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ARTICLE INFO ABSTRACT

The deep learning methods for dealing with multi-class imbalance in water quality
data are comprehensively examined in this paper. The findings show a notable
Revised: 24 Feb 2025 increase in publications, especially since 2021, and a clear preference for deep
learning techniques when classifying imbalanced data.
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Background: A thorough review of the body of literature included articles from
significant digital libraries that were published between January 2012 and
December 2024. Based on several important factors, such as commonly used
datasets and types, years of publication, different sources, research and empirical
types, assessment measures, and development tools, 59 articles were chosen and
examined.

Objective: This study examines how deep learning techniques respond to data that
is unbalanced when there are multiple classes and how the deep learning models'
large capacity and intricate structures make them appropriate for these kinds of
tasks, with an emphasis on water datasets.

Conclusion: The paper emphasizes the difficulties with data diversity and
computing efficiency, along with possible solutions for reliable real-world
applications. It also discusses innovative solutions that enhance the reliability of
real-world applications.

Keywords: Water Quality Classification, Deep Neural Networks, Multiclass Data
Imbalance, Ensemble

1. INTRODUCTION

Water quality is essential to maintaining the well-being of populations and ecosystems. Water quality
data has become increasingly complicated due to the rapid generation of massive data during the
creation and use of smart water quality monitoring devices based on the Internet of Things (IoT). Water
quality factors such as pH, dissolved oxygen, chemical concentrations, and contaminants must be
accurately classified to maintain safe and sustainable environments. Monitoring systems frequently
depend on machine learning (ML) and deep learning (DL) approaches to automate classification.
However, class imbalance is a common problem in multi-class classification utilizing real-world water
datasets because some quality levels (like major pollution incidents) are significantly less frequent than
others (like normal quality circumstances). Some pollution levels or conditions in these datasets are
underrepresented, creating an imbalance. The minority classes, often the most important from an
ecological or health standpoint, are frequently misclassified. In the past decade, deep learning
techniques have gained popularity because of the advancements in speech recognition, computer vision,
and various other fields [1-3]. Their recent success can be ascribed to enhanced data availability,
advancements in hardware and software, and numerous algorithmic innovations that expedite training
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and enhance generalization to novel data. Notwithstanding these advancements, less statistical research
has been conducted to adequately assess methods for addressing class imbalance through deep learning
and their associated structures, namely deep neural networks.

Deep learning models, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), can be extensively applied to analyze time series such as water quality monitoring and spatial
data, effectively capturing complex patterns and trends for improved predictive accuracy. In the study
[4], using the powerful performance of long short-term memory (LSTM) deep neural networks in time-
series prediction, a drinking-water quality model was designed to forecast massive amounts of water
quality data using the advanced deep learning theory. However, these models struggle with imbalanced
class distributions. Deep learning models are known to be data-hungry, requiring large, balanced
datasets to achieve optimal performance. When the data distribution is skewed, deep learning models,
especially those with large capacities, may overfit the majority classes, ignoring the underrepresented
ones. In imbalanced datasets, training deep models may require more time or even fail to converge to a
satisfactory solution due to the rarity of minority class instances. While deep learning can learn intricate
patterns in data, it still requires careful handling of imbalances, especially in multi-class scenarios
where each class should be learned equally well [5]. In many applications, the minority classes are
critically important, even though they are underrepresented in the dataset. Detecting rare diseases may
be far more critical than identifying common health conditions. Missing a rare fraudulent transaction
can have significant financial implications, whereas misclassifying a legitimate transaction as fraud has
fewer consequences. In cybersecurity, recognizing uncommon types of cyberattacks is crucial to prevent
breaches. To address unbalanced human activities from smart homes and increase the learning
algorithms' sensitivity to the minority class, the research in [6] suggests a data-level perspective in
conjunction with a temporal window technique. As deep learning systems are increasingly applied in
high-stakes environments, it becomes essential to

ensure that these models perform well across all classes, particularly the minority ones. Solving the
imbalanced classification problem in deep learning will lead to more robust models that generalize to
diverse real-world data, ensuring more reliable performance. The study in [7] seeks to summarize the
most recent developments in this field by exploring the real-world application of imbalanced learning
and presenting a thorough analysis of current approaches to address unbalanced learning. This paper
provides a timeline between 2012 and 2024 illustrating the development of Deep Neural Networks
(DNN) and the increasing prevalence of multi-class imbalance in section 5. The review focuses on
strategies that address the imbalance problem in multi-class classification tasks, specifically within the
context of water quality data.

