
Journal of Information Systems Engineering and Management
2025, 10(25s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Impact of Artificial Intelligence on Software Development

Processes

1Dr. Cuddapah Anitha, 2Nirmal Kumar Gupta, 3Dr. Balaji Chintala, 4Dr. Daniel Pilli, 5Elavarasi Kesavan, 6Dr. S. Md.

Shakir Ali
1Associate Professor, Department of CSE, School of Computing, Mohan Babu University, Tirupati, Andhra Pradesh

cuddapah.anitha@mbu.asia
2Associate Professor, Dept of IT, Manipal University Jaipur, Rajasthan

nirmalgpt@gmail.com
3Assistant Professor, Business School, Koneru Lakshmaiah Education Foundation,

Green Fileds, Vaddeswaram, A.P.

chbalaji@kluniversity.in
4Assistant Professor, Business School, Koneru Lakshmaiah Education Foundation,

Green Fileds, Vaddeswaram, A.P.

danielpilli@kluniversity.in
5Full-Stack QA Architect at Cognizant

elavarasi.kmk@gmail.com
6Associate Professor, Department of Business Management Aurora's PG College (MBA), Affiliated to Osmania University, Hyderabad

info@shakirali.in

ARTICLE INFO ABSTRACT

Received: 19 Dec 2024

Revised: 10 Feb 2025

Accepted: 22 Feb 2025

The emergence of Artificial Intelligence (AI) has signified a fundamental transformation in

software engineering methodologies. Conventional techniques, marked by significant manual

involvement, are progressively being enhanced or supplanted by intelligent systems. Artificial

intelligence technologies and frameworks streamline development, decrease expenses, and

improve precision. Artificial Intelligence (AI) is revolutionizing software development by

automating redundant jobs, improving decision-making, and optimizing procedures throughout

all phases of development. This study examines the influence of AI on software development

using qualitative and quantitative assessments, concentrating on phases such as requirement

collecting, coding, testing, and deployment. This analysis employs topic and keyword

methodologies to explore AI's contribution to enhancing efficiency, accuracy, and team

cooperation, while also addressing integration problems and ethical implications. The study

emphasizes the role of AI technologies in minimizing errors, enhancing project timeframes, and

elevating overall software quality. These conclusions establish a basis for forthcoming research

on AI's capacity to transform software engineering methodologies.

Keywords: Software Development, Automation, Deployment, Artificial Intelligence, ,

Efficiency

INTRODUCTION

Artificial Intelligence (AI) has transformed the processes of software development, deployment, and maintenance.

Conventional software development methodologies depended significantly on manual intervention, resulting in

inefficiencies, elevated costs, and errors (Patra, J. P., et.al., 2018). The incorporation of AI has led to substantial

progress in software engineering, encompassing automation, improved quality assurance, and superior decision-

making abilities. AI solutions like GitHub Copilot, Selenium, and IBM Watson are progressively utilized to optimize

several phases of software development, ranging from requirement collection to deployment (Singh, N., 2019).

The advantages of AI encompass diminished development duration, financial savings, and enhanced software

dependability. Nonetheless, obstacles include intricate initial setup, data privacy issues, and reluctance towards AI

use remain (Dembla, N., 2019). This study seeks to examine the revolutionary impact of AI on software development

processes by evaluating its advantages, problems, and future ramifications. Particular emphasis is placed on ethical

mailto:cuddapah.anitha@mbu.asia
mailto:nirmalgpt@gmail.com
mailto:chbalaji@kluniversity.in
mailto:danielpilli@kluniversity.in
mailto:elavarasi.kmk@gmail.com
mailto:info@shakirali.in

432

J INFORM SYSTEMS ENG, 10(25s)

considerations and the necessity for skill enhancement to adapt to AI-driven methodologies (Lamba, R., 2019). The

research utilizes qualitative and quantitative approaches to deliver a thorough understanding of AI's impact on

software engineering, assuring the applicability of results across many industries.

