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Individuals with diabetes mellitus (DM) and cardiovascular disease (CVD) are on the rise 

worldwide, affecting both children and adults. Early-onset symptoms of these non-

communicable diseases must be monitored and treated to prevent complications and improve 

people's quality of life. To address this health issue, the following modules were designed, 

integrated and implemented: (a) a biomedical telemetry system using IoT-enabled Particle 

photon microcontrollers interfaced with biosensor and switches that remotely monitor 

physiological symptoms and anthropometric indicators associated with DM and CVD; (b) an AI 

assessment model based on fuzzy logic which assist endocrinologists, cardiologist, and other 

medical professionals in evaluating health risks associated with these conditions, and (c) an 

interactive smartphone application that allows medical professionals to track patients' well-

being and make timely interventions or changes to treatment programs, as well as enabling 

patient to perform tele- or video-consultation with the doctor. All medical data were securely 

stored and accessible via the ThingSpeak cloud and MariaDB database servers. Based on the 

experimental data, the designed system demonstrated 96.19% accuracy in analyzing medical 

data and evaluating the patients’ health risk levels associated with DM and CVD when compared 

to medical algorithms, published clinical practice guidelines, and advice given by medical 

experts.  Furthermore, the estimated anthropometric parameters and body composition metrics 

calculated using the developed mobile app were comparable to those acquired using various 

medical algorithms and programs available online. As a whole, the integrated modules 

contributed to the Society 5.0 initiative by delivering patient-centered healthcare using IoT, 

mobile computing, and AI technologies.  

Keywords: internet of things; fuzzy logic; mobile computing; biomedical telemetry, clinical 
health risk 
 

 

INTRODUCTION 

Diabetes mellitus (DM) and cardiovascular diseases (CVD) are prevalent non-transmissible ailments that lead to 

morbidity and mortality globally [1]. In 2020, the global death toll from diabetes was 1.64 million, whereas 

cardiovascular disease (CVD) accounted for 19.05 million deaths [2].  DM is a persistent medical disorder 

distinguished by an increase in blood glucose levels greater than or equal to 126 mg/dL when fasting and greater than 

or equal to 200 mg/dL after 2 hours of eating, resulting from either a complete or partial lack of insulin production 

or function [3].  CVDs are ailments that impact the function of the heart and blood vessels, including coronary artery 

disease, congenital heart disease, cerebrovascular disease, rheumatic heart disease, and various vascular diseases [4]. 

Unhealthy diets, sedentary lifestyles, obesity, family medical history (FMH), elevated total cholesterol (TChol), high 

blood pressure (BPS/BPD), and increased blood sugar level (BSL), along with rapid urbanization, have led to a rise 

in the prevalence of DM and CVDs [1], [5], [6]. According to [7], the rise of non-communicable disease (NCD) cases 
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like as DM and CVD can be minimized by raising health awareness among individuals and conducting research on 

effective diagnostic platforms. 

In response to the concerning issue of rapid growth of NCD cases, a society 5.0-driven healthcare system was 

designed and implemented using Internet of Things (IoT), mobile computing and artificial intelligence (AI) 

technologies. The integration of an IoT-enabled biomedical telemetry system (IBTMS) with a fuzzy logic-based 

clinical health risk assessment model (FLCHRAM) allowed remote monitoring of physiological symptoms and 

anthropometric signs associated with DM and CVD, as well as enabled health risk analysis and prognosis related to 

the NCDs. The developed interactive smartphone application facilitated telemedicine services, increased the 

visualization of the data and enhanced health awareness. The developed system is in line with the aim of society 5.0 

framework, which is to provide data-driven, intelligent and patient-centered healthcare solutions [8]. According to 

[9] and [10], the concept of Society 5.0 refers to a technology-driven and extremely smart society that uses recent 

developments in information, communication and engineering like AI, IoT and 5G technologies to improve the well-

being and security of all citizens. 

The IoT-enabled biomedical telemetry system (IBTMS) for managing DM and CVD was designed and implemented 

with Particle Photon Redboard microcontrollers (PPmc) that read and processed data from electronic sensors to 

determine an individual's anthropometric parameters such as weight in kg (Wkg), height in cm (Hcm), body mass 

index (BMI), as well as physiological signs such as number of heartbeat per minute (HRbpm), systolic/diastolic 

arterial pressure (BPS/BPD), oxygen saturation percentage (SpO2%), body thermal rate (BTemp) and rate of 

respiration per minute (RRpm). Additionally, toggle switches were connected to the microcontrollers to collect 

information regarding the patient's random blood sugar level (RBSL), pain/ache status (PAS), family medical history 

of diabetes and/or CVD (FMH), gender identity (GI), lifestyle (LFS), and pre-existing medical condition associated 

with diabetes and/or CVD (PMC). Utilizing the collected data, the microcontroller evaluated if the physiological 

parameters exceeded the threshold specified in clinical guidelines and computed the Quetelet index (QI), commonly 

referred to as body mass index (BMI), based on anthropometric metrics. The patient's basic metabolic rate (BMR) 

and body fat percentage (BFP) were calculated using the age (A), GI, and LFS entered into the developed interactive 

smartphone app for health monitoring and assessment (ISAHMA). In addition, the doctor entered blood chemistry 

values of the patient such as FBSL and total cholesterol level (TChol) into ISAHMA based on lab test results obtained 

from a hospital or clinic for further health risk assessment. The physiological and anthropometric data were saved in 

Thing Speak cloud platforms as well as in a secured MariaDB database server, which can be accessed remotely and 

in real-time using mobile computing devices. Using a fuzzy logic approach, a MATLAB-based AI assessment model 

was developed to determine the clinical health risk level (CHRL) of the patient as normal/very low, low, moderate, 

high, or very high based on physiological signs, anthropometric indicators, and other DM and CVD-related symptoms 

such as HRbpm, BPS, BMI, TChol, FMH, PMC, PAS and FBSL. In medical diagnosis, fuzzy inference facilitates the 

interpretation of ambiguous symptoms and test data that may be incomplete or imprecise [11],[12]. The fuzzy logic-

based AI system employs fuzzy input variables, fuzzy rules, and inference processes to produce probabilistic health 

risk assessments, considering the level of certainty associated with each possible medical condition [12].  Through 

mobile computing using MIT App Inventor, the system provided individualized recommendations for lifestyle 

modifications, DM and CVD awareness, and other clinical interventions depending on the patient's specific needs 

and conditions.  Should the system identify a high clinical health risk condition, the ISAHMA will send 

teleconsultation referral alert to a medical practitioner.  Furthermore, IBTMS integrated with the fuzzy logic-based 

clinical health risk assessment model (FLCHRAM) can assist endocrinologists, cardiologists, dieticians and other 

medical professionals analyze the medical data and give timely medical interventions. The ISAHMA telehealth 

platform enables patients to interact with medical professionals from a distance, lessening the necessity for face-to-

face appointments and enhancing medical care accessibility for individuals residing in remote or isolated 

communities. The integration of IBTMS, FLCHRAM, and ISAHMA resulted in a Society 5.0-based healthcare 

platform that leverages IoT, mobile computing, and AI technologies to monitor patients' well-being, deliver medical 

services, and provide preventive care. 

The second part of the research article presents the recent studies that monitor, assess and predict medical conditions 

related to DM and CVD using IoT, mobile computing and fuzzy logic (FL). The third part of the paper discusses the 

designed biomedical telemetry system and the fuzzy AI health risk assessment system in depth.  Section IV shows the 

output of the system and comparative analysis of the experimental results. Part V of the paper presents conclusions 

drawn from the designed system and proposes improvements to fully meet the goal of society 5.0 framework. 
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RELATED WORKS 

Several research studies have examined the use of physiological parameters, anthropometric measurements and 

blood chemistry data to track a person's potential risk of developing DM and CVD. Emerging technologies such as 

IoT, Bluetooth communication, machine learning (ML), fuzzy logic (FL) and Neuro-Fuzzy inferencing have been 

utilized to implement monitoring and predictions of DM and CVD cases. The primary goal of all these systems is to 

continuously monitor one's physical health using emerging technologies, foster awareness of physical wellbeing, and 

curb the increasing rates of DM and CVD. 

