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In modern industrial applications, particularly in the era of Industry 5.0, accurate estimation of 

induction motor speed is essential for ensuring optimal performance, energy efficiency, and 

system reliability. Traditional methods using mechanical sensors for speed measurement are 

often limited by increased system complexity, high maintenance costs, and vulnerability to 

environmental conditions. This study presents a sensor less approach for predicting the 

acceleration for the induction motor with ANFIS, an Adaptive Neuro-Fuzzy Inference 

Technology. ANFIS integrates the learning capabilities of neural networks with the inferential 

benefits of fuzzy logic, making it suitable for nonlinear systems and uncertain environments. The 

study entails the creation and training of an ANFIS model utilizing motor data. The model 

employs many membership functions, such as Trimf, Trapmf, Gbellmf, and Gaussmf, and the 

assessment utilized RMSE to evaluate their efficacy. The findings reveal that the Trimf 

membership function yields the highest predictive accuracy, with an RMSE of 0.0187, whilst the 

Trapmf function shows the lowest accuracy, with an RMSE of 0.0213. The ANFIS system 

successfully estimates motor speed with minimal deviation from the actual output, as observed 

in simulations. This sensor less approach not only reduces costs and complexity but also supports 

the development of intelligent, energy-efficient systems in line with Industry 5.0 objectives. 

Overall, the findings highlight the potential of ANFIS for advanced motor control applications, 

contributing to smarter automation and improved sustainability. 

Keywords: ANFIS, Induction Motor, Sensorless Estimation, Membership Function, Industry 

5.0. 

 
I. INTRODUCTION 

Induction motors remain a cornerstone in industrial applications, prized for their robustness, cost-effectiveness, and 

low maintenance requirements [1]. In the era of Industry 5.0, accurate speed estimation of induction motors has 

become increasingly crucial for enhancing control precision, optimizing energy efficiency, and enabling predictive 

maintenance strategies [2], [3]. 

The implementation of physical speed sensors, although yielding precise data, frequently incurs extra expenses, 

diminishes system reliability, and complicates motor design [4], [5]. This has resulted in an increasing interest in 

sensorless control methodologies, wherein speed is inferred rather than directly measured. Among these approaches, 

those employing widely accessible electrical parameters such as stator currents (Id, Iq) and voltages (Vd, Vq) in the 

d-q reference frame have garnered considerable attention due to their non-invasive characteristics and potential for 

high precision [6]. 

Conventional speed estimate techniques, such as MRAS (model reference adaptive systems) and EKF (extended 

Kalman filters), have been thoroughly investigated [7], [8]. However, these approaches often face challenges when 

dealing with parameter variations and system nonlinearities, leading to reduced accuracy under certain operating 

conditions. Recent breakthroughs in artificial intelligence and machine learning have created fresh opportunities to 

overcome these restrictions. [9]. 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) has become a formidable instrument in intelligent control and 

estimate. [4]. ANFIS integrates the learning capabilities of neural networks with the reasoning power of fuzzy logic, 

providing a robust framework for managing complicated, nonlinear systems like induction motors [5]. The ability of 
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ANFIS to effectively map the relationship between electrical parameters (Idq, Vdq) and motor speed makes it 

particularly suitable as a speed sensor replacement [6], [7]. 

Recent studies have demonstrated the potential of ANFIS in various aspects of electrical machine control and 

estimation [8], [9]. The use of ANFIS for speed estimation using Idq and Vdq as inputs offers several advantages: 

1. It eliminates the need for additional hardware sensors, reducing system cost and complexity [10]. 

2. It can adapt to motor parameter variations and nonlinearities more effectively than conventional methods [11]. 

3. It provides a robust estimation even under varying load conditions and speeds [12]. 

4. It can be easily integrated into existing motor drive systems without significant hardware modifications [13]. 

Despite these advancements, designing an effective ANFIS-based speed estimator for induction motors still presents 

several challenges. These include selecting optimal input variables, fine-tuning the network structure, and ensuring 

estimator robustness across diverse operating conditions [14]. The amalgamation of ANFIS with nascent technologies 

like edge computing and the Internet of Things (IoT) introduces novel potential and difficulties within the realm of 

smart manufacturing [15]. 

