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The deep learning methods for dealing with multi-class imbalance in water quality 

data are comprehensively examined in this paper. The findings show a notable 

increase in publications, especially since 2021, and a clear preference for deep 

learning techniques when classifying imbalanced data.  

Background: A thorough review of the body of literature included articles from 

significant digital libraries that were published between January 2012 and 

December 2024. Based on several important factors, such as commonly used 

datasets and types, years of publication, different sources, research and empirical 

types, assessment measures, and development tools, 59 articles were chosen and 

examined.  

Objective: This study examines how deep learning techniques respond to data that 

is unbalanced when there are multiple classes and how the deep learning models' 

large capacity and intricate structures make them appropriate for these kinds of 

tasks, with an emphasis on water datasets. 

Conclusion: The paper emphasizes the difficulties with data diversity and 

computing efficiency, along with possible solutions for reliable real-world 

applications. It also discusses innovative solutions that enhance the reliability of 

real-world applications. 

Keywords: Water Quality Classification, Deep Neural Networks, Multiclass Data 

Imbalance, Ensemble 

 

1. INTRODUCTION

Water quality is essential to maintaining the well-being of populations and ecosystems. Water quality 

data has become increasingly complicated due to the rapid generation of massive data during the 

creation and use of smart water quality monitoring devices based on the Internet of Things (IoT). Water 

quality factors such as pH, dissolved oxygen, chemical concentrations, and contaminants must be 

accurately classified to maintain safe and sustainable environments. Monitoring systems frequently 

depend on machine learning (ML) and deep learning (DL) approaches to automate classification. 

However, class imbalance is a common problem in multi-class classification utilizing real-world water 

datasets because some quality levels (like major pollution incidents) are significantly less frequent than 

others (like normal quality circumstances). Some pollution levels or conditions in these datasets are 

underrepresented, creating an imbalance. The minority classes, often the most important from an 

ecological or health standpoint, are frequently misclassified. In the past decade, deep learning 

techniques have gained popularity because of the advancements in speech recognition, computer vision, 

and various other fields [1-3]. Their recent success can be ascribed to enhanced data availability, 

advancements in hardware and software, and numerous algorithmic innovations that expedite training 
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and enhance generalization to novel data. Notwithstanding these advancements, less statistical research 

has been conducted to adequately assess methods for addressing class imbalance through deep learning 

and their associated structures, namely deep neural networks.  

Deep learning models, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs), can be extensively applied to analyze time series such as water quality monitoring and spatial 

data, effectively capturing complex patterns and trends for improved predictive accuracy. In the study 

[4], using the powerful performance of long short-term memory (LSTM) deep neural networks in time-

series prediction, a drinking-water quality model was designed to forecast massive amounts of water 

quality data using the advanced deep learning theory. However, these models struggle with imbalanced 

class distributions. Deep learning models are known to be data-hungry, requiring large, balanced 

datasets to achieve optimal performance. When the data distribution is skewed, deep learning models, 

especially those with large capacities, may overfit the majority classes, ignoring the underrepresented 

ones. In imbalanced datasets, training deep models may require more time or even fail to converge to a 

satisfactory solution due to the rarity of minority class instances. While deep learning can learn intricate 

patterns in data, it still requires careful handling of imbalances, especially in multi-class scenarios 

where each class should be learned equally well [5]. In many applications, the minority classes are 

critically important, even though they are underrepresented in the dataset. Detecting rare diseases may 

be far more critical than identifying common health conditions. Missing a rare fraudulent transaction 

can have significant financial implications, whereas misclassifying a legitimate transaction as fraud has 

fewer consequences. In cybersecurity, recognizing uncommon types of cyberattacks is crucial to prevent 

breaches. To address unbalanced human activities from smart homes and increase the learning 

algorithms' sensitivity to the minority class, the research in [6] suggests a data-level perspective in 

conjunction with a temporal window technique. As deep learning systems are increasingly applied in 

high-stakes environments, it becomes essential to  

ensure that these models perform well across all classes, particularly the minority ones. Solving the 

imbalanced classification problem in deep learning will lead to more robust models that generalize to 

diverse real-world data, ensuring more reliable performance. The study in [7] seeks to summarize the 

most recent developments in this field by exploring the real-world application of imbalanced learning 

and presenting a thorough analysis of current approaches to address unbalanced learning. This paper 

provides a timeline between 2012 and 2024 illustrating the development of Deep Neural Networks 

(DNN) and the increasing prevalence of multi-class imbalance in section 5. The review focuses on 

strategies that address the imbalance problem in multi-class classification tasks, specifically within the 

context of water quality data. 