[13] developed an Arduino-based daily monitoring system for adult obese patients, interfacing an LM35 BTmp 

sensor, a MAX30100 SpO2% level sensor, and a blood pressure (BP) sensor with the microcontroller. The ESP8266 

Wi-Fi module and ATMEGA 328P were utilized to communicate the acquired medical data to the IoT Gecko cloud 

server for daily health parameter analysis by obese patients and physicians. An IoT-based platform for estimating 

BMI and predicting obesity, which employed an ultrasonic sensor to measure a person’s tallness and a strain gauge 

load cell to determine how heavy a person is, was proposed in [14]. The core processing was carried out using an 

Arduino microcontroller integrated with a Wi-Fi module for transmitting the results to a cloud server, then exported 

to MATLAB for forecasting obesity condition.  [15] designed a Raspberry Pi-based (RPi) system that uses sensing 

components to track BP, HRbpm and BMI levels of a person, as well as predicting obesity and CVD using ML 

algorithms such as Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN) and Decision 

Tree (DT). The data were stored and accessed via a cloud server and Firebase database (DB). In the findings of [15], 

Random Forest (RF) was the best option among the four ML methods used for predicting obesity and related heart 

disease. 

The utilization of Bluetooth Low Energy (BLE), together with ML-based algorithms and real-time data processing, 

was proposed by [16] to support diabetic patients in enhancing their self-management of their chronic condition. The 

BLE devices gather physiological parameters such as BP, HRbpm, and blood glucose level (BGL) from sensor nodes, 

then transmit them to smartphones. To handle the extensive data acquired through the sensor in a continual basis, 

real-time data processing was utilized, employing Apache Kafka and MongoDB for storing the patient's sensor-read 

data.  Moreover, [16] employed ML techniques such as multilayer perception (MP) for diabetes prediction and Long 

Short-term Memory (LSTM) for BGL forecasting.  On the other hand, a non-invasive approach of taking BGL was 

devised by [17] using the combination of NIR diode and photodiode. The readings were processed by ESP8266 

module, stored in the AWS cloud and Firebase database, and accessed via a smartphone application developed using 

Android Studio. [17] also tested different ML models and concluded that SVM is an effective alternative for diabetes 

prediction with an accuracy of 82% after the tuning of the Practice Fusion dataset using grid Search and K-fold cross-

validation. Another non-invasive method of predicting BGL was proposed by [18] using Particle Photon 

microcontroller interfaced with photodiode and NIR diode.  The ML polynomial regression model correctly predicted 

non-invasive blood glucose levels, with a minor percentage difference of less than 5% when compared to invasive 

readings from a commercially available glucose monitor [18]. 

A decision support system based on FL for managing obesity and indicating bariatric surgery was developed in [19], 

utilizing fuzzy sets for BMI and BF and generating a fuzzy obesity index. On the other hand, [20] devised a fuzzy 

expert system that determined the likelihood of DM by utilizing input such as A, BGL, BMI, serum insulin (INS), 

diabetes pedigree function (DPF). Using the developed fuzzy rules, the system assessed the possibility of developing 

DM as very low, low, medium, high, or very high. Another fuzzy system was designed by [21] to assess abdominal 

obesity as no central obesity, central overweight and central obese using BMI, waist circumference and waist to height 

ratio as fuzzy inputs. This research was a proposed entry point to a more intricate fuzzy system for assessing cardio 

metabolic risk.   [22] used FL and a Bootstrap Aggregating algorithm based on Gradient Boosting Decision Tree 

(GBDT) to process and forecast cardiac illness. It trained and tested the model on the UCI heart disease dataset, 

which has 14 input variables such as age, heart rate, cholesterol level, blood pressure (BP), and ECG parameters.  

[23] developed a prediction system for diabetes and cardiovascular diseases via feature selection-based Adaptive 

Neuro-Fuzzy Inference System (ANFIS), achieving an accuracy of 81% or greater in comparison to existing neural 

network techniques. A rule-based clustering method was applied to categorize patient records of individuals with 

diabetes and cardiovascular diseases. Additionally, a semi-centralized blockchain-based electronic health care 

platform for the safeguarding and transmission of patient information.  Another Fuzzy AI healthcare system was 

designed by [24] aimed at predicting cardiac disease through the integration of MSSO (Modified Salp Swarm 
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Optimization) and ANFIS. The system attained an accuracy of 99.45% and a precision of 96.54% in categorizing 

cardiac conditions based on sensor-derived data for vital signs, patient history, and diagnostic outcomes.  

This research paper introduces the following innovations in comparison to the works of [11]-[25]: (a) In addition to 

medical grade BTemp and RRpm sensors and a more accurate sensor to measure height (Hcm), status switches for 

GI, PAS, RBSL, FMH, PMC, LFS were interfaced to the IoT-enabled Particle Photon RedBoard microcontrollers to 

monitor and assess the health status and BMI of patient; (b) A dedicated interactive smartphone application for the 

system was developed using MIT App Inventor to improve the visualization of data, promote diabetes and CVD 

awareness, facilitate entry of other parameters needed to evaluate the patient such as age (A), TChol, blood glycemic 

levels and offer telehealth platform; (c) Using mobile computing, BMR and BFP were determined based on medical 

information retrieved from the ThingSpeak cloud and MySQL database server, and (d) With the HRbpm, BPS, BMI, 

TChol, FMH, PMC and FBSL considered as the fuzzy input variables, the AI assessment model based on fuzzy 

inferencing classified the clinical health risk level associated with DM and CVD (CHRL) as normal/very low 

(NRM_VLCHR), low risk (L_CHR), moderate risk (M_CHR), high risk (H_CHR), or very high risk (VH_CHR). 

MATERIALS AND METHODS 

A. Design and implementation of a biomedical telemetry system for managing DM and CVD using 

IoT and mobile computing 

 

Figure 1: System Block Diagram  

The block diagram of the biomedical telemetry system for managing DM and CVD using IoT and mobile computing 

(IBTMS) integrated with a fuzzy logic-based clinical health risk assessment model (FLCHRAM) is shown in Figure 1. 

The designed system consists of Wi-Fi enabled Particle Photon RedBoard microcontrollers PPmc1 and PPmc2, which 

are programmed to read and process physiological parameters and other health-related data from electronic sensors 

listed in Table 1 and toggle switches in Table 2. The sensor-read parameters include HRbpm, BPS/BPD, SpO2%, 

BTemp and RRpm.  Additionally, input toggle switches are used to gather health information regarding RBSL, PAS, 

FHM, LFS, and PMC.  On the other hand, the anthropometric parameters of the patient are acquired and analyzed 

by the Particle Photon Redboard microcontroller PPmc3, which is interfaced to a load cell sensor with a HX711 

amplifier module to measure the Wkg of the patient, a laser range finder sensor to measure Hcm, and a status switch 

(GI) to identify the patient's gender identity. 

PPmc1 evaluates each physiological indicator in accordance with clinical guidelines provided by [26]-[29], as shown 

in Table 1.  On the other hand, PPmc3 computes the QI, also known as BMI, in kg/m2 using Equation (1) and classifies 

it based on the guidelines in [30]. Figure 2 shows the program flowchart for fitness classification based on QI or BMI. 

The ISAHMA evaluates the blood profile data entered by the physician, including FBSL, RBSL, and TChol, in 
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compliance with medical standards in [27] and [29].  Using the computed BMI, GI, and Age (A) as inputs, the 

ISAHMA estimates the BFP in % using Equation (2) from [31] and categorizes it according to [32]. Table 3 presents 

the fitness classification based on BFP.  Using Wkg, Hcm, GI, and A as inputs, the ISAHMA calculates the BMR in 

Kcal/day using Equation (3), which is derived from [33]. Table 4 shows how to calculate the patient's recommended 

daily calorie intake based on [34] based on the computed BMR and entered LFS. 