Motivation and Contribution

Many researchers concur that the topic of deep learning with class-imbalanced data is not widely
studied [8,9]. The multiclass imbalance problem is not as established as the binary class imbalance
problem. The situation is more complicated in multiclass imbalance. There can be multiple majority
and minority classes. Suppose an imbalanced dataset has three classes: A, B, and C. Here, class A can
be the majority class concerning class B and also can be the minority class with respect to class C. So, in
multiple classes, it is hard to identify the majority and minority classes concerning other classes.
According to the study in [10], the type of class size configuration and the degree of class overlap
significantly impact the difficulty in multiclass unbalanced data.

This review paper aims to provide a comprehensive overview of the methods, challenges, and recent
advancements related to handling imbalanced data in multi-class classification using deep learning,
primarily in water quality data sets. Here are the key objectives that should guide the structure and
content of the paper:

Highlight the unique challenges posed by multi-class classification problems compared to binary
classification and investigate how class confusion between minority classes affects learning in deep
neural networks and the lack of multi-class imbalance studies focused on water quality
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Include advanced strategies such as cost-sensitive learning, ensemble methods, and generative models
like GANS to combat imbalanced class distributions.

Provide insight into why deep learning models struggle with imbalanced classes despite their power in
representation learning and lack of multi-class imbalance studies focused on water quality

Analyse the role of architectural modifications in deep learning models that help mitigate imbalance,
such as attention mechanisms, transfer learning, and meta-learning.

The following sections categorize the methods into data-level, algorithm-level approaches, and hybrid
techniques. Discuss the merits and demerits of these methods, comparing their effectiveness in
improving the performance of minority classes while maintaining good overall classification. The paper
highlights the need for integrating advanced deep-learning techniques into water quality monitoring
systems.

2. DATA-LEVEL SOLUTIONS

To resolve class imbalance and improve the representation of minority classes, data-level techniques
focus on modifying the training set. A detailed analysis of data types reveals various modalities, with
medical imaging and ecological datasets being particularly affected by imbalance issues. Techniques
such as data augmentation, resampling, and the creation of synthetic data points have been successful
in reducing these problems. Fig. (1) summarizes the data-level solutions.

2.1 Resampling Techniques

Two primary approaches to address the class imbalance problem are random under-sampling and
random oversampling. This work [11] examined and confirmed the value of several sampling techniques
over non-sampling techniques to produce a machine-learning model with a well-balanced sensitivity
and specificity on unbalanced chemical data. This study [12] examined popular techniques from both
categories assessed in this work for their capacity to improve the unbalanced ratio of five extremely
unbalanced datasets from various application fields. To balance the classes, these methods add or
remove samples at random. Samples eliminated in a random order can eliminate valuable information.
The scenario is also the same for random oversampling, where performance matches up to under-
sampling but requires more processing power to increase samples randomly in the minority class. These
methods take extensive time, particularly when dealing with massive data sets. According to Chawla et
al. (2002), [13] the two most popular oversampling techniques are the random replication of a small
number of samples and the synthetic minority over-sampling technique (SMOTE). While SMOTE
effectively balances classes, it can introduce noise and duplicate samples, reducing its reliability in high-
dimensional datasets. Consequently, there are numerous variations of techniques that enhance
SMOTE. ADASYN modifies the generation of synthetic samples based on minority class density [14].
Safe-Level-SMOTE [15] balances class distribution using a safe-level technique, thereby minimizing
misclassification risks. A variation of SMOTE called borderline-SMOTE only generates synthetic
samples on the boundary between two classes. Borderline-SMOTE [16] finds and synthesizes samples
close to the decision boundary. SDSMOTE [17], a spatial distribution-based SMOTE, primarily creates
an entirely new data set by obtaining raw spatial data distribution. When choosing majority-class
sample subsets from various angles, two sample selection techniques—more precisely, a top-down and
a bottom-up strategy—are suggested to preserve the original data distribution pattern. Using the
SMOTE technique with a post-processing strategy to modify the datasets is another method of resolving
the class imbalance issue. The investigation [18] uses the SMOTE method, the Tomek link, and the
combination of these two resampling techniques for fault classification with simulated and
experimentally imbalanced data. To address the class disparity in a non-noisy manner, A simple and
effective oversampling strategy called k-means SMOTE was presented by Douzas et al. [19]. It combines
SMOTE with k-means clustering.