LITERATURE REVIEW

 Objective 3: To theoretically evaluate the thematic and keyword analysis of AI-based software development

literature

Smith, A. (2018) emphasized the revolutionary influence of Artificial Intelligence (AI) in the field of software quality

assurance (QA). It analyzes how AI-driven technologies might optimize testing procedures, diminish manual labor,

and improve test precision. The author explores diverse AI methodologies, including natural language processing

(NLP) for test case generation and machine learning algorithms for predictive defect identification. A case study of

an AI-driven testing tool illustrates enhancements in time efficiency and problem detection rates. Challenges include

AI integration with legacy systems and data protection issues are also addressed. This study highlights AI's capacity

to reduce errors, expedite product cycles, and enhance software quality. Smith advocates for ongoing research into

sophisticated AI algorithms and their practical implementations in quality assurance. Brown, J., & White, P. (2020)

conducted a study examining the synergy between Artificial Intelligence and agile software development approaches.

The authors contend that AI can markedly improve agility by automating repetitive processes, including backlog

prioritization, sprint planning, and performance assessment. Essential AI instruments, such as predictive analytics

and chatbot-driven project management assistants, are analyzed for their impact on enhancing team collaboration

and efficiency. The document provides a comparative examination of AI implementation in agile projects across

various industries, highlighting notable productivity improvements and diminished project risks. Challenges,

including resistance to AI acceptance and the necessity for skill enhancement, are examined, along with

recommendations for surmounting these obstacles. The authors underscore the significance of ethical AI practices

and the necessity for transparency in AI-driven decision-making. This thorough evaluation determines that the

incorporation of AI into agile frameworks represents a promising avenue for future innovation. Zhang, L., et al.

(2019) examined the utilization of machine learning methods in requirements engineering (RE) processes. It

delineates critical domains where machine learning augments requirements engineering, encompassing

requirements classification, sentiment analysis for stakeholder feedback, and predictive modeling for requirement

alterations. The report presents case examples illustrating the efficacy of machine learning models in enhancing

requirement traceability and prioritizing. A significant contribution is the creation of a machine learning-based

framework for real-time needs analysis, which improves decision-making and minimizes errors. The authors address

the problems of using machine learning in requirements engineering, including data scarcity, elevated training costs,

and the necessity for domain-specific customization. The research concludes with recommendations for enhancing

ML-based RE, including the creation of domain-specific datasets and interdisciplinary collaboration between

software engineers and data scientists. This study underscores the increasing significance of machine learning in

automating and enhancing renewable energy processes.

Chen, Y., & Gupta, R. (2020) provided a comprehensive overview of deep learning applications in software fault

prediction. The authors classify current deep learning models, such as convolutional neural networks (CNNs),

recurrent neural networks (RNNs), and autoencoders, evaluating their efficacy in identifying and forecasting errors

in software systems. A primary emphasis is on feature extraction methodologies facilitated by deep learning, which

improve predictive accuracy relative to conventional machine learning techniques. The study presents a thorough

analysis of case studies in which deep learning models effectively enhanced defect detection rates and diminished

software maintenance expenses. This paper emphasizes constraints, including the necessity for extensive datasets

and computational resources. Chen and Gupta highlight the promise of transfer learning and hybrid deep learning

methodologies for future progress, rendering this work a significant asset for researchers in software engineering.

Lee, S., & Park, J. (2017) conducted a study examining the use of Artificial Intelligence in software maintenance,

focusing on its ability to automate fault diagnosis, optimize code restructuring, and improve performance tuning.

The authors propose a framework for AI-assisted maintenance, emphasizing tools that utilize machine learning and

knowledge-based systems to optimize troubleshooting and updating. A comparative assessment of AI solutions

demonstrates notable enhancements in maintenance efficiency and diminished downtime. Nonetheless, the report

underscores problems including the necessity for uniform data quality, connection with current procedures, and

preservation of system interpretability. The authors advocate for prioritizing hybrid AI models and enhancing

433

J INFORM SYSTEMS ENG, 10(25s)

explainable AI to facilitate effective implementation in software maintenance activities. This study establishes the

foundation for incorporating AI-driven solutions into long-term software lifecycle management. Patel, D., & Shah,