QI = BMI = Wkg / (Hcm/100)2     (1) 

BFP = (1.46*BMI) + (0.14*A) - (11.6*GI) – 10     (2) 

BMR = (10*Wkg) + (6.25*Hcm) – (5*A) + (1.66*GI) -161               (3) 

The physiological parameters, anthropometric indicators, blood chemistry profiles, as well as health status 

assessments are stored on the ThingSpeak cloud platform and a MariaDB database server, which can be retrieved 

remotely and in real time via mobile computing devices. FLCHRAM was developed in MATLAB to analyze and 

Table 1: Clinical parameters measurement and evaluation based on medical guidelines [26]-[29] and published 

works of [11] and [18] 

Clinical 
Parameter 

Biosensor Unit Sensor Read Value Evaluation 

BTemp 

MAX30205 
body 

temperature 
sensor   

oC 

36.1 - 37.2 Normal BTemp 

37.3 - 38.0 Moderately High BTemp 

35.1 - 36 Low BTemp 

38.1 - 39 High BTemp 

≥ 39.1 Very High BTemp 

 ≤ 35.0 Very Low BTemp 

HRbpm 

Sunrom1437 
wrist blood 

pressure and  
heart rate 

sensor 

bpm 

51 - 90  Normal HRbpm 

41 - 50 Low HRbpm  

91 - 110 Moderately High HRbpm 

111 - 130 High HRbpm 

 ≤ 40 Very Low HRbpm  

≥ 131 Very High HRbpm 

SpO2% 

MAX30100 
pulse 

oximetry 
sensor 

% 

96 – 100 Normal SpO2% 

94 – 95 Moderately Low SpO2% 

92- 93 Low SpO2% 

 ≤ 91 Very Low SpO2%  

RRpm 

MLX90614 
sensor 

measuring 
change in 

respiration 
temperature 

brpm 

12 – 20 Normal RRpm 

9 -11 Low RRpm 

21 - 24  High RRpm 

 ≤ 8 Very Low RRpm 

≥ 25 Very High RRpm 

BP = 
BPS/BPD 

Sunrom1437 
wrist blood 

pressure and  
heart rate 

sensor 

mmHg 
/ 

mmHg 

90 < BPS < 120 and 60 < BPD < 80 Normal BP 

BPS < 90 and  BPD < 60 Low BP 

120 < BPS < 129 and BPD < 80 Moderately High BP 

130 < BPS < 139 or  
80 < BPD < 89 High BP 

140 < BPS < 180 or  
90 < BPD < 120 Very High BP 

 BPS > 180 or  BPD > 120 Extremely High BP 
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evaluate the clinical health risk associated with DM and CVD in patients. Figures 3 and 4 show the IBTMS prototype 

used to monitor physiological and anthropometric parameters, respectively. 

  

Table 2: Toggle switch settings corresponding to the clinical parameters 

Clinical / 
Health 

Parameters 

Toggle 
switch 

Unit Voltage Level Switch status / Description 

GI  
Gender 
identity 

switch (SW1) 
Volts 

0 - 0.8  SW is OFF / Female (0) 

3.3 - 5 SW is ON / Male (1) 

PAS  
Pain/ache 

status switch 
(SW2) 

Volts 
0 - 0.8  SW is OFF / No pain or ache (-)  

3.3 - 5 SW is ON / with pain or ache (+) 

RBSL  

Random 
blood sugar 
level switch 

(SW3) 

Volts 

0 - 0.8  
SW is OFF if 55 < RBSL < 199 

mg/dL (NRM)  

3.3 - 5 
SW is ON if RBS > 200 mg/dL 

(High) 

FMH  

Family 
medical 

history of 
NCD switch 

(SW4) 

Volts 

0 - 0.8  
SW is OFF / No family medical 
history of DM and/or CVD (-) 

3.3 - 5 
SW is ON / With family medical 
history of DM and/or CVD (+) 

PMC 

Pre-existing 
medical 

condition 
swtich (SW5) 

Volts 

0 - 0.8  
SW is OFF /No pre-existing DM 

and/or CVD (-) 

3.3 - 5 
SW is ON /With pre-existing 

DM and/or CVD (+) 

LFS 
Lifestyle 

status switch  
(SW6) 

Volts 
0 - 0.8  

SW is OFF /Sedentary or  
Inactive LFS (-) 

3.3 - 5 SW is ON / Active LFS (+) 

 
Table 3: Fitness classification through BFP for (a) adult female and (b) adult male based on [32] 

Age (A)  in 
years 

Adult Female (GI = 0) 

Underweight Normal Overweight Obese 

20 < A < 39 BFP < 21.0% 21.0% < BFP < 33.0% 33.0% < BFP< 39.0% BFP > 39.0% 

40 < A < 59 BFP < 23.0% 23.0% < BFP < 34.0% 34.0% < BFP < 40.0% BFP > 40.0% 

60 < A < 79 BFP < 24.0% 24.0% < BFP < 36.0% 36.0% < BFP < 42.0% BFP > 42.0% 

(a) 

Age (A)  in 
years 

Adult Male (GI = 1) 

Underweight Normal Overweight Obese 

20 < A < 39 BFP < 8.0% 8.0% < BFP < 20.0% 20.0% <BFP < 25.0% BFP > 25.0% 

40 < A < 59 BFP < 11.0% 11.0% < BFP < 22.0% 22.0% < BFP< 28.0% BFP > 28.0% 

60 < A < 79 BFP < 13.0% 13.0% < BFP < 25.0% 25.0% < BFP < 30.0% BFP > 30.0% 

(b) 
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Figure 2: Fitness classification based on Quetelet Index (QI), also known as BMI 

Table 4: Recommended daily calorie intake based on BMR and LFS [34] 

LFS Code LFS Daily Calorie Intake in Kcal/day 

0 Sedentary BMR * 1.2 

1 Lightly Active/ Exercising 1 to 3 times weekly BMR * 1.375 

2 Moderately Active/ Exercising 3 to 5 times weekly BMR * 1.55 

3 Very Active/ Exercising 6 to 7 times weekly BMR * 1.725 

4 Extremely Active/ Exercising 2 times daily BMR * 1.9 
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Figure 3: IoT-based biomedical telemetry subsystem for monitoring physiological parameters 

 
Figure 4: IoT-based biomedical telemetry subsystem for monitoring anthropometric parameters 
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B. Design and implementation of the AI model based on fuzzy logic for clinical health risk assessment 

associated with DM and CVD  

 

Figure 5: Fuzzy logic-based clinical health risk prediction model (FLCHRPM) properties 

AI systems based on fuzzy logic can be utilized in medical fields to aid in risk assessment and detection of illnesses 

because of their ability to deal with uncertainties and inconsistencies in clinical data [11][35]. Figure 5 shows the 

fuzzy logic-based clinical health risk assessment model (FLCHRAM) properties which consist of 7 inputs representing 

physiological and anthropometric health risk indicators associated with DM and CVD, 6480 fuzzy rules (FRs), and 1 

output corresponding to the patient's CHRL. The FLCHRAM model's architecture includes four components: the 

fuzzifier, the rule base, the inference engine, and the defuzzifier. The fuzzifier transformed the crisp input values from 

sensors, toggle switches, and medical data provided by the doctor via the ISAHMA into fuzzy sets. The process of 

fuzzification was accomplished by the utilization of membership functions (MFs), which associate degrees of 

membership in various fuzzy sets with input variables including HRbpm, BPS, BMI, TChol, FMH, PMC and FBSL. 

The fuzzy trapezoidal linguistic terms and parameters associated with each input variable are shown in Tables 5 to 
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11. Equations (4) to (30) were utilized to calculate the degree of membership for each fuzzy input using the trapezoid 

MF. Figures 6 to 12 illustrate the trapezoidal membership function plots corresponding to each fuzzy input variable. 

The Mandami FLCHRAM FRs were made up of linguistic terms in if-then constructs to correlate the input data with 

health risk assessment. The FLCHRAM comprises of 6,480 FRs computed using Equation (31), which simulates how 

healthcare professionals make clinical decisions using various combinations of fuzzy input variables. The rules were 

developed to determine the clinical health risk associated with DM and CVD based on medical guidelines, clinical 

practices and doctor advice. Figure 13 shows some of the FLCHRAM rules as seen in MATLAB. The inference engine 

applied fuzzy rules to the fuzzified inputs, resulting in fuzzy outputs indicating the CHRL of patients associated with 

DM and CVD. The significance of each rule was evaluated based on the input data using the AND operation, and the 

results were then aggregated to generate a fuzzy output set. The defuzzification module translated the triangular fuzzy 

output set into a crips value representing the assessed CHRL. The center of gravity (CoG) formula in Equation (32) 

was utilized in the development of the FLCHRAM, which converted the fuzzy outcomes into a definitive clinical health 

risk score that may be classified into one of the following levels: normal/very low, low, moderate, high, or very high 

risk. Figure 14 illustrates a triangular membership function graph for the fuzzy output variable. Table 12 shows the 

linguistic terms and parameters of the triangular MF for the CHRL. Equations (33) to (37) were used to compute the 

degree to which an output assessment belonged to a certain fuzzy set using an MF with triangular pattern.  

