess to oparate as expected
updates or deletes ‘even with node failures

the system continues to
operate as expected despite
network or message failures

Partition
Tolerance

Fig-1(a): The CAP Theorem, illustrating trade-offs between Consistency, Availability, and Partition Tolerance in
distributed databases

This study presents a comprehensive performance evaluation of three prominent NoSQL databases—MongoDB,
Cassandra, and Couchbase—utilizing the Medical Information Mart for Intensive Care III (MIMIC-III) electronic
health record dataset. Our focus lies on key performance metrics, including read and write throughput, latency,
scalability, and fault tolerance. Through rigorous benchmarking, we aim to provide valuable insights for healthcare
information technology professionals and database administrators, facilitating informed decisions regarding
database selection. By identifying the strengths and weaknesses of each NoSQL database in handling healthcare data,
this research contributes to the optimization of healthcare data management practices and ultimately, the
improvement of patient outcomes.
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Fig-1(b): Optimizing NoSQL Database Selection for Healthcar
BACKGROUND STUDY

Several studies have investigated the application of NoSQL databases in healthcare settings. Doe and Smith (2022)
highlighted the growing adoption of these databases for handling large-scale unstructured data, such as electronic
health records (EHRs) and medical imaging. Their evaluation of MongoDB, Cassandra, and Couchbase revealed their



382 J INFORM SYSTEMS ENG, 10(25s)

unique strengths in scalability, flexibility, and performance, making them well-suited for modern healthcare
applications.

Johnson et al. (2021) conducted a benchmarking study comparing MongoDB, Cassandra, and Couchbase against a
healthcare dataset. Their findings confirmed MongoDB's flexibility for integrating diverse healthcare data types,
while Cassandra demonstrated exceptional reliability and high availability. Couchbase's hybrid model excelled in
real-time data analytics and processing.

Brown and Lee (2020) explored the impact of database selection on healthcare system performance. They concluded
that MongoDB's adaptability to various data types, Cassandra's suitability for high-throughput scenarios, and
Couchbase's balanced approach make them viable options for different healthcare applications.

Miller and Davis (2022) emphasized the role of NoSQL databases in handling the scalability of unstructured
healthcare data. MongoDB's schema-less design was noted for its flexibility in accommodating diverse data types.

Roberts et al. (2021) conducted performance benchmarks specifically for healthcare applications, highlighting
MongoDB's advantages in data integration and retrieval, Cassandra's reliability, and Couchbase's real-time data
access capabilities.

Clark and Nguyen (2020) examined the reliability and scalability of NoSQL databases in healthcare. They found
MongoDB suitable for flexible, rapidly changing data, Cassandra for high-throughput, write-intensive applications,
and Couchbase for real-time analytics.

Anderson and Patel (2020) focused on scalability, reinforcing MongoDB's suitability for healthcare applications
requiring flexibility and seamless integration, while Cassandra excelled in supporting large-scale distributed datasets.
Couchbase was praised for its high performance in real-time applications.

The collective findings of these studies underscore the need for careful consideration of NoSQL database selection
based on specific healthcare application requirements. MongoDB, Cassandra, and Couchbase each offer distinct
advantages in performance, scalability, and reliability, making them strong candidates for healthcare data
management systems.

METHODOLOGY

The primary objective of this study was to evaluate the performance of MongoDB, Cassandra, and Couchbase in
handling healthcare data, specifically electronic health records (EHRs) from the MIMIC-III dataset. The focus was
on assessing key performance metrics, including throughput, latency, scalability, and consistency. (Figure 2)
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Fig-2: Proposed Methodology
The performance analysis focused on the following critical metrics:
1. Throughput: Measured in operations per second, focusing on read and write operations.

2. Latency: Both read and write latencies were evaluated, particularly average and 9gth percentile latencies.
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3. Scalability: The ability of each database to scale as the dataset size increased.
4. Consistency: The consistency of read and write operations under different workloads was evaluated.

Dataset Preparation

The MIMIC-III dataset, containing structured EHRs from over 40,000 critical care patients, was used. Relevant
tables and records, such as patient demographics, diagnoses, prescriptions, and procedures, were extracted to
simulate a typical healthcare workload. The dataset was tested under three different conditions: small, medium, and
large data volumes to assess database performance across varying loads.