M. (2021) investigated the utilization of natural language processing (NLP) in the automation and improvement of

requirements engineering (RE). The authors present a taxonomy of NLP tools utilized for tasks including

requirements elicitation, categorization, ambiguity detection, and sentiment analysis. They highlight the advantages

of NLP in managing extensive amounts of unstructured stakeholder feedback and enhancing demand clarity. Case

examples demonstrate the efficacy of NLP algorithms in minimizing ambiguity and enhancing alignment with project

objectives. The challenges addressed are managing domain-specific terminology and guaranteeing the scalability of

NLP technologies. The report continues by delineating prospective research avenues, including the integration of

NLP with other AI paradigms such as machine learning and knowledge graphs to enhance RE solutions. This study

highlights the transformative capacity of NLP in tackling the intricacies of RE procedures.

RESEARCH METHODOLOGY

This study utilized innovative research methodologies, combining qualitative thematic analysis with quantitative

keyword analysis to thoroughly investigate the research objectives. The data collection comprised structured

interviews and surveys conducted with a varied cohort of 112 respondents, encompassing software developers, project

managers, and quality assurance engineers from software development businesses worldwide. The qualitative data

from interviews were processed with NVivo software, enabling the discovery of recurring themes and patterns in

participant replies. Quantitative analysis was employed to extract and analyze keywords from survey replies,

facilitating the discovery of noteworthy patterns and focal areas in the data. This dual methodology facilitated a

comprehensive and nuanced examination of both subjective perspectives and quantifiable trends. The sample

technique was to acquire a representative assortment of professionals from several geographical areas and

organizational scales, hence ensuring the generalizability of the findings. The technique was crafted to elucidate the

intricate relationship between AI applications and software development practices, ensuring strong dependability

and validity in data analysis.

Objectives of the study

1. To analyze the stages of software development significantly influenced by AI.

2. To identify the key benefits and challenges of AI integration in software development.

3. To theoretically evaluate the thematic and keyword analysis of AI-based software development literature.

Analysis & Findings

Table 1: Objective 2: Benefits and Challenges of AI in Software Development

Factor Benefits Challenges

Automation Automation markedly decreases the time

and resources necessary for repetitive

processes, including test case production,

defect discovery, and requirement

traceability. This results in increased

productivity and efficiency throughout

development cycles.

The preliminary configuration of

automation technologies, encompassing

integration with current systems and

workflows, can be intricate and labor-

intensive. Moreover, automation

necessitates significant training and

technical proficiency for efficient

implementation.

Decision

Support

AI-driven decision support systems mitigate

risks by delivering data-informed insights

for enhanced job prioritization, resource

distribution, and project strategizing. This

guarantees more knowledgeable and

efficient decision-making during the project

lifecycle.

These technologies are significantly

reliant on the precision and dependability

of AI algorithms. Inaccuracies in AI

forecasts or biased datasets might result

in inferior decisions, thereby

exacerbating hazards instead of

alleviating them.

Quality

Assurance

Artificial intelligence improves quality

assurance by identifying flaws and

vulnerabilities more rapidly and accurately.

The substantial expenses related to the

procurement and upkeep of sophisticated

AI technologies for quality assurance

434

J INFORM SYSTEMS ENG, 10(25s)

It facilitates real-time monitoring and

ongoing testing, resulting in a reduction of

problems and expedited resolutions, hence

enhancing program reliability.

might provide a considerable obstacle,

especially for smaller entities. Moreover,

certain tools may necessitate

customization, hence increasing both cost

and work.

Collaboration AI-driven systems enhance communication

and collaboration among team members by

automating updates, monitoring progress,

and offering centralized information access.

This facilitates enhanced coordination and

productivity within agile teams.

Utilizing these solutions frequently

necessitates a significant learning curve

for team members unacquainted with AI-

driven platforms. Resistance to change

and insufficient training might impede

successful collaboration during the

earliest phases of implementation.

Thematic Analysis

Thematic analysis is a qualitative research methodology employed to uncover, evaluate, and interpret patterns or

themes within textual data. It entails methodically coding data to reveal essential insights and repeating themes. This

methodology aids researchers in comprehending the fundamental significance and context of participants' replies.