 

Table 5: The parameters and equations of the trapezoidal MF for HRbpm 

Fuzzy 
Input 

Variable 

Linguistic 
Terms 

Fuzzy 
Trapezoidal 
parameters 

Trapezoidal MF Equations   

HRbpm 

Low HRbpm – 
Low Health Risk 

(LHR_LR) 
[0, 0, 50, 52] 

 

LHR_LR(x)=  
 { 

1 if x < 50  

(52 – x) / (52 – 50) if  
50 < x < 52 

 

0 if x > 52 (4) 

Normal HRbpm 
–Very Low 
Health Risk 

(NRMHR_VLR) 

[49, 51, 90, 92] 

 
 

NRMHR_VLR(x)= 
 { 

0 if x < 49 or x > 92  

(x – 49) / (51 – 49) if 
 49 < x < 51 

 

1 if 51 < x < 90 (5) 

(92 - x) / (92 - 90) if  
90 < x < 92 

 

Moderate 
HRbpm – 
Moderate 

Health Risk 
(MHR_MR) 

[89, 91, 110, 
112] 

 
 

 

MHR_MR(x) = 
 { 

0 if x < 89 or x > 112  

(x – 89) / (91 – 89) if  
89 < x < 91 

(6) 

1 if 91 < x < 110  

(112 - x) / (112 - 110) if  
110 < x < 112 

 

High HRbpm –
High Health 

Risk 
(HHR_HR) 

[109, 111, 130, 
132] 

 
 
HHR_HR(x) = 
 { 

0 if x < 109 or x > 132  

(x – 109) / (111 – 109) if  
109 <x< 111 

(7) 

1 if 111 < x < 130  

(132 - x) / (132 - 130) if  
130< x < 132 

 

Very High 
HRbpm – Very 

High Health 
Risk 

(VHHR_VHR) 

[129, 131, 200, 
200] 

 
VHHR_VHR(x) = 
 { 

0 if x < 129  

(y – 129) / (131 – 129) if  
129 <x< 131 

(8) 

1 if x > 131  
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Figure 6: MF plot for HRbpm in trapezoidal pattern 

Table 6: The parameters and equations of the trapezoidal MF for BPS 

Fuzzy 
Input 

Variable 

Linguistic 
Terms 

Fuzzy 
Trapezoidal 
parameters 

Trapezoidal MF Equations  

BPS 

Low BPS – 
Moderate Health 
Risk (LBPS_MR) 

[0, 0, 90, 92] 

 
LBPS_MR(x)=  

 { 
 

1 if x < 90 
 

(92 – x) / (92 – 90) if 
90 < x < 92 

(9) 

0 if x > 92  

Normal BPS –
Very Low Health 

Risk 
(NRMBPS_VLR) 

[89, 91, 119, 
121] 

 
 

NRMBPS_VLR(x)= 
 { 

0 if x < 89 or x > 121  

(x – 89) / (91 – 89) if 
89 < x < 91 

(10) 

1 if 91 < x < 119  

(121 - x) / (121 - 119) if 
119 < x < 121 

 

Elevated BPS – 
Low Health Risk 
(ELVBPS_LR) 

[118, 120, 129, 
131] 

 
 

ELVBPS_LR(x) = { 
 

0 if x < 118 or x > 131 
 
 

(11) 
 

(x – 118) / (120 – 118) if 
118< x <120 

1 if 120 < x < 129 
(131 - x) / (131 - 129) if 

129 < x < 131 

High BPS – 
Moderate Health 
Risk (HBPS_MR) 

[128, 130, 139, 
141] 

 
 

HBPS_MR(x) = 
 { 

0 if x < 128 or x > 141  

(x – 128) / (130 – 128) if 
128 < x < 130 

(12) 

1 if 130 < x < 139  

(141 - x) / (141 - 139) if 
139 < x < 141 

 

Very High BPS –
High Health Risk 

(VHBPS_HR) 

[138, 140, 180, 
182] 

 
 

VHBPS_HR(x) = 
 { 

0 if x < 138 or x > 182  

(x – 138) / (140 – 138) if 
138 < x < 140 

(13) 

1 if 140 < x < 180  

(182 - x) / (182 - 180) if 
180< x < 182 

 

Extremely High 
BPS – Very High 

Health Risk 
(EHBPS_VHR) 

[179, 181, 200, 
200] 

 
EHBPS_VHR(x) = 

 { 
 

0 if x < 179 
 

(x – 179) / (181 – 179) if 
179 < x < 181 

(14) 

1 if x > 181  
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Figure 7: MF plot for BPS in trapezoidal pattern 

Table 7: The parameters and equations of the trapezoidal MF for BMI 

Fuzzy 
Input 

Variable 

Linguistic 
Terms 

 

Fuzzy 
Trapezoidal 
parameters 

Trapezoidal MF Equations  

BMI 

Underweight – 
Low Health 

Risk 
(UW_LR) 

[0, 0, 18.4, 
18.6] 

 

UW_LR(x) =  { 
1 if x < 18.4  

(18.6 – x) / (18.6 – 18.4) if 
18.4<x<18.6 

(15) 

0 if x > 18.6  

Normal 
Weight – Very 

Low Health 
Risk 

(NRM_VLR) 

[18.3, 18.5, 
24.9, 25.1] 

 
 

NRM_VLR(x) = 
 { 

0 if x < 18.3 or x > 25.1  

(x –18.3) / (18.5 – 18.3) if 
18.3<x<18.5 

(16) 

1 if 18.5 < x < 24.9  

(25.1 - x) / (25.1 - 24.9) if 
24.9<x<25.1 

 

Overweight – 
Moderate 

Health Risk 
(OW_MR) 

[24.8, 25.0, 
29.9, 30.1] 

 
 

OW_MR(x) = 
 { 

0 if x < 24.8 or x > 30.1  

(x – 24.8) / (25.0 – 24.8) if 
24.8<x<25.0 

(17) 

1 if 25.0 < x < 29.9  

(30.1 - x) / (30.1 - 29.9) if 
29.9<x<30.1 

 

Obese Stage 1 
– High Health 

Risk 
(OB1_HR) 

[29.8, 30.0, 
34.9, 35.1] 

 
 

OB1_HR(x) = 
 { 

0 if x < 29.8 or x > 35.1  

(x – 29.8) / (30.0 – 29.8) if 
29.8<x<30.0 

(18) 

1 if 30.0 < x < 34.9  

(35.1 - x) / (35.1 - 34.9) if 
34.9<x<35.1 

 

Obese Stage 2 
– Very High 
Health Risk 
(OB2_VHR) 

[34.8, 35.0, 
39.9, 40.1] 

 
 

OB2_VHR(x) = 
 { 

0 if x < 34.8 or x > 40.1  

(x – 34.8) / (35.0 – 34.8) if 
34.8<x<35.0 

(19) 

1 if 35.0 < x < 39.9  

(40.1 - x) / (40.1 - 39.9) if 
39.9<x< 40.1 

 

Obese Stage 3 
– Extremely 
High Health 

Risk 
(OB3_EHR) 

[39.8, 40.0, 
100.0, 100.0] 

 
OB3_EHR(x) = 

 { 
0 if x < 39.8  

(x – 39.8) / (40.0 – 39.8) if 

39.8<x<40.0 

(20) 

1 if x > 40.0  
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Figure 8: MF plot for BMI in trapezoidal pattern 

 

 

Figure 9: MF plot for TChol in trapezoidal pattern 

Table 8: The parameters and equations of the trapezoidal MF for TChol 

Fuzzy 
Input 

Variable 

Linguistic 
Terms 

Fuzzy 
Trapezoidal 
parameters 

Trapezoidal  MF Equations  

TChol 

Normal TChol– 
Low Health Risk 
(NRMTChol_LR) 

[0, 0, 199, 201] 

 

NRMTChol_LR(x)=  { 
1 if x < 199  

(201 – x) / (201 – 199) if 
199 <x< 201 

(21) 

0 if x > 201  

Moderately High 
TChol – Moderate 

Health Risk 
(MHTChol_MR) 

[198, 200, 
239, 241] 

 
 

MHTChol_MR(x) = 
 { 

0 if x < 198 or x > 241  

(x – 198) / (200 – 198) if 
198 <x< 200 

(22) 