The main target of these techniques is to identify the dataset's outlier, redundant, and noisy patterns
and remove them for better classifier performance. The techniques Tomek-link and Edited Nearest-
Neighbor rule are based on this. According to the study [20], the effect of class imbalance is significantly
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accelerated by redundant borderline occurrences and outliers in the data set. Cluster-based instance
selection (CBIS), a unique under sampling technique that blends instance selection and clustering
analysis, is presented in the study [21]. While the instance selection component removes
unrepresentative data samples from each "subclasses," the clustering analysis component clusters
similar data samples of the majority class dataset into "subclasses." Before completing a learning task,
this work in [22] presents a novel package for recent relevant oversampling approaches to enhance data
quality in imbalanced datasets. However, oversampling can introduce noise into the dataset, the risk of
overfitting, increase computing costs, and reduce information gain. While using the oversampling
technique, it is necessary to consider the distinct features of the dataset and the specific oversampling
procedure. These methods lessen the issues brought on by class imbalance while enhancing the models'
general quality and dependability. As a result, decisions based on the model's predictions are eventually
better. Some researchers have been investigating sampling strategies that integrate spatial information
between data classes, deep learning, and clustering algorithms using intrinsic features to improve the
data further [23]. Examine how DL-based clustering algorithms are trained, highlight several clustering
quality indicators, and assess various DL-based methods using three bioinformatics cases: biomedical
text mining, cancer genomics, and bioimaging. Of course, different sampling methods can be
categorized based on the complexity of the corresponding sampling method.

2.2 Data Augmentation

To determine the optimal combination to improve classification performance on unbalanced datasets,
the study in [24] provides a generic framework for evaluating nine ensembles learning and nine data
augmentation strategies for class imbalance challenges. Synthetic data points will be generated for
underrepresented classes using the technique. Data augmentation for multiclass imbalance can take
several forms. Data augmentation techniques are frequently used with image and time series data.
Sensor-based data, such as water quality monitoring and environmental data, can benefit from its
application. Adding random noise to existing data is known as noise injection, and it is a frequently used
form of data augmentation that can produce new samples [25]. Minor alterations to the sensor readings
of parameters such as pH, nitrate levels, or residual chlorine levels, for example, can provide new data
points while preserving the data's original structure.

2.3 Generative Adversarial Networks (GANs)

By integrating a variational autoencoder (VAE) into a multi-head graph attention network (GAT), this
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Fig. (1). Data level Solutions

study [26] gathered a thorough dataset from various projects about various construction activities, each
with a unique structure and degree of class imbalance. Adding a generative model that enhances

the dataset for the underrepresented class enhanced the performance of building prediction models.
The Deep Learning Generative Adversarial Random Neural Network, which has the same properties
and capabilities as a GAN, is presented in this article. These models learn the underlying data
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distribution and generate new samples that mimic real-world data. A discriminator and a generator
neural network make up a GAN. The discriminator tries to differentiate between synthetic and real data,
while the generator produces artificial data points. Genetic algorithms based on biologically influenced
agents like mutation, crossover, and selection have been mimicked by GANs, a neural technique that
creates populations of individuals [27]. GAN can generate unusual event conditions, such as chemical
pollution, in the context of water quality indicators. Deep learning models that require balanced
datasets to produce accurate predictions may find these generated samples particularly useful.

3. ALGORITHM-LEVEL SOLUTIONS

These techniques work by modifying the algorithm by giving the highest priority to enhancing the
algorithms' capacity to identify instances belonging to the minority class correctly. Generating
algorithms to be more responsive to the underrepresented groups helps improve models' overall
performance and generalization when presented with imbalanced data. Among the most prevalent
algorithm-level strategies is cost-sensitive learning, wherein the classification performance is enhanced
by modifying the algorithm’s objective function. This alteration ensures that the model receives greater
emphasis on learning from underrepresented classes. This study suggests using these measures as cost
functions, frequently obtained using the confusion matrix [28]. Mienye et al. [29] focus on building
robust cost-sensitive classifiers by altering the objective functions. Since the improved algorithms
consider the unequal class distribution during training, altering the original data's distribution is not
essential. This leads to more dependable performance than when the data is resampled.Fig.(2)
summarizes algorithm-level solutions.