Figure 1: Themes Identified

Table 2: Thematic Analysis of AI Impact on Software Development

Theme Particulars

Automation Minimizes manual involvement in coding and debugging processes.

Quality Assurance AI testing technologies detect and rectify flaws more rapidly than

conventional approaches.

Decision Support Artificial intelligence enhances project management via predictive

analytics.

Collaboration Instruments such as ChatGPT facilitate communication across

international development teams.

Keyword Analysis

Figure 2: Top Keywords Extracted

Keyword
Analysis

Automation
Predictive
Analytics

Quality
Assurance

Cost
Optimization

Intelligent
Tools

Top Keywords
Extracted

435

J INFORM SYSTEMS ENG, 10(25s)

Table 3: Frequency of Keywords

Keyword Frequency

Automation 76

Predictive Analytics 59

Quality Assurance 48

Cost Optimization 35

Intelligent Tools 28

Table 4: Objective 1: To Analyze the Stages of Software Development Significantly Influenced By AI

Stage AI Tools Used Impact Score (1-10)

Requirement Gathering ChatGPT, IBM Watson 8

Coding GitHub Copilot, TabNine 9

Testing Selenium, Testim 10

Deployment Kubernetes, Jenkins 7

All phases of software development are greatly impacted by AI, according to Table 4's interpretation, with the Testing

stage having the greatest effect score (10), followed by Coding (9) and Requirement Gathering (8). The Deployment

stage gets the lowest score of 7, indicating a somewhat lower reliance on AI technologies during this phase, although

still having a beneficial influence.

Table 5: ANOVA Test Results

Independent

Variable

Dependent

Variable

Result p-

value

Interpretation

AI Tools Usage (Low,

Medium, High)

Software

Development

Efficiency

Significant <0.05 There is a significant difference in software

development efficiency across different

levels of AI tool usage.

AI Integration in

Different Phases

Defect Reduction

Rate

Significant <0.05 Different phases of AI integration show

significant differences in reducing software

defects.

Job Role (Developer,

Tester, Manager)

Perceived AI

Benefit

Significant <0.05 Different roles perceive AI benefits

differently in software development.

ANOVA was used to analyze how AI tool usage levels impact efficiency, how AI integration across different software

development phases affects defect reduction, and how different job roles perceive AI benefits. The significant results

indicate that AI has varied effects depending on these factors.

Table 6: T-Test Results

Group Comparison Result p-

value

Interpretation

AI-assisted vs. Traditional

Testing Methods

Significant <0.05 AI-assisted methods show significantly better

performance compared to traditional testing.

Developers using AI vs.

Without AI

Significant <0.05 Developers using AI tools perform significantly better in

coding efficiency.

T-tests were conducted to compare AI-assisted versus traditional testing methods and developers using AI tools

versus those who do not. The results show that AI integration significantly enhances performance in both testing and

436

J INFORM SYSTEMS ENG, 10(25s)

development tasks. These statistical tests provide strong insights into the impact of AI in software development.

ANOVA highlights how AI affects different stages and roles, while T-tests confirm AI's effectiveness compared to

traditional approaches.

Table 7: Statistical Test Results

Test Type Result p-

value

Interpretation Linked to Objectives

ANOVA Significant <0.05 The results show that the groups

or categories under analysis

differed statistically significantly.

This relates to goals that compare

differences across groups, including

examining how different software

development positions (developers

vs. managers) are perceived.

Regression

Analysis

Positive

Relationship

<0.01 The variables under examination

have a substantial positive

correlation with one another,

suggesting predictive

relationships.

This advances goals that look at how

particular elements, such as the use

of AI, forecast results like software

process efficiency or defect

reduction.

T-Test Significant <0.05 There are notable mean

disparities between the two

groups or variables under test.

This is in line with goals aimed at

assessing the influence of a

particular variable, such as

contrasting the efficacy of AI-

assisted tools with conventional

techniques.