This research aims to address these challenges by developing an innovative ANFIS-based speed estimation system 

for induction motors, specifically utilizing Idq and Vdq as input parameters. The proposed design focuses on: 

1. Optimizing the ANFIS structure to effectively map the relationship between Idq, Vdq, and motor speed. 

2. Developing a robust training algorithm that ensures accurate speed estimation across a wide range of 

operating conditions. 

3. Implementing real-time adaptation mechanisms to handle motor parameter variations and external 

disturbances. 

By achieving these objectives, this study seeks to contribute to the advancement of sensorless techniques for 

induction motors, potentially leading to improved efficiency, reliability, and adaptability in modern industrial 

applications 

II. MATERIALS AND METHOD  

This research focuses on the use of 3-phase induction motors as the main object of study. The motor chosen for this 

study is the squirrel-cage type, which is known for its simple construction and reliability. Tests were conducted on 

this motor to observe and analyze the speed changes that occur. This research consists of two main interrelated stages: 

A. System Design and Manufacturing Stage 

 

Figure 1 system block diagram 

The diagram represents a control system utilizing ANFIS to manage the speed of an induction motor. Key 

components of the system include a three-phase voltage source as the input, a transformation block that converts 

ABC coordinates into the DQ domain for signal processing, and an induction motor as the primary actuator. The 

motor provides torque and speed as output, which are used as feedback for the control loop. The ANFIS module is 

responsible for adjusting the motor speed according to a specified reference. This setup allows for precise and 

adaptive speed control of the induction motor. 

A three-phase induction motor's dynamic behaviour can be characterized by differential equations derived from the 

motor’s equivalent circuit [8]. These equations are often expressed in terms of direct and components along the 

quadrature axis (d-q components) within a reference frame that remains stable [9]. The d-q model simplifies the 

analysis by transforming the three-phase quantities into two orthogonal components [10]. 
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The voltage equations for the stator and rotor circuits in the d-q frame are given by: 

𝐕𝐪𝐬
𝐬 = 𝐑𝐬𝐈𝐪𝐬

𝐬 +
𝐝

𝐝𝐭
𝛗𝐪𝐬
𝐬     (1) 

𝐕𝐝𝐬
𝐬 = 𝐑𝐬𝐈𝐝𝐬

𝐬 +
𝐝

𝐝𝐭
𝛗𝐝𝐬
𝐬     (2) 

Where: 

• Vds,Vqs are the direct and quadrature axis stator voltage 

• Rs are the stator and rotor resistance 

The flux linkages are related to the currents by: 

𝛗𝐪𝐬
𝐬 = 𝐋𝐥𝐬𝐈𝐪𝐬

𝐬 + 𝐋𝐦𝐈𝐪𝐦    (3) 

𝛗𝐝𝐬
𝐬 = 𝐋𝐥𝐬𝐈𝐝𝐬

𝐬 + 𝐋𝐦𝐈𝐝𝐦    (4) 

𝛗𝐪𝐫
𝐬 = 𝐋𝐥𝐫𝐈𝐪𝐫

𝐬 + 𝐋𝐦𝐈𝐪𝐦    (5) 

𝛗𝐝𝐫
𝐬 = 𝐋𝐥𝐫𝐈𝐝𝐫
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The electromagnetic torque Te produced by the motor is given by: 

Te =
3

2

P

2

Lm

Lr
(φdr

s (Iqs
s − Iqa) − φqr

s (Ids
s − Ida)) (7) 

where P is the number of poles 

 

Figure 2 Relationship between ABC Transformation and dq0 in Stationary Reference Frame [16] 

It is presumed that a 3-phase induction motor is symmetrical. The reference frame dq0 is typically positioned based 

on the location of the motor analysis components employed. This study employs a dynamic model of an induction 

motor with a stationary reference frame designated as dq0 [16]. To transform the abc condition into dq0, the first thing 

to do is to determine the direction of rotation of the rotor in the stationary condition (unchanged) [10]. In this 

condition, the relation between the abc magnitude and the dq0 magnitude at the stationary reference when the speed 

is equal can be seen in Figure 2 The notation shows the abc phase magnitude on the rotor, the notation shows the abc 

phase magnitude on the stator, and the dq axis shows the dq0 transformation magnitude[9]. 