1 if 200 < x < 239  

(241 - x) / (241 - 239) if  
239 <x< 241 

 

High TC – High 
Health Risk 

(HTChol_HR) 

[238, 240, 
500, 500] 

 
 

HTChol_HR(x) = 
 { 

0 if x < 238   

(x – 238) / (240 – 238) if 
238 <x< 240 

(23) 

1 if x > 240  
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Figure 10: MF plot for FMH in trapezoidal pattern 

 

Table 9: The parameters and equations of the trapezoidal MF for FMH 

Fuzzy 
Input 

Variable 

Linguistic 
Terms 

Fuzzy 
Trapezoidal 
parameters 

Trapezoidal  MF Equations  

FMH 

No family medical 
history of DM 
and/or CVD 

(FMH-) 

[0, 0, 0.9, 1.1] 

 
FMH-(x) =  { 

1 if x < 0.9  

(1.1 – x) / (1.1 – 0.9) if 0.9 < x < 1.1 (24) 

0 if x > 1.1  

With family 
medical history of 
DM and/or CVD 

(FMH+) 

[0.8, 1, 5, 5] 
 

 
FMH+(x) = 
 { 

0 if x < 0.8   

(x – 1) / (1 – 0.8) if 0.8 < x < 1 (25) 

1 if x > 1  

 

Table 10: The parameters and equations of the trapezoidal MF for PMC 

Fuzzy 
Input 

Variable 

Linguistic 
Terms 

Fuzzy 
Trapezoidal 
parameters 

Trapezoidal MF Equations  

PMC 

No Pre-
existing DM 
and/or CVD 

(PMC-) 

[0, 0, 0.9, 1.1] 

 
PMC-(x) =  { 

1 if x < 0.9  

(1.1 – x) / (1.1 – 0.9) if 0.9 < x < 1.1 (26) 

0 if x > 1.1  

With Pre-
existing DM 
and/or CVD 

(PMC+) 

[0.8, 1, 5, 5] 
 

 
 

PMC+(x) = 
 { 

0 if x < 0.8   

(x – 1) / (1 – 0.8) if 0.8 < x < 1 (27) 

1 if x > 1  
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Figure 11: MF plot for PMC in trapezoidal pattern 

 

 

Figure 12: MF plot for FBSL in trapezoidal pattern 

Table 11: The parameters and equations of the trapezoidal MF for FBSL 

Fuzzy 
Input 

Variable 

Linguistic 
Terms 

Fuzzy 
Trapezoidal 
parameters 

Trapezoidal  MF Equations  

FBSL 

Normal FBSL– 
Low Health Risk 
(NRMFBSL_LR

) 

[0, 0, 99, 101] 

 
NRMFBSL_LR(x)=  { 

1 if x < 99  

(101 – x) / (101 – 99) if  
99 <x< 101 

(28) 

0 if x > 101  

Pre-Diabetes 
Mellitus FBSL – 

Moderate 
Health Risk 

(PreDM_MR) 

[98, 100, 125, 
127] 

 
 

PreDM_MR(x) = 
 { 

0 if x < 98 or x > 127  

(x – 98) / (100 – 98) if  
98 <x< 100 

(29) 

1 if 100 < x < 125  

(127 -x) / (127 - 125) if 125 
<x< 127 

 

Diabetes 
Mellitus – High 

Health Risk 
(DM_HR) 

[124, 126, 500, 
500] 

 
DM_HR(x) = 

 { 
0 if x < 124   

(x – 124) / (126 – 124) if  
124 <x< 126 
1 if x > 126 

(30) 
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Figure 13: Some FLCHRAM fuzzy rules as seen in MATLAB 

𝐹𝑅𝑡𝑜𝑡𝑎𝑙 =  𝑀𝐹𝐻𝑅𝑏𝑝𝑚 𝑥 𝑀𝐹𝐵𝑃𝑆 𝑥 𝑀𝐹𝐵𝑀𝐼 𝑥 𝑀𝐹𝑇𝐶ℎ𝑜𝑙 𝑥 𝑀𝐹𝐹𝑀𝐻 𝑥 𝑀𝐹𝑃𝑀𝐶  𝑥 𝑀𝐹𝐹𝐵𝑆𝐿 

𝐹𝑅𝑡𝑜𝑡𝑎𝑙   =  5 𝑥 6  𝑥 6 𝑥 3 𝑥 2 𝑥 2 𝑥 3 = 6480 𝑟𝑢𝑙𝑒𝑠                  (31)   

𝐶𝑜𝐺 =
∑ ∑  𝜇(𝑥𝑗)∗𝑥𝑗

𝑁
𝑗=1

∑ ∑  𝜇(𝑥𝑗)𝑁
𝑗=1

              (32) 

Where: 

CoG is the center of gravity which represents the balance point of a fuzzy set. 

𝑥𝑗 represents each discrete output variable values. 

𝜇(𝑥𝑗) denotes the membership function value or degree of membership at each 𝑥𝑗. 

N represents the total number of discrete points or fuzzy output values in the fuzzy set. 

∑  𝜇(𝑥𝑗) ∗ 𝑥𝑗 is the sum of the products of each value 𝑥𝑗 and its corresponding membership value 𝜇(𝑥𝑗). 

∑  𝜇(𝑥𝑗) is the total sum of all membership values, ensuring normalization. 

 

 

Figure 14: MF plot for CHRL in triangular pattern 



454  
 

J INFORM SYSTEMS ENG, 10(25s) 

 

C. Design and implementation of the Interactive Smartphone Application for Health Monitoring and 

Assessment (ISAHMA) 

The interactive smartphone application for health monitoring and assessment (ISAHMA) was created using MIT App 

Inventor 2. MIT App Inventor is a programming environment that uses virtual blocks to create mobile applications 

for smartphones and tablets operating on Android or iOS systems [25], [36]. Designed as an interface with IoT 

devices, the ISAHMA connects to the internet to access ThingSpeak cloud, retrieve data from the MariaDB database, 

and interact with other web interfaces. The text-to-speech component in MIT App Inventor shows how Natural 

Language Programming (NLP), a form of AI, was integrated with ISAHMA to make the system easier to navigate and 

improve its functionality [37]. The ISAHMA provides users with instructions and results by touching the speaker icon 

on the app screen. 

Figure 15(a) shows the ISAHMA splash screen, which provides system information and enables users to log in or 

register as new users. Upon successful registration, access can be gained by entering the correct username and 

password on the login screen, as illustrated in Figure 15(b). With the entry of invalid credentials, the ISAHMA will 

revert to the welcome page. After three failed attempts, the user is blocked and must contact the administration at 

email@btms.cloud to restore access. Figure 16 displays the home screens for the patient and doctor, respectively, 

after a successful login, indicating the user's access privileges.  The auditory instructions guide the user through the 

several options accessible by pressing the speaker icon. Figure 16(a) illustrates that the ISAHMA enables patients to 

upload, view, and save their physiological and anthropometric data, health reports, and clinical recommendations 

Table 12: The parameters and equations of the triangular MF for CHRL 

Fuzzy 
Output 

Variable 

Linguistic 
Variables 

Fuzzy 
Triangular 
parameters 

Triangular MF  Equations  

CHRL 

Normal / Very 
Low Clinical 
Health Risk 

Level 
(NRM_VLCHR) 

[0, 0.5, 1] 

 
 NRM_VLCHR(x)= 

 { 
0 if x < 0  

(x - 0) / (0.5 - 0) if 
 0 < x < 0.5 

 

(1 - x) / (1 – 0.5) if  
0.5 < x < 1 

(33) 

0 if x > 1  

Low Clinical 
Health Risk 

Level (L_CHR) 
[1, 1.5, 2] 

 
 

 L_CHR(x) = 
 { 

0 if x < 1   

(x – 1) / (1.5 – 1) if  
1 < x < 1.5 

 

(2 - x) / (2 – 1.5) if  
1.5 < x < 2 

(34) 

0 if x > 2  

Moderate 
Clinical Health 

Risk Level 
(M_CHR) 

[2, 2.5, 3] 

 
 

 M_CHR(x) = { 
0 if x < 2  

(x – 2) / (2.5 – 2) if  
2 < x < 2.5 

(35) 

(3 - x) / (3 – 2.5) if  
2.5 < x < 3 

 

0 if x > 3  

High Clinical 
Health Risk 

Level (H_CHR) 
[3, 3.5, 4] 

 
 