3.1 Cost-Sensitive Learning
Cost-sensitive learning takes into account the different costs associated with different types of

misclassification and aims to optimize the model for scenarios where the consequences of errors are
uneven. Cost-sensitive cross-entropy is a common choice for multi-class imbalance in water quality
data. Analyzing the performance of data-level approaches against algorithm-level approaches that
emphasize cost-sensitive models and against a hybrid approach that combines those two approaches is
the main purpose of the work [30]. To emphasize accurate minority class classification, cost-sensitive
learning introduces penalty terms to the loss function [31]. By assigning higher costs to misclassified
minority samples, models must improve their performance in these underrepresented categories. The
study to improve the classification performance of SVMs [32] proposed a method that automatically
adjusts the error cost between class samples to identify a preferred hyperplane effectively. In
classification accuracy, it can evaluate the efficiency of an error cost, and, should it proven ineffective,
it modifies
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Fig. (2). Algorithmic level Solutions

the error cost in the correct direction. To handle imbalanced streaming data involving concept drift, the
work in [33] presents a chunk-based incremental
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learning method termed adaptive chunk-based dynamic weighted majority. The loss function is
modified to balance misclassifications of minority classes using cost-sensitive learning. Every class has
a weight that is determined by inversely proportioning to how frequently it occurs in the training set in
the Weighted Cross-Entropy Loss method. The weight W for a class C is calculated as

W, = 1/frequency of class C.

Thus, classes with lower frequencies are given higher weights. This technique improves model
performance on minority classes, which is particularly helpful for deep learning models that deal with
multiclass imbalance issues by lowering the bias toward majority classes.[34] Suggested a class
rebalancing technique based on a class-balanced dynamically weighted loss function, where weights are
allocated according to class frequency and the predicted probability of ground truth class, to solve the
imbalance in the class distribution in deep learning.

3.2 Class-Balanced Loss Functions:

Hard-to-classify examples can be focused more on using focal loss, an extension of cross-entropy loss.
By lowering the weights of examples that are simple to categorize, this approach enhances the model's
attention to uncommon occurrences in water quality datasets and successfully handles unbalanced
datasets. Focal loss is a sophisticated function created to deal with the problem of class imbalance,
especially when a model has to manage a major class difference. Facebook Al researchers first proposed
the idea of focal loss for object detection in computer vision; it dynamically scales the cross-entropy loss
and concentrates the model's training on samples that are difficult to categorize or incorrectly
identified. The focal loss network intrusion detection system, a cost-sensitive neural network based on
focal loss, is suggested to solve the unbalanced data issue in the study [35].

4. HYBRID APPROACHES

Hybrid approaches effectively address multi-class imbalance problems, particularly in intricate, high-
dimensional data like water quality. To improve classification performance for minority classes, hybrid
approaches combine algorithmic and data-level techniques to create a fairer representation of classes.
For example, Hybrid Data Augmentation with a Loss Adjustment approach utilizes synthetic data
generation techniques, such as SMOTE, alongside algorithmic changes like class-reweighting in the loss
function. In water quality data, for instance, generating synthetic samples of rare contaminant levels
while adjusting the loss function to penalize misclassification of these rare classes can significantly
enhance the model’s sensitivity to minority classes. The data-level augmentation increases the
representation of minority classes in the training data, while loss adjustment methods—such as focal
loss or class-balanced loss—bias the model to pay greater attention to these underrepresented classes.
The study [36] combines SMOTE for augmenting minority class samples with algorithmic adjustments,
enhancing classification performance in imbalanced water quality datasets. It details the impact of this
hybrid approach on minority class detection accuracy in water monitoring contexts, showing improved
results through a combined data and algorithmic methodology. One key limitation is the increased
computational cost due to the hybrid approach, especially when applying SMOTE alongside algorithmic
tuning for enhanced performance. This computational demand can make
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Fig. (3). Hybrid Approaches

real-time processing challenging. Class-specific ensemble networks are a powerful approach to
addressing class imbalance in water quality data by tailoring ensemble components to enhance the
representation of minority classes. The research study [37] demonstrates a dynamic selection approach
to improve water quality anomaly detection, combining multiple ensemble methods with resampling
techniques, including SMOTE and Tomek Links. When developers combine large amounts of
heterogeneous data, which is structured, semi-structured, and unstructured data, a significant barrier
for applications is presented [38].By selecting specific models or components based on each class’s
characteristics, this approach adapts dynamically to boost classification performance on imbalanced
data. The study utilized techniques like Local Class Accuracy (LCA), decision trees, and random forests
within a dynamic ensemble setup. This method showed improved balanced accuracy, F-score, and G-
mean, with the LCA-based ensemble showing the best results for minority class detection. However,
these approaches' complexity and computational cost are higher, making real-time applications
challenging in some scenarios.Fig.(3) summarizes these solutions.