1.1 Motivation and Contribution 

Many researchers concur that the topic of deep learning with class-imbalanced data is not widely 

studied [8,9]. The multiclass imbalance problem is not as established as the binary class imbalance 

problem. The situation is more complicated in multiclass imbalance. There can be multiple majority 

and minority classes. Suppose an imbalanced dataset has three classes: A, B, and C. Here, class A can 

be the majority class concerning class B and also can be the minority class with respect to class C. So, in 

multiple classes, it is hard to identify the majority and minority classes concerning other classes. 

According to the study in [10], the type of class size configuration and the degree of class overlap 

significantly impact the difficulty in multiclass unbalanced data. 

This review paper aims to provide a comprehensive overview of the methods, challenges, and recent 

advancements related to handling imbalanced data in multi-class classification using deep learning, 

primarily in water quality data sets. Here are the key objectives that should guide the structure and 

content of the paper: 

● Highlight the unique challenges posed by multi-class classification problems compared to binary 

classification and investigate how class confusion between minority classes affects learning in deep 

neural networks and the lack of multi-class imbalance studies focused on water quality 
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● Include advanced strategies such as cost-sensitive learning, ensemble methods, and generative models 

like GANs to combat imbalanced class distributions. 

● Provide insight into why deep learning models struggle with imbalanced classes despite their power in 

representation learning and lack of multi-class imbalance studies focused on water quality 

● Analyse the role of architectural modifications in deep learning models that help mitigate imbalance, 

such as attention mechanisms, transfer learning, and meta-learning. 

The following sections categorize the methods into data-level, algorithm-level approaches, and hybrid 

techniques. Discuss the merits and demerits of these methods, comparing their effectiveness in 

improving the performance of minority classes while maintaining good overall classification. The paper 

highlights the need for integrating advanced deep-learning techniques into water quality monitoring 

systems.  

2. DATA-LEVEL SOLUTIONS 

To resolve class imbalance and improve the representation of minority classes, data-level techniques 

focus on modifying the training set. A detailed analysis of data types reveals various modalities, with 

medical imaging and ecological datasets being particularly affected by imbalance issues. Techniques 

such as data augmentation, resampling, and the creation of synthetic data points have been successful 

in reducing these problems. Fig. (1) summarizes the data-level solutions. 

 2.1 Resampling Techniques 

 Two primary approaches to address the class imbalance problem are random under-sampling and 

random oversampling. This work [11] examined and confirmed the value of several sampling techniques 

over non-sampling techniques to produce a machine-learning model with a well-balanced sensitivity 

and specificity on unbalanced chemical data. This study [12] examined popular techniques from both 

categories assessed in this work for their capacity to improve the unbalanced ratio of five extremely 

unbalanced datasets from various application fields. To balance the classes, these methods add or 

remove samples at random. Samples eliminated in a random order can eliminate valuable information. 

The scenario is also the same for random oversampling, where performance matches up to under-

sampling but requires more processing power to increase samples randomly in the minority class. These 

methods take extensive time, particularly when dealing with massive data sets. According to Chawla et 

al. (2002), [13] the two most popular oversampling techniques are the random replication of a small 

number of samples and the synthetic minority over-sampling technique (SMOTE). While SMOTE 

effectively balances classes, it can introduce noise and duplicate samples, reducing its reliability in high-

dimensional datasets. Consequently, there are numerous variations of techniques that enhance 

SMOTE. ADASYN modifies the generation of synthetic samples based on minority class density [14]. 

Safe-Level-SMOTE [15] balances class distribution using a safe-level technique, thereby minimizing 

misclassification risks. A variation of SMOTE called borderline-SMOTE only generates synthetic 

samples on the boundary between two classes. Borderline-SMOTE [16] finds and synthesizes samples 

close to the decision boundary. SDSMOTE [17], a spatial distribution-based SMOTE, primarily creates 

an entirely new data set by obtaining raw spatial data distribution. When choosing majority-class 

sample subsets from various angles, two sample selection techniques—more precisely, a top-down and 

a bottom-up strategy—are suggested to preserve the original data distribution pattern. Using the 

SMOTE technique with a post-processing strategy to modify the datasets is another method of resolving 

the class imbalance issue. The investigation [18] uses the SMOTE method, the Tomek link, and the 

combination of these two resampling techniques for fault classification with simulated and 

experimentally imbalanced data. To address the class disparity in a non-noisy manner, A simple and 

effective oversampling strategy called k-means SMOTE was presented by Douzas et al. [19]. It combines 

SMOTE with k-means clustering.  