The magnitude of the transformation of abc to dq0 with a stationary frame of reference is shown in equation (8): 

[

𝑓𝑑
𝑓𝑞
𝑓0

] =  𝑇𝑑𝑞0(𝜃) [

𝑓𝑎
𝑓𝑏
𝑓𝑐

]    (2) 

Variables 𝑓 can be interpreted as a function of each phase's voltage, current, or motor flux. The magnitude 𝑇𝑑𝑞0(𝜃)  

is described in the equation (9) [17] : 
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And the inverse of 𝑇𝑑𝑞0(𝜃) translated into equation (10) : 
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TABLE I 

PARAMETERS AND DATA SPECIFICATIONS OF THE INDUCTION MOTOR 

No Parameter Value 

1 Rated power (kW) 7.5 

2 Rated Voltage (V) 400 

3 Rated Frequency (Hz) 50 

4 Rated Current (A) 14 

5 Rated Speed (Rpm) 1440 

 

B. ANFIS Training Stage and Identification Test 

ANFIS (Adaptive Neuro Fuzzy Inference System) is an architecture that operates equivalently to Sugeno's fuzzy rule 

basis model [18]. The architecture of ANFIS resembles that of a neural network utilizing a radial basis function, 

subject to specific constraints [19]. ANFIS is a method that use a learning algorithm to optimize the rules based on a 

dataset [20]. ANFIS facilitates the adaptation of rules. To ensure that a radial basis function network emulates a fuzzy 

rule-based model, it must incorporate its architecture and processing to reflect the logical framework of fuzzy systems, 

wherein inputs are categorized and correlated to outputs according to established rules. This entails adjusting the 

network's settings to ensure its behavior corresponds with the interpretative and decision-making processes 

characteristic of fuzzy models [21]. For Sugeno order 1, the following constraints are necessary:  

1. All outputs must have a uniform aggregate mechanism for the rules.  

2. In a system with fuzzy rules (IF-THEN expressions), the number of activation functions should match the 

number of rules.  

3. Each activation function must match the membership function associated with each distinct input when 

there are several inputs inside the rule base.  

4. Activation functions and fuzzy rules must serve identical purposes for neurons and rules on the output side. 

The ANFIS network comprises multiple layers, with each neuron in the initial layer adapting to the parameters of the 

activation function [22]. The αA1(x1), αB1(x2), αA2(x1), or αB2(x2) membership degrees are the outputs of each 

neuron, which are determined by the input membership function [23]. In this context, the commonly used types of 

membership functions include trimf, trapmf, gbellmf, gaussmf, gauss2mf, pimf, dsigmf, and product psigmf 

functions. Each of these functions serves a specific purpose in fuzzy systems by representing different shapes and 

behaviors for input-output relationships, allowing for flexible and accurate modeling of data patterns [24]. 

The triangular (trimf) membership function is characterized by a triangular form and is defined by three parameters: 

a, b, and c, denoting the starting point, the vertex, and the endpoint of the triangle, respectively. The membership 

function employed is of the triangular (trimf) kind, as delineated in formula (11) below [12] : 

𝑓(𝑥, 𝑎, 𝑏, 𝑐) =

{
 
 

 
 
0,

𝑥−𝑎

𝑏−𝑎
′

𝑐−𝑥

𝑐−𝑏
′

0,

𝑥 ≤ 𝑎
𝑎 ≤ 𝑥 ≤ 𝑏
𝑏 ≤ 𝑥 ≤ 𝑐
𝑐 ≤ 𝑥

}  (11) 



561  

 

J INFORM SYSTEMS ENG, 10(25s) 

In graphical form it is depicted as Figure 3. 