Environment Setup

1) Infrastructure: Amazon Web Services (AWS) was used to provision virtual servers, ensuring uniform
environments for all databases.

2) Database Configuration:
MongoDB: Replica sets and sharding were configured as needed for horizontal scaling.
b. Cassandra: A cluster with multiple nodes was set up, with a defined consistency level.
c. Couchbase: Buckets, indexing, and data replication were configured to ensure optimal performance.

3) Yahoo Cloud Serving Benchmark (YCSB) Integration: YCSB was installed and configured on a
separate server to simulate workloads. Specific YCSB clients for MongoDB, Cassandra, and Couchbase were utilized
for the benchmarking process.

Benchmarking Process

The benchmarking process simulated real-world healthcare workloads through the following test designs:
1) Workload A (Read-Heavy): 50% reads, 50% updates.

2) Workload B (Read-Only): 95% reads, 5% updates.

3) Workload C (Write-Heavy): 100% inserts or updates.

4) Workload D (Read-Modify-Write): Simulates transactions where data is read, modified, and written
back.
5) Workload E (Scan): Focused on scanning queries, commonly used in analytics.

Each workload was executed across MongoDB, Cassandra, and Couchbase. Metrics including throughput, latency,
and error rates were captured. The tests were repeated under different conditions, such as varying data sizes, node
failures, and network latencies.

Data Collection and Analysis

To evaluate the performance and scalability of MongoDB, Cassandra, and Couchbase for healthcare applications, we
conducted a comprehensive benchmarking study using the YCSB. The YCSB workload was configured to simulate
typical healthcare database operations, including read-heavy, write-heavy, and mixed workloads. Three metrics were
collected: 1) Average and 99th percentile latencies: To measure response times under varying loads. 2)
Throughput: To assess the maximum number of transactions per second each database can handle. 3)
Consistency: To evaluate the ability of each database to maintain data integrity. For scalability testing, we gradually
increased the number of nodes in each database cluster to observe how performance and resource utilization scaled.
Furthermore, for failure testing, simulated node failures were used to assess fault tolerance and recovery time.

To compare the performance of these databases, the following criteria were evaluated:

a) Throughput: The maximum number of transactions per second each database could handle.
b) Latency: The average and 99th percentile response times for queries.
c) Scalability: The ability of each database to maintain performance as the workload and cluster size

increased.
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d) Consistency: The database's ability to guarantee data integrity, particularly under high load conditions.
e) Ease of use: The complexity of setup, configuration, and ongoing maintenance.

To visualize the performance metrics, we created graphs and tables comparing the throughput, latency, and
consistency of MongoDB, Cassandra, and Couchbase across different workloads. We also analysed the trade-offs
between these factors for each database.

Durability Settings for the Databases

1.MongoDB
o Configuration: MongoDB's durability can be controlled by setting the writeConcern option.
o Write Concern: Set writeConcern to majority to ensure that write operations are acknowledged by

the majority of replica set members before returning a success response.

o Procedure

pymongo MongoClient, WriteConcern

client = MongoClient(

client = MongoClient(

2. Cassandra

o Configuration: Cassandra’s durability is controlled through the write_consistency_level and
durable_writes settings.

o Write Consistency Level: Set the consistency level to QUORUM or ALL for writes to ensure that
the write operation is acknowledged by a majority or all replicas.

o Durable Writes: Ensure that the durable_ writes setting is enabled in the table schema.

o Procedure

my table (id, ) CONSISTENCY QUORUM

my_table durable writes

3. Couchbase
o Configuration: Couchbase controls durability using durability and replica settings.

o Durability: Set the durability level to MAJORITY or MAJORITY_AND_PERSIST_TO_ACTIVE to
ensure that a majority of nodes or both a majority and the active node acknowledge the write.