H_CHR(x) = 

 { 
0 if x < 3  

(x – 3) / (3.5 – 3) if  
3 < x < 3.5 

(36) 

(4 - x) / (4 – 3.5) if  
3.5 < x < 4 

 

0 if x > 4  

Very High 
Clinical Health 

Risk Level 
(VH_CHR) 

[4, 4.5, 5] 

 
 

VH_CHR(x) = 
 { 

0 if x < 4   

(x – 4) / (4.5 – 4) if  
4 < x < 4.5 

(37) 

(5 - x) / (5 – 4.5) if  
4.5 < x < 5 

 

0 if x > 5  
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obtained from the IBTMS. Patients can also use ISAHMA to access their own blood chemistry profiles taken in 

hospitals or entered into the system by the doctor, input their FMH and PMC, view their FLCHRAM results, perform 

tele-video conferencing with the doctor, send SMS to schedule consultations, and share images of medical results 

with healthcare professionals (HCP).  As shown in Figure 16(b), ISAHMA allows doctors to add, view, and store 

physiological and anthropometric parameters of registered patients collected remotely using the IBTMS. ISAHMA 

also enables doctors to add and view blood chemistry profiles of patients obtained from hospitals or polyclinics, use 

the FLCHRAM for health risk assessment, update the clinical recommendations, conduct tele-video consultations, 

share medical results and prescriptions with patients, and send text messages to patients. 

 

Figure 15: ISAHMA introductory screens: (a) splash screen and (b) log-in screen 

 

Figure 16: Home Screen for (a) patient and (b) doctor 
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ISAHMA telemedicine services were created using MIT App Inventor's non-visible social components and the 

WhatsApp tool extension. Figure 17(a) shows how the patient booked an appointment with the doctor by sending a 

text message via the ISAHMA and Figure 17(b) illustrates the SMS received on the doctor’s phone. Figure 18 

illustrates how the IMABTMS telemedicine platform allowed the patient to request and participate in video 

conferences with healthcare experts. 

 
Figure 17: (a) Sample medical consultation booking utilizing the ISAHMA via SMS, and (b) the corresponding SMS 

received on the doctor's phone. 

 
Figure 18: (a) Sample tele-video consultation booking utilizing the ISAHMA via WhatsApp, and (b) the 

corresponding WhatsApp message received on the doctor's phone. 
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RESULTS AND DISCUSSION 

A. Results and discussion of the IoT-based Biomedical Telemetry System (IBTMS) for monitoring 

and analyzing physiological parameters 

The physiological parameters of 50 adult human subjects, ages 20–65, who volunteered to act as patients, were 

measured non-invasively through the attachment of the IBTMS prototype. Each volunteer signed a consent form 

before proceeding with the testing. The sensors used in the system were calibrated with commercially available 

medical equipment before their deployment for testing, as conducted by [11] and [25]. Figure 19 illustrates the process 

of measuring the patient's physiologic signs using the IBTMS. The MAX30205 BTemp sensor was attached to the 

patient's body. The SpO2% level was measured by inserting the pointing finger into the IBTMS pulse oximeter with 

the MAX30100 sensor. The RRpm was determined while wearing a mask with an MLX90614 non-contact IR 

temperature sensor attached to it for monitoring changes in the inhale and exhale breathing temperatures. The PAS 

of the patient was set by toggling SW2 in the IBTMS prototype. Figure 20 shows that the sensor-read parameters of 

the IBTMS for patient 10000001 were comparable to the measurements obtained from medical-grade testing 

instruments, with minor discrepancies due to sensor placement and motion artifacts. Referring to Figure 20, the 

percent differences between the BTemp, RR, and SpO2 readings from the two systems were 0%. On the other hand, 

the two systems' BPS and HRbpm values differ by 1.98% and 1.63%, respectively. 

 
Figure 19: Physiological signs measurement using the IBTMS prototype 

 

 
Figure 20: Sensor-read data using (a) medical-grade test devices and (b) IBTMS as displayed on ISAHMA screen 
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Figure 21 shows sample physiological signs and health assessments of patient 10000014 that were gathered from the 

IBTMS prototype and shown in the ISAHMA screens. The ISAHMA interface displayed the real-time graphs for each 

physiological parameter reading obtained from the ThingSpeak cloud. The assessment for each parameter based on 

Table 1 was also shown on screen. Based on Figures 21(a) and 21(c), the patient had a normal BTemp, HRbpm, RRpm, 

and SpO2%. The patient was not experiencing any pain during the test as indicated in Fig. 21(d). However, the BP 

shown in Figure 21(b) was moderately high, so the system recommended the monitoring of vital signs on a 12 to 24 

hour basis. The system generated the clinical recommendation based on the published works of [11] and the clinical 

guidelines of [28] and [38]. All physiological values and assessments were kept in the MariaDB database server for 

medical record purposes, as indicated in Figure 21(f). 

 

 
Figure 21: Sample physiological parameters and health assessments of patient 10000014 obtained using the 

IBTMS prototype 
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B. Results and discussion of the monitoring and analysis of anthropometric parameters using the 

Internet of Things-based Biomedical Telemetry System (IBTMS) and Interactive Smartphone 

Application for Health Monitoring and Assessment (ISAHMA) 

Calibration procedures were performed on the IBTMS prototype, which was done for ensuring reliable 

measurements. The weight and height values were calibrated by comparing them to those from a commercially 

available weighing scale and stadiometer, respectively.  Figure 22 indicates that the sensor-acquired Wkg and Hcm 

of patient 10000001 utilizing the IBTMS prototype were identical to those obtained with commercially available 

equipment, with slight difference due to patient position and weight distribution. Based on Figure 22, the patient's 

Wkg obtained with the IBTMS prototype was 62.1 kg, but the Wkg obtained using a commercially available digital 

weighing scale was 62.0 kg. Figure 22 shows that the Hcm measurement using the IBTMS was 157.98 cm, whereas 

the Hcm measurement using a stadiometer stick was 158 cm. The percent differences between the Wkg and Hcm 

readings from the two systems were 0.161% and 0.013%, respectively.    

Figures 23(a) and 23(b) present samples of anthropometric measurements, fitness evaluations, and wellness 

recommendations for patients 10000001 and 10000014, respectively, seen in the ISAHMA screens. The BMI, BFP, 

and BMR were calculated using mobile technology, with Wkg, Hcm, and GI acquired from the IBTMS prototype, 

while A and LFS were entered using a mobile device. The BMI measurements calculated by the ISAHMA were close 

to the value acquired from a web-based adult BMI calculator found on [39], with percent differences of no more than 

0.147%, as shown in Table 13. Based on Table 14, the ISAHMA-computed BFP values were comparable to those 

obtained using the online BFP calculator from [40], with percentage differences of no more than 0.148%. 

Furthermore, the ISAHMA-calculated BMR values in Table 15 were identical to those generated using the online 

BMR calculator from [41], with percent differences of less than 0.1%. The small percentage differences were obtained 

in BMI, BFP and BMR due to rounding conventions between the two systems. According to the fitness assessment, 

wellness recommendations from [32] and recommended daily calorie intake from [33] were displayed on the 

smartphone screen to help the patient maintain a healthy lifestyle. To keep the fitness assessments for future use, 

ISAHMA prompts the user to click the save icon on the screen, which stores the results to the ThingSpeak and 

MariaDB database servers. 