5. DEEP LEARNING SOLUTIONS FOR MULTICLASS IMBALANCE

Deep learning, the subfield of machine learning, is employed with artificial neural networks (ANNSs)
with two or more hidden layers. A completely connected feedforward neural network with at least one
hidden layer is called a multilayer perceptron (MLP). A particular kind of feedforward neural network,
the CNN, is designed to process multi-dimensional data, including images [39]. The MLP and CNN are
only two of the alternate DNN designs that have been created over time. Autoencoders and RNNs are
described in detail in [40—42]. They also provide advanced optimization tactics such as

increased regularization, parameter initialization, normalization, activation functions, and optimizers
that have been shown to reduce training times and boost efficiency. While deep learning models such
as CNNs and RNNs have shown remarkable success in various domains, handling multi-class imbalance
remains a significant challenge, particularly in water quality classification. Representation learning is
mapping raw input data features into a new representation or a new feature space using machine
learning to improve detection and classification tasks. Non-linear input data transformations
accomplish this process of translating unprocessed input data to new representations. This automated
feature development saves a great deal of time by eliminating the need for specialists to manually hand-
engineer features. It enhances performance in difficult issues, like picture and speech, which are
otherwise challenging to determine. By assembling several hidden layers, DNNs can learn high-level
feature representations of inputs when given enough data. These learned representations decrease
irrelevant input components while strengthening those crucial for discrimination. Deep learning
architectures are made of more sophisticated abstract representations, giving them power.This section
discusses developments in deep learning methods that tackle imbalance problems and demonstrates
how well they perform in real-time water monitoring systems.
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Trends in the Classification of Water Quality Using Deep Learning (2019-2023)
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Fig. (4). Advancement in the classification of water data sets
5.1 DNN Advancements and Multi-Class Imbalance (2012-2023)

The evolution of deep learning models has significantly influenced the ability to manage imbalanced
datasets. Below is a timeline of key advancements and their implications for handling multi-class
imbalance, which is graphically shown in Fig. (4).

2012-2014: Emergence of Deep Learning in Classification.

Alexnet's [43] demonstration of the efficacy of deep learning in image classification sparked interest in
DNN research in the period 2012-2014. Although it is not the main focus, the inherent imbalance in
datasets such as ImageNet is started to be recognized as a potential issue. The study in [44]
examined how the depth of the convolutional network affects its accuracy when used for large-scale
image recognition. To meet the new state of the art for detection and classification in the ImageNet
Large-Scale Visual Recognition Challenge, the study in [45] proposed a deep convolutional neural
network architecture codenamed Inception. This study also implemented GoogLeNet, a 22-layer deep
network whose quality is evaluated in detection and classification. The study in [46] investigates a
technique the stack model classifier for multiclass classification for water quality prediction, which
integrates machine learning with practical and simple water quality measurements. The introduction
of GANs made it possible to create artificial data.[47] suggested a novel framework for using an
adversarial approach to estimate generative models, enabling synthetic data generation, which became
useful in addressing class imbalances by augmenting datasets. Early applications of machine learning
for water quality focus primarily on regression-based models predicting specific parameters (e.g., pH,
dissolved oxygen), with limited exploration of deep learning.

2013-2015: Deeper Networks and Architectures

Deeper networks like VGGNet [48] and GoogleNet [49] emerge, pushing the boundaries of accuracy in
image classification. RNNs gain traction for sequential data such as time-series analysis. Researchers
begin exploring techniques like data augmentation and cost-sensitive learning to address imbalances in
specific applications. The introduction of RNNs sparks interest in using time-series data for water
quality monitoring. However, studies remain sparse, and multi-class imbalance is still underexplored.