o Procedure:

couchbase.bucket Bucket

couchbase.durability Durability

bucket = Bucket(

bucket .upsert( 1 3 }, durability=Durability.MAJORITY)
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Data losses can be high, depending on the replication mechanism and durability setting in the worst case(Table-1),
like a server crash. Recent changes may get lost if proper replication of the server's data is not done or write operations
have not been committed to stable storage. It means that in case of a crash within databases with poor settings for
durability, transactions that were in flight at the time of failure may get lost. It calls for one's best effort to make sure
that good backup strategies are put in place, replication is well utilized, and settings for durability are engineered so
that the likelihood of data loss due to unforeseen server failures is close to nil. Under a worst-case scenario-a server
Crash-MongoDB, Cassandra, and Couchbase expose variable degrees of data loss depending on their durability
settings. MongoDB might lose the recently written data in case the majority of replica set members didn't
acknowledge the writes. Cassandra may lose updates if those aren't fully replicated to the required consistency
level. Couchbase might have lost several data since there were no durability settings, like MAJORITY or
MAJORITY_AND_PERSIST TO_ACTIVE, to make sure the most recent writes were committed ahead of the
crash.

Worst-Case Scenario for Data Loss in the Event of a Server Crash
Cassandra Conchhase MongoDB
Optimized Throughput -Logze evervthing written | Lose everything in the disk | Lose everything written since the
{no WAL; write since  Memtables last | write queue up to the size of | last successful checkpomt
acknowledged after written | perssted vour BAM
to RAM, written to disk
asynchronously)
Durability Optimized (waits | Waits for commitlog | -Waits for persist to master | -Flushes journal to disk
for WAL or data to be | flush -MNo possible dzta | -No possible data loss -No possible data loss
written to disk) lozs
Optimized for Durability | -Commit log flushed te | Mo egquivalent  option | -Jounal flushed to disk every
Waits for WAL or data to | disk every 10 seconds available 100MB -Lozse up to 1M0ME of data
ke  written to  disk. | -Loseupto 10 seconds of
Balanced data

Table 1: - Worst-Case Scenario for Data Loss in the Event of a Server Crash
Performance evaluation queries of Workload

In order to measure the performance of MongoDB, Couchbase, and Cassandra using YCSB with the MIMIC-III
dataset, two sample queries are created for each database to simulate read and write operations:

Query 1: Insert Operation (Write)
This query simulates inserting patient data from the MIMIC-III dataset into the database.

o MongoDB:

./bin/ycsb load mongodb -s -P workloads/workloada \
-p mongodb.url=mongodb://localhost:27017/ycsb \
-p recordcount=100000 \

-p operationcount=100000 \
-p fieldcount=10 \
-p fieldlength=100

o Cassandra:

./bin/ycsb load cassandra-10 -s -P workloads/workloada \
-p hosts=127.0.0.1 \

-p recordcount=100000 \
-p operationcount=100000 \
-p fieldcount=10 \
-p fieldlength=100
o CouchBase
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./bin/ycsb load couchbase -s -P workloads/workloada \
-p couchbase.hosts=localhost \
-p couchbase.bucket=ycsb \
-p recordcount=100000 \
-p operationcount=100000 \
-p fieldcount=10 \
-p fieldlength=100

Query 2: Read Operation

o MongoDB:

./bin/yesb run mongodb -s -P workloads/workloada \
-p mongodb.url=mongodb://localhost:27017/ycsb \
-p recordcount=100000 \

-p operationcount=100000 \
-p readproportion=0.95 \
-p updateproportion=0.05

o Cassandra:
./bin/ycsb run cassandra-10 -s -P workloads/workloada \
-p hosts=127.0.0.1 \
-p recordcount=100000 \
-p operationcount=100000 \
-p readproportion=0.95 \
-p updateproportion=0.05
o CouchBase
./bin/ycsb run couchbase -s -P workloads/workloada \
-p couchbase.hosts=localhost \
-p couchbase.bucket=ycsb \
-p recordcount=100000 \
-p operationcount=100000 \
-p readproportion=0.95 \
-p updateproportion=0.05

Query 3: Update Operation

o MongoDB:

./bin/yesb run mongodb -s -P workloads/workloada \
-p mongodb.url=mongodb://localhost:27017/ycsb \
-p recordcount=100000 \