 
Figure 22: Wt and Hcm measurements using the IBTMS prototype and commercially available equipment 
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Table 13: Comparison table of computed BMI and classifications using ISAHMA and online BMI calculator on 

[39] 

Patient 

ID 
Wkg Hcm 

QI / BMI 

using 

ISAHMA 

QI / BMI 

classification 

from 

ISAHMA 

QI / 

BMI 

using 

[43] 

QI / BMI 

classification 

using [43] 

% difference 

between BMI 

measurements 

10000001 62.1 157.98 24.88 Normal 24.9 

Normal / 

Healthy Weight 0.080 

10000002 67.0 165.10 24.58 Normal 24.6 

Normal / 

Healthy Weight 0.081 

10000007 68.0 158.00 27.24 Overweight 27.2 Overweight 0.147 

10000008 84.0 176.00 27.12 Overweight 27.1 Overweight 0.074 

10000009 71.0 170.18 24.52 Normal 24.5 

Normal / 

Healthy Weight 0.082 

10000011 64.0 152.40 27.56 Overweight 27.6 Overweight 0.145 

10000012 90.0 154.00 37.95 Obese class II 37.9 Obese class II 0.132 

10000014 82.6 163.00 31.09 Obese class I 31.1 Obese class I 0.032 

10000025 76.0 164.00 28.26 Overweight 28.3 Overweight 0.141 

10000028 74.5 164.59 27.50 Overweight 27.5 Overweight 0.000 

 

Table 14: Comparison table of calculated BFP using ISAHMA and online BFP calculator on [40] 

Patient 

ID Wkg Hcm GI A LSF 

QI / 

BMI 

BFP 

using 

ISAHMA 

PBF 

classification 

BFP 

using 

[44] 

% 

difference 

between 

BFP 

values 

10000001 62.1 157.98 0 53 0 24.88 33.75 Normal 33.7 0.148 

10000002 67.0 165.10 1 51 0 24.58 21.43 Normal 21.4 0.140 

10000007 68.0 158.00 1 53 1 27.24 25.59 Overweight 25.6 0.039 

10000008 84.0 176.00 1 46 0 27.12 24.43 Overweight 24.4 0.123 

10000009 71.0 170.18 1 57 0 24.52 22.17 Overweight 22.2 0.135 

10000011 64.0 152.40 0 63 0 27.56 39.05 Overweight 39.1 0.128 

10000012 90.0 154.00 0 27 0 37.95 49.19 Obese 49.2 0.020 

10000014 82.6 163.00 0 27 0 31.09 39.17 Obese 39.2 0.077 

10000025 76.0 164.00 0 27 0 28.26 35.04 Overweight 35.0 0.114 

10000028 81.2 164.59 1 53 1 29.97 29.58 Obese 29.6 0.068 

 



461  
 

J INFORM SYSTEMS ENG, 10(25s) 

 

Table 15: Comparison table of calculated BMR using ISAHMA and web-based BMR calculator on [41] 

Patient 

ID Wkg Hcm GI A LSF 

BMR 

using 

ISAHMA 

BMR 

using 

[45] 

% 

difference 

between 

BMR 

values 

Wellness 

recommendation from 

[32] and suggested 

daily caloric intake 

from [33] 

10000001 62.1 157.98 0 53 0 1182 1182 0.000 

Continue eating healthy food. 

Keep your calorie intake to 

1418.85 Kcal / day. Maintain 

your body weight. Do exercise 

and sleep well. 

10000002 67.0 165.10 1 51 0 1452 1452 0.000 

Continue eating healthy food. 

Keep your calorie intake to  

1742.25 Kcal / day. Maintain 

your body weight. Do exercise 

and sleep well. 

10000007 68.0 158.00 1 53 1 1408 1408 0.000 

Eat balanced diet. Keep your 

calorie intake to  1935.3125 Kcal 

/ day. Increase physical activity. 

10000008 84.0 176.00 1 46 0 1715 1715 0.000 

Eat balanced diet. Keep your 

calorie intake per day to  2058 

Kcal/day. Increase physical 

activity. Do exercise for 150 to 

300 minutes per week. 

10000009 71.0 170.18 1 57 0 1494 1494 0.000 

Continue eating healthy food. To 

maintain your body weight, keep 

your calorie intake to 1792.35 

Kcal/day. Do exercise and sleep 

well. 

10000011 64.0 152.40 0 63 0 1116 1117 0.090 

Eat balanced diet. Keep your 

calorie intake per day to  1339.8 

Kcal/day. Increase physical 

activity. Do exercise for 150 to 

300 minutes per week. 

10000012 90.0 154.00 0 27 0 1566 1567 0.064 

Eat balanced diet. Keep your 

calorie intake to  1879.8 Kcal / 

day. Do exercise for 150 to 300 

minutes per week. Consult with 

endocrinologist and dietitian. 

10000014 82.6 163.00 0 27 0 1549 1549 0.000 

Eat balanced diet. Keep your 

calorie intake per day to  1858.5 

Kcal/day. Do exercise for 150 to 

300 minutes per week. Consult 

with endocrinologist and 

dietitian. 

10000025 76.0 164.00 0 27 0 1489 1489 0.000 

Eat balanced diet. Keep your 

calorie intake per day to  1786.8 

Kcal/day. Do exercise for 150 to 

300 minutes per week. Consult 

with endocrinologist and 

dietitian. 

10000028 81.2 164.59 1 53 1 1581 1581 0.000 

Eat balanced diet. Keep your 

calorie intake per day to  

2173.44531 Kcal/day. Increase 

physical activity. 
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Figure 23: Sample anthropometric measurements, fitness assessments and wellness recommendations for patient 

(a) 10000001 and (b) 10000014 obtained using the IBTMS prototype 

 

C. Results and discussion of the monitoring and evaluating blood chemistry profiles  using the 

Internet of Things-based Biomedical Telemetry System (IBTMS) and Interactive Smartphone 

Application for Health Monitoring and Assessment (ISAHMA) 

The ISAHMA screens for uploading and evaluating blood chemical profiles, as well as entry of FMH and PMC 

information for the patient, are shown in Figure 24. The smartphone application was developed to assess the patient's 

FBSL, RBSL, and TChol in accordance with medical standards.  To provide FMH and PMC data, the patient toggles 

switches SW4 and SW5 in the IBTMS prototype and inputs the age on the mobile phone screen. The doctor or HCP 

enters the patient's FBSL and RBSL values in mg/dL into the ISAHMA app. Figure 24(a) shows a screen display of 

the blood glucose testing results based on [27] and [38]. ISAHMA characterizes a patient's TChol level after 8 hours 

of fasting as normal if it is less than 180 mg/dL, moderately high if it is between 180 and 240 mg/dL, and high if it is 

more than or equal to 240 mg/dL [29],[42]. According to the blood chemical profiles, ISAHMA determines the 

appropriate treatment method and makes recommendations for a healthy lifestyle, as seen in Figure 24(a). After 

entering the patient's FMC and PMC, ISAHMA prompts the user to save the data to the cloud platform and MariaDB 

database by clicking the appropriate button, as shown in Figure 24(b). 

Referring to Figure 24(a), patient 10000002 had a normal FBSL of 93 mg/dL and an RBSL of 136 mg/dL. According 

to medical guidelines [27], normal FBSL is less than 100 mg/dL, and normal RBS is less than 140 mg/dL. On the 
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other hand, patient 10000014 was found to have pre-diabetes by the ISAHMA because the patient’s FBSL level was 

102 mg/dL, as shown in Figure 25(a). According to [27], the pre-diabetes level for FBSL is 100 mg/dL to 125 mg/dL, 

while RBSL is 140 mg/dL to 199 mg/dL. Patient 10000007 was assessed as diabetic by the ISAHMA due to the 

patient's FBSL level of 184 mg/dL and RBSL of 188 mg/dL, as seen in Figure 26(a). Based on [27], an FBS of greater 

than or equal to 126 mg/dL or an RBS of 200 mg/dL or greater suggests diabetes. The results of the ISAHMA blood 

sugar test also matched the diagnosis made by a healthcare professional. 

Furthermore, patient 10000014 showed a high TChol level of 263 mg/dl. According to established medical practices 

and guidelines, TChol values above 240 mg/dL are considered high, putting patients at risk for CVD [29], [42]–[43]. 

On the other hand, patient 10000002 had normal TChol levels of 145 mg/dL. According to [26], the TChol level 

should be less than 180 mg/dL to reduce cardiovascular risk. Patient 10000007 was found to have a moderately high 

TChol level of 210 mg/dL, according to the guidelines in [29] and [42]. In Figure 25(a), ISAHMA recommended 

patient 10000014, who had a high TC and was pre-diabetic, to minimize saturated fat intake, exercise regularly, and 

consult an endocrinologist. As shown in Figures 26(a) and 26(b), since patient 10000007 had a high FBSL, a family 

medical history of DM, and was pre-diagnosed with DM, ISAHMA advised the patient to follow a low-carbohydrate 

diet, exercise regularly, and consult an endocrinologist. 