2016-2018: Generative Models and Attention Mechanisms

GANSs are introduced, enabling the generation of synthetic data. Attention mechanisms [50] improve
performance in tasks like machine translation and image captioning. The use of GANs for data
augmentation to address class imbalance is explored. The problem of long-tailed distributions, a
specific type of multi-class imbalance, gains attention. Early studies began experimenting with deep
learning for classifying water quality indices, but imbalanced class distributions (e.g., more 'safe' than
'unsafe' samples) pose challenges. GAN-based data augmentation starts being considered for
underrepresented water quality classes.
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2019-2021: Transformers and Self-Supervised Learning

Transformer networks [51] revolutionize natural language processing and begin to influence other
domains like vision and time-series analysis. Self-supervised learning techniques [52] allow models to
learn from unlabelled data, reducing dependence on large labelled datasets.Research on specialized loss
functions (e.g., focal loss) and training strategies (e.g., re-weighting, resampling) for imbalanced
datasets intensifies. New metrics for evaluating performance under imbalance, such as balanced
accuracy and macro-averaged F1 scores, are proposed.Researchers apply Transformer models to time-
series water quality data, improving classification accuracy for multi-class water quality indices. Studies
highlight that class imbalance—particularly in real-world datasets from sensor networks—adversely
affects model performance, leading to hybrid approaches combining data augmentation and
algorithmic solutions.

2022-2024: Focus on Robustness and Efficiency

Emphasis shifts towards improving the robustness and efficiency of DNNs through techniques like
model pruning, quantization, and federated learning, allowing deployment in resource-constrained
environments. The connection between class imbalance and model robustness is further investigated.
Methods for detecting and mitigating the effects of imbalance in real-world applications, including
imbalanced environmental monitoring data, gain importance.2022: The paper "A Stacked Ensemble
Deep Learning Approach for Imbalanced Multi-Class Water Quality Index Prediction” [Wen Yee
Wong et al.] introduces a novel ensemble strategy combining deep neural networks to tackle multi-class
imbalance in water quality datasets. The study demonstrates how ensemble methods can significantly
improve prediction accuracy across imbalanced classes. Increased interest in integrating self-
supervised learning and domain adaptation for water quality classification, enabling models to handle
data scarcity and class imbalance. Researchers focus on real-time monitoring systems incorporating
class imbalance mitigation techniques, improving water quality predictions in diverse environmental
conditions.

5.2 Advantages of Deep Learning in Handling Class Imbalance for Water Quality Data

Deep learning neural networks have several inherent advantages when handling multiclass data
imbalance. Still, they may also be improved and modified with certain methods to deal with the problem
more successfully. [53] suggests a novel framework for extracting hybrid characteristics that emphasize
the combination and ideal choice of high- and low-level attributes. The suggested method achieves
scalability and dependability by automatically adjusting the final ideal features based on real-time
scenarios while producing an accurate and effective disease classification of medical images. Deep
learning models, particularly CNNs and RNNs, excel at extracting intricate features directly from raw
data without requiring extensive manual feature engineering. In [54], the most used DL network type
CNN s are introduced, and their architecture development and key characteristics are discussed. This is
essential for classifying water quality because it enables models to pick up on small differences between
classes, like chemical compositions or contamination levels, that conventional models can miss. Layers
in the deep neural network catch increasingly complicated information; the deeper layers concentrate
on particular, in-depth aspects that distinguish one water quality level from another, while the first
layers record fundamental patterns. This adaptability is highly advantageous in multi-class
classification tasks with imbalanced data, as the model can focus on learning key traits of minority
classes through feature extraction.

5.2.1 Scalability and Flexibility

Water quality datasets, which may include pH levels and other chemical indicators, are examples of
huge, complicated datasets with high-dimensional features that deep learning models can manage. In
contrast to traditional algorithms, which frequently require pre-processed or reduced input for effective
training, architectures such as CNNs and transformers are naturally scalable; they can analyze large
data volumes and complicated characteristics without requiring significant restructuring. This
scalability is essential for water quality monitoring systems that gather data at high frequencies and
from numerous sources to ensure that the model retains accuracy over various expanding datasets.
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5.3 Transfer Learning and Pretrained Models

Transfer learning allows training models on larger, balanced datasets and then fine-tuning them on a
specific water quality dataset, which is particularly useful for minority class detection. Using pre-trained
models like any domain-specific datasets, deep learning architectures can leverage the general feature
representations learned from balanced data and apply these to smaller, imbalanced water quality
datasets. This technique enhances the model’s ability to detect rare pollutants or contaminants, as the
pre-trained layers retain generalizable knowledge that only needs fine-tuning, often resulting in
improved accuracy for minority classes