-p operationcount=100000 \
-p readproportion=0.0 \
-p updateproportion=1.0

o Cassandra:

./bin/ycsb run cassandra-10 -s -P workloads/workloada \
-p hosts=127.0.0.1 \

-p recordcount=100000 \

-p operationcount=100000 \
-p readproportion=0.0 \

-p updateproportion=1.0

o CouchBase

./bin/ycsb run couchbase -s -P workloads/workloada \
-p couchbase.hosts=localhost \

-p couchbase.bucket=ycsb \
-p recordcount=100000 \
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-p operationcount=100000 \
-p readproportion=0.0 \
-p updateproportion=1.0

Query 4: Delete Operation

o MongoDB:

./bin/ycsb run mongodb -s -P workloads/workloadc \
-p mongodb.url=mongodb://localhost:27017/ycsb \
-p recordcount=100000 \

-p operationcount=100000 \
-p readproportion=0.0 \
-p deleteproportion=1.0

o Cassandra:

./bin/ycsb run cassandra-10 -s -P workloads/workloadc \
-p hosts=127.0.0.1 \

-p recordcount=100000 \

-p operationcount=100000 \
-p readproportion=0.0 \

-p deleteproportion=1.0

o CouchBase

./bin/ycsb run couchbase -s -P workloads/workloadc \
-p couchbase.hosts=localhost \

-p couchbase.bucket=ycsb \
-p recordcount=100000 \

-p operationcount=100000 \
-p readproportion=0.0 \

-p deleteproportion=1.0

Query 5: Read-Modify-Write Operation

o MongoDB:

./bin/ycsb run mongodb -s -P workloads/workloadd \
-p mongodb.url=mongodb://localhost:27017/ycsb \
-p recordcount=100000 \

-p operationcount=100000 \
-p readproportion=0.5 \
-p updateproportion=0.5

o Cassandra:

./bin/ycsb run cassandra-10 -s -P workloads/workloadd \
-p hosts=127.0.0.1 \

-p recordcount=100000 \

-p operationcount=100000 \
-p readproportion=0.5 \

-p updateproportion=0.5

o CouchBase

./bin/yesb run couchbase -s -P workloads/workloadd \
-p couchbase.hosts=localhost \

-p couchbase.bucket=ycsb \
-p recordcount=100000 \

-p operationcount=100000 \
-p readproportion=0.5 \

-p updateproportion=0.5
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Summary of the Queries:

1. Insert Operation — Writes records into the database.
2. Read Operation — Reads records from the database.
3. Update Operation — Updates existing records.
4. Delete Operation — Deletes records.
5. Read-Modify-Write Operation — Reads and then updates records.
Throughput vs. Operation for MongeDB, Cassandra, and Couchbase Latency vs. Operation for MongoDB, Cassandra, and Couchbase
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Experimental Setup:
. Databases: MongoDB, Cassandra, and Couchbase
o Dataset: MIMIC-III (Medical Information Mart for Intensive Care)
o Benchmark Tool: YCSB
o Configurations:
o Throughput Optimization: Optimized for speed with reduced durability.
o Durability Optimization: Ensures data persistence by writing all operations to disk.
o Balanced Configuration: Provides a middle-ground between throughput and durability.
Result
Workloads Tested:
1. 50/50 Workload (Read/Write): Mixed workload where both read and write operations are equally
performed.

2. Read-Heavy Workload (95% Reads): Evaluates read performance under high load.
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3. Write-Heavy Workload (80% Writes): Focuses on how well each database handles frequent writes.
Results Overview:
Throughput and Latency (Optimized for Throughput):

In this test, each system was optimized for speed, sacrificing durability to achieve higher throughput. MongoDB
consistently outperformed Cassandra and Couchbase:

Workload A - Throughput Optimized

Results for Workload A (Table -2) under throughput optimization show the following performance: MongoDB
achieves the highest throughput, while Cassandra offers lower write latency. Couchbase shows good read
performance but lags in write operations.