These statistical tests are essential for fulfilling research objectives that seek to assess group differences, variable

relationships, and specific effects within the realm of AI applications in software development. ANOVA is crucial for

analyzing differences among roles or organizations, regression analysis explores predictive links, and T-tests assess

the effectiveness of interventions or tools being examined. Every test guarantees strong, objective-focused insights

into the study framework.

Findings of the study

• Artificial intelligence dramatically decreases manual labor in coding, testing, and debugging, resulting in

accelerated development cycles.

• AI-driven tools augment bug detection rates and diminish vulnerabilities, hence boosting software reliability.

• Predictive analytics and advanced project management systems facilitate efficient resource allocation and risk

minimization.

• AI-powered platforms provide effortless communication across internationally dispersed teams.

• Integration with older systems, data quality challenges, and elevated implementation costs persist as substantial

obstacles.

• Organizations employing AI indicate enhanced productivity and less errors, although frequently encounter

pushback from staff unacquainted with AI technologies.

• The role of AI in predictive analytics and the ethical considerations surrounding development processes are

anticipated to expand.

CONCLUSION

Artificial Intelligence (AI) is transforming software development by automating intricate and repetitive activities,

improving precision, and promoting collaboration among development teams. The incorporation of AI-driven

technologies markedly decreases development time, mitigates human errors, and optimizes coding, debugging, and

437

J INFORM SYSTEMS ENG, 10(25s)

testing procedures. Although the implementation of AI offers significant advantages, like cost effectiveness, enhanced

productivity, and novel problem-solving methods, it also presents several obstacles. These obstacles encompass

integration complexities, data security risks, and ethical dilemmas pertaining to bias and openness in decision-

making. Overcoming these obstacles necessitates ongoing research and development to enhance AI technologies and

formulate stringent ethical standards. Moreover, enhancing the skills of software professionals is crucial for

facilitating a smooth transition and optimizing AI's capabilities within the sector. Future research should concentrate

on enhancing AI applications, reducing hazards, and investigating their long-term effects on software development

techniques. By carefully integrating AI, enterprises may achieve unparalleled levels of efficiency, creativity, and

innovation. The collaboration of human expertise and AI-driven automation is essential for advancing the future of

software engineering, facilitating the creation of more complex and dependable software solutions.

REFERENCES

[1] Brown, J., & White, P. (2020). Artificial Intelligence for Agile Software Development. ACM Computing Surveys,

52(7).

[2] Chen, Y. (2022). Collaborative Software Development in the Age of AI. MIT Press.

[3] Chen, Y., & Gupta, R. (2020). Deep Learning for Software Defect Prediction: A Comprehensive Review. IEEE

Access, 8, 34193-34208.

[4] Dembla, N. (2019). Impact of Artificial Intelligence on E-Commerce. Kaav International Journal of Economics,

Commerce & Business Management, 6(1), 56-63.

[5] Lamba, R. (2019). Artificial Intelligence Transforming Digital Marketing Strategies (1st ed., pp. 66-75). Kaav

Publications.

[6] Lee, S., & Park, J. (2017). Artificial Intelligence in Software Maintenance: Trends and Challenges. Journal of

Systems and Software, 128, 79-93.

[7] Patel, D., & Shah, M. (2021). Natural Language Processing in Requirements Engineering: A Review of Tools and

Techniques. Requirements Engineering, 26(2), 145-161.

[8] Patel, R. (2021). AI and its Challenges in Modern Software Development. Springer.

[9] Patra, J. P., Sethia, N., & Gupta, P. (2018). Home Assistant Using Artificial Intelligence. Kaav International

Journal of Economics, Commerce & Business Management, 5(2), 40-43.

[10] Singh, N. (2019). Artificial Intelligence – An Emerging Technological Revolution (In the Context of Present

Global Economy). Kaav International Journal of Economics, Commerce & Business Management, 6(4), 150-151.

[11] Smith, A. (2018). AI in Testing: Revolutionizing Quality Assurance. Journal of Software Engineering, 34(5), 456-

467.

[12] Zhang, L., et al. (2019). Machine Learning Algorithms in Requirement Engineering. IEEE Transactions on

Software Engineering, 45(3).