5.4 Innovative Imbalance-Specific Architectures

Recent deep learning advancements include architectures specifically tailored for imbalanced data, like
attention mechanisms and class-aware learning.[55] developed an Enhanced Long Short-Term Memory
(E-LSTM) based on the feature attention mechanism that employs word-feature seizing and sequential
modelling to identify and classify the stress polarity. By focusing on the most significant parts of an
input, attention mechanisms enable models to enhance attributes from underrepresented classes.
Attention methods can draw attention to important pollutant indicators in water quality categorization,
even if those indicators only appear in just a fraction of the data. By producing embeddings emphasizing
class differences, class-aware representation learning further enhances model performance by
guaranteeing that minority classes have a separate representation space inside the model.

Summary of Case Studies

The case studies in Table 1 show the effectiveness of various deep learning strategies for addressing
multi-class imbalances in water quality data. Techniques such as SMOTE, cost-sensitive learning,
GANs, and ensemble methods have shown promise in improving minority class detection, although
each method comes with trade-offs. Combining these methods in real-world water quality monitoring
systems is often necessary to achieve robust performance.

6.CONCLUSION AND FUTURE DIRECTIONS

Water quality datasets often suffer from severe class imbalances, where certain pollution levels are
significantly underrepresented. This limits the ability of deep learning models to generalize effectively.
Many available datasets are small or collected under specific conditions, making it difficult to develop
models with broad applicability. Future research should focus on establishing standardized, well-
balanced water quality datasets by leveraging data augmentation techniques and synthetic data
generation. This paper highlights the need for integrating advanced deep-learning techniques into
water quality monitoring systems GANs and hybrid deep learning approaches are powerful tools for
handling class imbalance but require significant computational resources. Research should explore
lightweight GAN architectures and efficient training strategies to make these methods more accessible
for real-world applications.

LIST OF ABBREVIATIONS
IoT = Internet of Things
ML = Machine Learning
DL = Deep Learning
CNN = Convolutional Neural Networks

RNN Recurrent Neural Networks
LSTM = Long Short-Term Memory
DNN = Deep Neural Networks

SMOTE = Synthetic Minority Over-sampling Technique
SDSMOTE = Spatial Distribution-based SMOTE
CBIS = Cluster-Based Instance Selection
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GAN= Generative Adversarial Networks
LCA = Local Class Accuracy
ANN = Artificial Neural Networks
MLP = MultiLayer Perceptron
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Wastewater n samples minority class | techniques.
Quality

Prediction”

2 Nicholaus "Anomaly 2019 | Autoenco | Highly Recall for rare | Flagged natural

etal.,[57] Detection in ders imbalanced events fluctuations as
Coastal Water data; rare increased by anomalies, leading
Quality Using pollution 30%; to false positives;
Autoencoders" events effectively proposed
identified integrating domain
rare pollution | knowledge.
events

3 Karami Optimized 2020 | Ensembl | Resampled Overall None specified;
Lawal et Ensemble e subsets of accuracy: demonstrated
al.,[58] Methods for learning | imbalanced 92%; improved

Classifying data improved performance
Imbalanced recall for through
Water Quality minority class | aggregation of
Index Data predictions.

4 Wong, "A Stacked 2023 | Stacked Imbalanced Superior None specified;
WY, et Ensemble ensemble | datasets with | balanced applied balanced
al.[59] Deep Learning learning | rare events performance | bagging and

Approach for across RUSBoost
Imbalanced accuracy, techniques for
Multi-Class precision, improved
Water Quality classification.
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Index recall, and F1
Prediction” score
5 Karami "A Deep 2023 | Deep Key water Improved None specified;
Lawal et Learning learning | quality classification | suitable for real-
al.,[60] Strategy for + indicators accuracy for time assessments.
Water Quality SMOTE data minority
Monitoring" classes
6 K, K., "Water Quality | 2023 | Data Imbalanced | Significant None specified;
Krishnan Prediction: A augment | water quality | improvement | evaluated multiple
etal,[61] Data-Driven ation datasets in prediction models.
Approach with accuracy for
Data minority
Augmentation classes

Table 1. Case Studies
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