Table 2: Workload A - Throughput Optimized
Database Throughput A (ops/sec) Read Latency A (ms) Write Latency A (ms)

MongoDB 70000 1.2 3.4
Cassandra 55000 1.1 2.8
Couchbase 52000 0.8 4.0

Workload A - Throughput Optimized

80000
mmm Throughput A (ops/sec)
Read Latency A (ms)
70000 mmm Write Latency A (ms)
60000
50000
o
= 40000
2
30000
20000
10000 -
0 T T

MonéoDB Cassandra Couchbase
Database

Workload B - Throughput Optimized

Under Workload B(Table-3), MongoDB continues to outperform in terms of throughput, but Couchbase
demonstrates better consistency in read operations. Cassandra remains balanced between read and write latencies.

Table 3: Workload B - Throughput Optimized
Database Throughput B (ops/sec) Read Latency B (ms) Write Latency B (ms)

MongoDB 65000 1.4 3.8

Cassandra 54000 1.3 2.9

Couchbase 51000 1.0 4.2
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Workload B - Throughput Optimized
70000

mmm Throughput B (ops/sec)

mmm Read Latency B (ms)
60000 mmm Write Latency B (ms)
50000
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30000
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0 T T T
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Database
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Workload A - Durability Optimized

With durability optimizations(Table:4) applied, Cassandra shows the best performance for write-heavy.
workloads. MongoDB sacrifices some throughput to improve durability, while Couchbase's performance remains
stable but does not reach the throughput levels of the other two.

Table 4: Workload A - Durability Optimized
Database Throughput C (ops/sec) Read Latency C (ms) Write Latency C (ms)

MongoDB 62000 1.6 4.0
Cassandra 53000 1.2 3.0
Couchbase 50000 0.9 4.3

Workload A - Durability Optimized

mmm Throughput C (ops/sec)
mm Read Latency C (ms)

60000 mmm Write Latency C (ms)
50000
40000
30000
20000
10000
0 T T T

MongoDB Cassandra Couchbase
Database

70000

Values

Workload B - Durability Optimized

For Workload B with durability optimization (Table 5), MongoDB balances performance and reliability, but its
throughput is reduced compared to throughput-optimized configurations. Cassandra excels in write durability, and
Couchbase maintains consistent operations but falls behind in throughput.

Table 5: Workload B - Durability Optimized Database Throughput D (ops/sec) Read Latency D
(ms) Write Latency D (ms)

MongoDB 61000 1.7 4.2
Cassandra 52000 1.4 3.1

Couchbase 49000 1.1 4.5
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Balanced Configuration:

MongoDB Cassandra
Database

Couchbase

The balanced configuration highlights MongoDB’s superior performance across the board, providing the best trade-
offs between throughput and durability. Cassandra showed moderate performance, while Couchbase lagged behind.

Databas| Throughput | Latency
e (tps) (ms)
MongoDB 4000 200
Cassandra 3200 180
Couchbas 3400 160
e

Compare the performance of three databases—MongoDB, Cassandra, and Couchbase—across

configurations by plotting throughput against latency (Table 6).

Latency vs. Throughput for MongoDB,

different

Cassandra, and Couchbase

200 Databases [ ]
@ MongoDB
W Cassandra
& Couchbase
180 1
'-é‘ 160 [
z o
g
E 140 $
o
120 o
L 2
100 =
2600 2800 000 200 3400 3600 38:30 Q)‘OO
Throughput (transactions per second)
Table 6: - Latency Vs Throughput
Database | Configurations | Throughput | Latency(ms)
MongoDB config_1 3000 120
MongoDB config_2 3500 150
MongoDB config_3 4000 200
Cassandra config_1 2500 100
Cassandra config_2 2900 130
Cassandra config_3 3200 180
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Couchbase config_1 2700 110
Couchbase config_2 3100 140
Couchbase config_3 3400 160

CDF(Fig-5) of latency provides quite a fine-grained view of how latency values are spread out across various
databases. Plotting CDF makes clear the proportion of operations falling below a certain threshold of latency, and
therefore highlights in what measure a database delivers low latency against finding high latency outliers. This
becomes really helpful in finding performance bottlenecks and understanding how often each system is meeting its
latency targets. Of most interest is the g9gth percentile latency, which can indicate the latency that the slowest 1
percent of operations saw.