 

Figure 3 Trimf function graph 

C. Model Training 

It is at this stage of ANFIS processing that it can be used and is ready to run for training data that has been prepared 

previously. Until the parameter results are as follows: 

Number of nodes: 55 

Number of linear parameters: 80 

Number of nonlinear parameters: 24 

Total number of parameters: 104 

Number of training data pairs: 400001 

Number of checking data pairs: 0 

Number of fuzzy rules: 16 

Here's the anfis secture design: 

 

Figure 4 Neuro Fuzzy Structure 

The design of the ANFIS, a model that combines artificial neural networks with fuzzy logic, is shown in Figure 3 [5]. 

This framework illustrates the progression of information from the input layer to the output over multiple phases. 

On the left, an input layer links input variables to multiple membership functions (inputmf) for the fuzzification 

process, transforming the precise input value into a fuzzy set. After that, these membership functions are applied to 

the inputs in the second layer. In the middle, blue nodes represent fuzzy rules formed from combinations of input 

membership functions, where each rule uses logical operations such as AND, OR, and NOT, which are represented 

by colour codes in the legend [25]. 

Next, the output membership function layer (outputmf) connects the fuzzy rules with the output membership 

function, performing a defuzzification process that converts the fuzzy set back into a strict value. Finally, the output 

layer calculates the final result which becomes the output of the ANFIS system after processing the input through 

fuzzy rules and membership functions. This ANFIS structure is important in learning and decision-making, It 
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employs the learning mechanism of artificial neural networks to optimize the rules and membership functions, 

enabling the system to address complicated and non-linear issues more efficiently. 

 

Figure 5 anfisedit data training 

Figure 4 illustrates the Neuro-Fuzzy Designer interface utilized for constructing and training the ANFIS (Adaptive 

Neuro-Fuzzy Inference System). The graph displays the training data, with the X-axis representing the data index 

and the Y-axis denoting the output. This graph illustrates the output data's behavior in relation to changes in the data 

index, mirroring the pattern of the training data intended for the ANFIS model construction [26]. 

To the right, there is information regarding the ANFIS architecture, including the quantity of inputs, outputs, and 

membership functions utilized throughout the training process. The 'ANFIS Info' column indicates the presence of 4 

inputs, 1 output, 2 membership functions per input, and a cumulative total of 400,001 training data pairs. 

 

Figure 6 setting Member functions 

Figure 5 shows the interface for adding membership functions in the ANFIS (Adaptive Neuro-Fuzzy Inference System) 

system. In this section, the user can set the number and type of membership functions for the input and output of the 

model. 

In the input section, the user can specify the number of membership functions (MFs) to be applied to each input. In 

the ‘Number of MFs’ column, it can be seen that the number of membership functions for the four inputs has been 

specified, each having two membership functions (indicated by 2 2 2). The user can also set the type of membership 

function to be used, with options available on the right, such as trimf (Triangular Membership Function), trapmf 

(Trapezoidal Membership Function), and various other fuzzy membership functions, such as gaussmf (Gaussian) and 

pimf (Pi-shaped). 
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For output, the user can select the type of membership function for the model output. In this case, the two options 

available are constant and linear. This output membership function will be used to define how the result of the ANFIS 

model is mapped to a crisp value. 

D. Evaluation 

This evaluation model analyses the results of training that has been done with parameters. Root Mean Square Error 

(RMSE) is used to calculate the amount of error in predicting data. RMSE calculates the difference between the actual 

value and the expected value and divides the total sum obtained by the number of prediction times and draws the 

root. The Root Mean Square Error (RMSE) calculation can be seen in the following equation [27]. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦̇𝑖)

2𝑛
𝑖=1

𝑛
   (9) 

III. RESULT AND DISCUSSION 

A This section discusses the experimental results of the ANFIS model. 

 

Figure 7 Simulation applied 

Figure 6 simulates the anfis system made with 4 inputs, namely Vd, Vq, Id and Iq with motor speed output. As a 

replacement for the motor speed sensor. 

 

Figure 8 result training 

Figure 7 training results with Based on having 4 inputs in the input there are 2 input member functions of type trapmf 

which will be set automatically after the training process. FIS that will be built then the Training process is carried 

out with epoch = 100. Simulation of Hybrid Algorithm with ‘trapmf’ function, with the number of MF [2 2 2 2], the 

output MF function is type ‘constant’. 