 

 

Figure 24:. Blood chemistry profile and medical history of patient 10000002 
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Figure 25:. Blood chemistry profile and medical history of patient 10000014 

 

Figure 26. Blood chemistry profile and medical history of patient 10000007 

D. Results and discussion for the Fuzzy Logic-based Clinical Health Risk Assessment Model 

(FLCHRAM) 

The Fuzzy Logic-based Clinical Health Risk Assessment Model (FLCHRAM) was evaluated using the CAIR-CVD-

2025, a CVD risk assessment dataset from [44] as well as actual parameters from 50 volunteer patients who signed 

consent forms to participate in the study. Multiple imputation was employed to manage missing parameters in the 

datasets, substituting them with reliable estimates [45]. HRbpm was missing from the CAIR-CVD-2025 dataset, so 

clinically predicted values were used to maintain physiological plausibility.  For patients with hypertension and CVD 

PMC, HR values greater than 100 bpm were substituted.  For patients without hypertension or PMC of CVD, HR 

values were substituted within the normal range of 60 to 100 bpm. 

Figure 27 depicts the ISAHMA displays for preprocessing the input parameters of FLCHRAM.   To query the MariaDB 

database for fuzzy input parameters such as HRbpm, BPS, BMI, TChol, FMH, PMC, and FBSL, the user must select 
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the import button shown in Figure 27(a). The PHP program code was created to obtain the FLCHRAM input 

parameters from the database. The parameters are then sent to the ThingSpeak cloud by clicking the export button, 

as illustrated in Figure 27(b). The user runs the FLCHRAM.m MATLAB script, which imports the parameters using 

the thingSpeakRead () function, assesses the CHRL, and outputs the result using the thingSpeakWrite () function. 

The CHRL is retrieved from the ThingSpeak cloud and displayed on the ISAHMA screen, as seen in Figure 27(c). The 

user is then prompted to store the results in MariaDB by clicking the required buttons.  

Figure 28 shows that patient 10000014 had a high CHRL due to pre-diabetes, an obese class I weight classification, 

elevated BPS and a high cholesterol level of 263 mg/dL. Fuzzy rule number  2631 was used to evaluate this case. The 

CHRL prediction was consistent with medical guidelines and practices published in [26], [27], [29], [42] and [46], 

which suggested that patients with high cholesterol are more likely to acquire CVD and associated complications. 

Furthermore, [47] stated that obesity increases the chance of prediabetes progressing to DM. The FLCHRAM results 

further confirmed the doctor's assessment that the patient's health was at risk due to elevated TC levels and obesity.  

As seen in Figure 29, the CHRL evaluation related with DM and CVD of patient 10000002 was very low risk because 

all physiological, anthropometric, and blood chemistry parameters were within normal ranges. This was assessed in 

MATLAB using fuzzy rule 56 to determine the patient's CHRL. 

 

Figure 27: ISAHMA screens of FLCHRAM for (a) importing the fuzzy inputs from the MariaDB database to 

ThingSpeak cloud, (b) exporting the fuzzy inputs from ThingSpeak cloud to MATLAB and (c) viewing the 

FLCHRAM crisp output 

 
Figure 28: FLCHRAM output as seen in MATLAB and ThingSpeak cloud for patient 10000014 
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Figure 29: FLCHRAM output as seen in MATLAB for patient 10000002 

Figure 30 shows that patient 10000007 had a high BPS of 133 mmHg, an overweight BMI, a pre-diagnosed DM, a 

family history of CVD and DM, and a high FBSL level, all of which contributed to a high CHRL. This example was 

evaluated using the fuzzy rule 6195. The CHRL assessment aligned with the clinical guidelines and practices 

published in [26], [27], [29], [42] and [46]. High BP is a significant risk factor for the onset of CVD, which can lead 

to heart failure and stroke [48]. According to [49] and [50], patients with diabetes have a heightened risk of 

developing CVD when their BMI increases. Furthermore, the FLCHRAM result validated the doctor's prognosis that 

the patient's physical health was at risk due to diabetes and associated complications.  Figure 31 illustrates the 

FLCRAM output for patient from CAIR-CVD-2025 dataset. The patient's CHRL was evaluated as moderate risk by 

FLCHRAM due to the patient's overweight status, pre-diabetic condition, and family medical history of CVD. This 

assessment was consistent with the CVD risk assessment in the dataset, which is intermediate risk, as well as clinical 

guidelines from [26], [27] and [50]. According to [51], patients with a familial history and genetic predisposition to 

NCDs such as CVD and DM have a higher risk of acquiring these conditions. 

 
Figure 30: FLCHRAM output as seen in MATLAB for patient 10000007 
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Figure 31: FLCHRAM output as seen in MATLAB for patient from CAIR-CVD-2025 dataset  

To test the accuracy of the developed FLCHRAM, 55 simulations were ran using the CAIR-CVD-2025 dataset, and 

50 runs were done with the fuzzy inputs from the volunteered patients. The accuracy of an AI system can be computed 

by dividing the total number of correct predictions by the total number of predictions, as described in Equation (38) 

[52]. Due to borderline cases, four of the FLCHRAM's 105 predictions did not correspond to the doctor's assessments 

or clinical practice guidelines.  Figure 32 depicts a sample of FLCHRAM assessment for borderline cases of BMI and 

TChol. Patient 10000028 had a TChol of 239 mg/dL, which is in the upper limit of a moderately high level, and a 

BMI of 29.97 kg/m2, which is in the upper limit of the overweight class. The FLCHRAM rated the patient as high 

risk, although clinical guidelines indicated moderate risk. This demonstrates that FLCHRAM can predict higher risk 

levels in borderline cases, suggesting that it can detect early manifestations of diabetes or cardiovascular disease.  

According to the confusion matrix in Table 16, the FLCHRAM made 101 correct predictions out of 105 total 

predictions, resulting in an overall accuracy of 96.19% when the results of volunteered patients and datasets were 

combined.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝐻𝑅𝐿 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝐶𝐻𝑅𝐿 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
∗ 100 =

101

105
∗ 100 = 96.19%   (38) 

 

 
Fig. 32: FLCHRAM output as seen in MATLAB for patient 10000028 
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Table 16: Confusion Matrix for the FLCHRAM’s CHRL output 
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 NRM_VLCHR L_CHR M_CHR H_CHR VH_CHR 

NRM_VLCHR 20 1 0 0 0 

L_CHR 0 13 1 0 0 

M_CHR 0 0 19 2 0 

H_CHR 0 0 0 29 0 

VH_CHR 0 0 0 0 20 

 

CONCLUSION 

A Society 5.0-driven IoT-based biomedical telemetry system (IBTMS) combined with a fuzzy logic-based clinical 

health risk assessment model (FLCHRAM) was successfully designed, configured, and implemented, allowing for 

proactive healthcare management. The proposed system aligns with the Society 5.0 goal of developing a patient-

centered and technologically integrated healthcare ecosystem. This system allows for real-time health monitoring, 

risk prediction for DM and CVD, and individualized medical interventions by incorporating advanced technologies 

such as AI and IoT. Based on the experimental results, the sensor-acquired physiological parameters from the IBTMS 

and commercially available medical devices were comparable with percent differences of less than 5%. The IBTMS 

sensor-read and ISAHMA-computed anthropometric parameters were identical with the commercially available 

equipment and online medical calculators, with percent differences of less than 1%. The CHRL of the FLCHRAM 

were comparable to published clinical guidelines, medical practices and healthcare professional advice with a 

calculated accuracy of 96.19%. 

The developed user-friendly mobile application utilizing MIT App Inventor gave patients direct access to their own 

vital data and medical health history. The secure IoT cloud storage and MariaDB database server configurations 

provided real-time monitoring and long-term data accessibility, allowing healthcare practitioners to efficiently collect 

and analyze patient data. Overall, the research project not only promotes patient health awareness and self-

management, but it also facilitates more effective communication with healthcare professionals via the developed 

telemedicine service platform, resulting in individualized and timely therapeutic recommendations. 

The future directives of the current research work includes: (a) the use of advanced AI models like deep learning and 

neural networks to find patterns in patient data that may indicate early signs of disease, (b) the utilization of IBTMS 

and FLCHRAM in assessing the clinical health risks associated with various NCDs such as chronic renal disease and  

chronic lung disease, (c) the incorporation of a mental health monitoring module to the Society 5.0's patient-centered 

system for providing a more comprehensive and proactive approach to enhancing individuals' well-being in all 

aspects of their lives, (d) the implementation of machine learning algorithms to perform extensive body composition 

analysis, providing information on muscle mass, fat proportion, and metabolic health, and (e) the integration of 

various physiological sensors, such as ECG and EEG sensors, to monitor heart function and brain activity, 

respectively, in order to determine physical and mental health risk. 
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