CDF of Latency for Read and Write Operations Across Databases
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Fig-5: Cumulative distribution Function for Latency

We believe that most applications benefit from a balanced configuration that provides good throughput while
minimizing the risk of data loss. This approach is reflected in the default settings of Cassandra and MongoDB,
indicating that their developers share this perspective. We could not find a similar balanced configuration for
Couchbase. Instead, applications have to choose between a throughput-optimized setup that can lose up to RAM-
sized chunks of data and a setup optimized for durability where throughput drops by 99% and latency is increased
over 200 times, as we have seen in our experiments.

YCSB - Workload A, Balanced (50% read, 50% update)

250000

200000

150000

114,245

100000

Throughput (ops/sec)

50000

Cassandra MongoDB
Database

In a setup tuned for both throughput and endurance, the 50/50 workload for those tests demonstrates MongoDB
providing almost 50% more throughput than Cassandra. As mentioned, Couchbase didn't provide a corresponding
setup.
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Table 7: - Workload A, Balanced

Database | ggth percentile 99th percentile
read(ms) update(ms)
Cassandra 6 6
MongoDB <1 1

For the configuration balanced for throughput and durability, the read-heavy workload exhibits 95% reads with
MongoDB delivering in excess of a factor of 2.5 times the throughput of Cassandra. The corresponding latency results
mirror the behavior seen in the 50/50 workload.

Table 8: - Latency rate

Database Latency(ms)
MongoDB 0.8
Cassandra 2.0

For the configuration balanced for throughput and durability, the read-heavy workload exhibits 95% reads with
MongoDB delivering in excess of a factor of 2.5 times the throughput of Cassandra. The corresponding latency results
mirror the behavior seen in the 50/50 workload. Clearly, additional durability has a cost. The read and write latencies
are generally higher across the databases for the balanced configuration compared to the throughput-optimized
configuration. We feel that this level of durability might be acceptable given an application.

For MongoDB, mixed workloads obtain throughput only about 30% below the throughput-optimized setting, while
read-intensive workloads obtain only about 10% less throughput. However, Cassandra's throughput falls by about
40% for mixed workloads and by about 50% for read-intensive workloads relative to its throughput-optimized setting.

We believe that for most users these are good trade-offs, and that the default balanced setting is preferable to either
of the throughput- or durability-optimized settings.

Error Rates vs. Workload Intensity for MongoDB, Cassandra, and Couchbase

This benchmarking analysis compares the error rate of MongoDB, Cassandra, and Couchbase (Fig-6(a) & Fig-6(b))
across high, medium, and low variable workload intensities. Generally speaking, we could notice that increasing the
intensity of the workload rises the error rates across the different databases. MongoDB consistently showed the least
error rate, while Cassandra showed a slight increase in error rates under increasing loads. Couchbase behaves much
like MongoDB when the workloads are low and medium but then starts to show some increase in error rates when
the workloads are high. These insights give a good idea about the fault tolerance of each database when the
operational loads change and will help the users decide which one is best with respect to performance reliability.
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Error Rates vs. Workload Intensity for MongoDB, Cassandra, and Couchbase
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Fig-6(a): Error Rates vs. Workload Intensity
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Fig-6(b): Error Rates vs. Workload Intensity
Table 9: - Error rate

Workload MongoDB Error Cassandra Error Couchbase Error
Intensity Rate (%) Rate (%) Rate (%)
Low 1.0 2.0 1.5
Medium 3.0 4.0 2.5
High 5.0 6.0 3.5

Impact of Consistency and Durability Settings on Database Performance: A Heatmap Visualization:

This is evident from the heat map, showing the relation of settings of consistency and durability to the performance
of databases. Generally, while increasing the levels of consistency and durability, the trend is usually a drop in
performance since there are usually tradeoffs between ensuring that data becomes more reliable versus throughput.
For example, databases whose settings for consistency and durability are low usually perform better, while others set
at higher levels of consistency and durability for the reason of ensuring data integrity and fault tolerance have lower
scores in performance. This heat map therefore gives a clear, at-a- glance understanding of the way in which different
settings change the trade-off between performance and the reliability of data.
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Integrated Model

Building on the individual strengths of MongoDB, Cassandra, and Couchbase, we hereby propose a hybrid
architecture in order to improve performance as well as efficiency in health care data management. Such an
integrated model is envisaged to be utilizing MongoDB for its superior throughput on read-heavy workloads, utilizing
Cassandra for its write-optimized durability, and using Couchbase for its balanced performance and real-time
capabilities.