Table 2 

Value RMSE 

No Mf Type RMSE 

1. Trimf 0.0187 

2. Trapmf 0.0213 

3. Gbellmf 0.0193 

4. Gaussmf 0.0193 
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Table 2 above displays the RMSE values of several types of membership functions (Mf) used in the ANFIS system. 

The RMSE value measures the amount of error or variation between the actual value and the expected valueThe lower 

the RMSE value, the superior the model's performance in forecasting the anticipated output. 

Based on the table, Trimf has the lowest RMSE value, which is 0.0187, indicating that this triangular membership 

function provides the most accurate prediction results. On the other hand, Trapmf (Trapezoidal Membership 

Function) has the highest RMSE value of 0.0213, indicating a greater prediction error than the other membership 

functions. 

Moreover, the Gbellmf (Generalised Bell Membership Function) and Gaussmf (Gaussian Membership Function) 

exhibit identical RMSE values of 0.0193, indicating their equivalent efficacy in output prediction. Nonetheless, their 

prediction accuracy remains somewhat inferior to that of Trimf. 

 

Figure 9 Speed actual and anfis Trimf 

Figure 9 The graph above shows the comparison between ANFIS output and actual output in the form of rotational 

speed (RPM) against time (s). On the horizontal axis, time is expressed in seconds (s), while the vertical axis 

represents speed (Speed) in units of rotations per minute (RPM). This graph illustrates the performance of the ANFIS 

system in predicting speed compared to the actual output of the system. 

 

Figure 10 Speed actual and anfis Trapmf 

Figure 10 presents a graph comparing the ANFIS output with the actual output in terms of rotational speed (RPM) 

over time (s). The horizontal axis represents time in seconds (s), while the vertical axis indicates speed in rotations 

per minute (RPM). The graph highlights the performance of the ANFIS system, which utilizes a trapezoidal 

membership function (Trapmf), in predicting rotational speed relative to the actual system output. 
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Figure 11 Speed actual and anfis Gbell 

      Figure 11 presents a graph comparing the ANFIS output with the actual output in terms of rotational speed (RPM) 

over time (s). The horizontal axis represents time in seconds (s), while the vertical axis indicates speed in rotations 

per minute (RPM). The graph highlights the performance of the ANFIS system, which utilizes a generalized bell-

shaped membership function (Gbellmf), in predicting rotational speed relative to the actual system output. 

 

Figure 12 Speed actual and anfis Gaussmf 

Figure 12 presents a graph comparing the ANFIS output with the actual output in terms of rotational speed (RPM) 

over time (s). The horizontal axis represents time in seconds (s), while the vertical axis indicates speed in rotations 

per minute (RPM). The graph highlights the performance of the ANFIS system, which utilizes a Gaussian 

membership function (Gaussmf), in predicting rotational speed relative to the actual system output. 

The graph illustrates that the ANFIS output (depicted in green) and the actual output (depicted in blue) nearly 

coincide throughout the simulation duration, indicating the ANFIS model's capacity for precise speed prediction. At 

the beginning of the simulation, both the ANFIS output and the actual output show rapid speed changes. After that, 

the system experiences a decrease in speed at around 5 seconds to the lowest point before gradually increasing again. 

Despite minor swings of 5-10 seconds, the disparity between the ANFIS output and the actual output is negligible, 

demonstrating that the ANFIS system effectively emulates the actual speed change pattern. This commendable result 

illustrates ANFIS's capacity to adjust the control system according to the received inputs while minimizing prediction 

error. 

Overall, this graph indicates that the ANFIS model applied to the speed control system successfully predicts the 

output with a high degree of accuracy, although there are some small deviations in certain time periods. 
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Figure 13 Graphical results of maximum load 

The graph shows significant fluctuations in the ANFIS output. This could be caused by noise in the training data or 

test data. This noise can affect the ability of the ANFIS to correctly predict the speed of the induction motor. The 

fluctuations seen in the ANFIS output can also be caused by numerical instability in the training algorithm or during 

model evaluation. This often occurs if there are problems in handling very small or very large numbers. 

 

Figure 14 XY Graph Results 

The above graph shows the relationship between electromagnetic torque (Nm) and speed (RPM) of a three-phase 

motor. This relationship is represented by the pink-coloured line, which illustrates how torque and speed change 

during motor operation. Spiral Pattern The spiral pattern seen in the graph shows the dynamic response of the motor 

to changes in speed and torque. This pattern indicates the presence of a damping effect that causes the motor to 

oscillate before reaching a steady state. The shrinking of the spiral indicates that the system is reaching stability and 

oscillations are decreasing. 

Table 3 Member function plots fuzzy trimf 

Fis 

variable 

Before training After training 

Input 1 
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Table 4 

Member function plots fuzzy trapmf 
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Input 4 
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Input 2 
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Table 5 Member function plots fuzzy gbellmf 
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Table 6. Member function plots fuzzy gaussmf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on Table 3,4, 5 and 6 the system utilizes four input variables, each consisting of two membership functions, 

which are initially set before training and automatically adjusted during the training process. The designed FIS 

undergoes a training phase with 100 epochs to optimize its performance. The Hybrid Algorithm simulation employs 

different types of membership functions, including triangular (Trimf), trapezoidal (Trapmf), generalized bell-shaped 

(Gbellmf), and Gaussian (Gaussmf), with the number of MFs set as [2 2 2 2], while the output MF function is defined 
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as ‘constant’. Before training, all membership functions are symmetrically distributed based on predefined parameters. 

However, after training, adaptive modifications occur in the membership functions, as reflected in the results shown 

in Table 4. These changes indicate the system’s ability to learn and dynamically adjust the MF parameters, 

demonstrating how different MF types respond to the training process and contribute to improving prediction 

accuracy. 

Furthermore, a comparative analysis based on Tables 3, 4, 5, and 6 evaluates different types of membership functions, 

namely triangular (Trimf), trapezoidal (Trapmf), generalized bell-shaped (Gbellmf), and Gaussian (Gaussmf), both 

before and after training. Each of these MFs exhibits distinct adaptive behavior during the learning process. Table 3 

presents results for the triangular function, Table 4 for the trapezoidal function, Table 5 for the generalized bell-shaped 

function, and Table 6 for the Gaussian function. The comparison highlights significant parameter shifts after training, 

demonstrating how each MF type adapts to the data. Trimf exhibits the highest predictive accuracy after training, while 

Trapmf shows the least accuracy. These findings emphasize the impact of MF selection on model efficiency and the 

importance of adaptive learning in sensorless motor speed estimation. 

IV. CONCLUSIONS 

This study investigates the implementation of the ANFIS for determining induction motor speed without the use of 

physical sensors. ANFIS amalgamates the capabilities of fuzzy logic with artificial neural networks to produce 

accurate motor speed predictions in the presence of uncertainty and fluctuations in motor parameters. This study 

demonstrates that the ANFIS method can supplant conventional sensor-based techniques, offering cost savings and 

enhanced resilience to environmental disruptions, aligning with the concepts of Industry 5.0. 

The findings demonstrate that the trained ANFIS model can generate motor speed predictions with considerable 

accuracy, as reflected by the RMSE value. Among the many membership functions employed, the Trimf (Triangular 

Membership Function) exhibited superior performance, achieving the lowest RMSE value of 0.0187, whilst the 

Trapmf (Trapezoidal Membership Function) demonstrated the least efficacy with an RMSE of 0.0213. 

The decrease in motor speed as the applied load increases is also effectively compensated by the ANFIS system, as 

seen in the simulation and comparison between ANFIS output and actual output. Although there is a slight deviation 

at certain time periods, the difference remains minimal, which demonstrates the ANFIS' ability to adapt and 

minimise prediction errors. 

Overall, this research proves that ANFIS is an efficient and effective solution for induction motor speed estimation 

in the modern industrial era, especially in industrial applications that require intelligent automation and energy 

savings. 
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