The comparative analysis over MongoDB, Cassandra, and Couchbase using MIMIC-III is conducted, which reveals
quite pertinent trade-offs in the above performance metrics of throughput, latency, and durability. Instead of
considering all three as competitors, it provides a collaborative architecture where uniqueness for each system
complements its counterparts.

Proposed Architecture

The Proposed architecture (fig 8) will integrate the characteristics of NoSQL databases mongoDB, Cassandra and
Couchbase for efficient management of healthcare data.

Data Segmentation
The architecture segments the data into three categories to optimize the strength of each NoSQL database.
Transactional Data:

For high-efficiency write operations and strong consistency, Cassandra is used for healthcare applications with
transactional data management.

Analytical Queries:

The document model of MongoDB with flexible document model high read performance is used in the system for
handling analytical queries with effectiveness on unstructured as well as semi-structured data.

Change Data Capture (CDC) techniques are applied to track and propagate data changes in real-time.

Distributed data pipelines, for instance, Apache Kafka are exploited for the synchronization of data that can be
efficient and scalable.

Query Router

Within the architecture, there should be an intelligent query router which oversees the database operations. It does
dynamic:



396 J INFORM SYSTEMS ENG, 10(25s)

Forward read and write operations to suitable databases according to workload types

Optimize the routing of queries for either maximum throughput or durability according to needs in applications
Performance Benchmark

Performance metrics for the system in configurations vary according to benchmarks like key performance indicators:
Throughput Optimization:

Measurement of the total operations per second in a mixed workload of reads and writes.

Components of Optimized Database Architecture
Cassandra for

Intelligent Query Transactional
Router Data
Optimizes database Utilized for high-
operations by directing efficiency write
queries based on @ Cfg operations and strong
workload types consistency in
healthcare applications.

/ ( r?‘- |  Employs a flexible

D es 7 f .
[— e
Facilitates efficientand | = \ () |
scalable data W L/ document model for
synchronization v AN high read performance
T T on unstructured data.

/ \\\
S/

Provides faster reads
and writes, enhancing
overall system
performance.

Fig-8: Proposed Architecture.
Advantages of the Suggested Architecture
Mixed Workload Efficiency:
For transactional, analytical, and caching operations mixed together in the workload, optimal throughput is achieved.
Low Latency:

The use of Couchbase as a cache provides faster reads and writes. MongoDB and Cassandra, on the other hand,
provide fast data processing for their specific use cases.

CONCLUSION

In short, our analysis elucidates several key trade-offs between throughput, durability, and latency in database
configuration. The throughput-optimized settings assure high performance but with associated risks of data loss,
whereas durability-optimized configurations ensure data integrity at considerable cost to performance. The balanced
configuration, targeting a middle ground, realizes substantial benefits in terms of durability with acceptable
reductions in both throughput and latency. Of these, MongoDB particularly stands out when running the mixed and
read-heavy workloads with a balanced configuration. Admittedly, the settings are by default balanced in our tests,
which inevitably incurs some performance costs; we believe that for most applications, though, a balanced setup
offers a pragmatic compromise between reliable data protection and decent performance. This is a well-balanced
approach that would be most desirable for any user looking to optimize their database setup without giving up on
important aspects of data integrity and application performance.

This proposed architecture unifies Cassandra, MongoDB, and Couchbase effectively to meet all the requirements of
healthcare applications while providing the right balance for transactional processing, analytical queries, and real-
time caching. With the unique strength of each database, powered by intelligent query routing and robust data
synchronization, this architecture will guarantee high throughput, low latency, and enhanced fault tolerance. With
space for future growth in the shape of upgrades in ML-based query optimization and auto-scaling, this architecture
has in it all the elements of becoming a scalable yet adaptive structure to manage health care data.
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