 The main target of these techniques is to identify the dataset's outlier, redundant, and noisy patterns 

and remove them for better classifier performance. The techniques Tomek-link and Edited Nearest-

Neighbor rule are based on this. According to the study [20], the effect of class imbalance is significantly 
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accelerated by redundant borderline occurrences and outliers in the data set. Cluster-based instance 

selection (CBIS), a unique under sampling technique that blends instance selection and clustering 

analysis, is presented in the study [21]. While the instance selection component removes 

unrepresentative data samples from each "subclasses," the clustering analysis component clusters 

similar data samples of the majority class dataset into "subclasses." Before completing a learning task, 

this work in [22] presents a novel package for recent relevant oversampling approaches to enhance data 

quality in imbalanced datasets. However, oversampling can introduce noise into the dataset, the risk of 

overfitting, increase computing costs, and reduce information gain. While using the oversampling 

technique, it is necessary to consider the distinct features of the dataset and the specific oversampling 

procedure. These methods lessen the issues brought on by class imbalance while enhancing the models' 

general quality and dependability. As a result, decisions based on the model's predictions are eventually 

better. Some researchers have been investigating sampling strategies that integrate spatial information 

between data classes, deep learning, and clustering algorithms using intrinsic features to improve the 

data further [23]. Examine how DL-based clustering algorithms are trained, highlight several clustering 

quality indicators, and assess various DL-based methods using three bioinformatics cases: biomedical 

text mining, cancer genomics, and bioimaging. Of course, different sampling methods can be 

categorized based on the complexity of the corresponding sampling method.  

2.2 Data Augmentation 

To determine the optimal combination to improve classification performance on unbalanced datasets, 

the study in [24] provides a generic framework for evaluating nine ensembles learning and nine data 

augmentation strategies for class imbalance challenges. Synthetic data points will be generated for 

underrepresented classes using the technique. Data augmentation for multiclass imbalance can take 

several forms. Data augmentation techniques are frequently used with image and time series data. 

Sensor-based data, such as water quality monitoring and environmental data, can benefit from its 

application. Adding random noise to existing data is known as noise injection, and it is a frequently used 

form of data augmentation that can produce new samples [25]. Minor alterations to the sensor readings 

of parameters such as pH, nitrate levels, or residual chlorine levels, for example, can provide new data 

points while preserving the data's original structure. 

2.3 Generative Adversarial Networks (GANs) 

By integrating a variational autoencoder (VAE) into a multi-head graph attention network (GAT), this  

Fig. (1). Data level Solutions 

study [26] gathered a thorough dataset from various projects about various construction activities, each 

with a unique structure and degree of class imbalance. Adding a generative model that enhances  

the dataset for the underrepresented class enhanced the performance of building prediction models. 

The Deep Learning Generative Adversarial Random Neural Network, which has the same properties 

and capabilities as a GAN, is presented in this article. These models learn the underlying data 
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distribution and generate new samples that mimic real-world data. A discriminator and a generator 

neural network make up a GAN. The discriminator tries to differentiate between synthetic and real data, 

while the generator produces artificial data points. Genetic algorithms based on biologically influenced 

agents like mutation, crossover, and selection have been mimicked by GANs, a neural technique that 

creates populations of individuals [27]. GAN can generate unusual event conditions, such as chemical 

pollution, in the context of water quality indicators. Deep learning models that require balanced 

datasets to produce accurate predictions may find these generated samples particularly useful. 

3. ALGORITHM-LEVEL SOLUTIONS 

These techniques work by modifying the algorithm by giving the highest priority to enhancing the 

algorithms' capacity to identify instances belonging to the minority class correctly. Generating 

algorithms to be more responsive to the underrepresented groups helps improve models' overall 

performance and generalization when presented with imbalanced data. Among the most prevalent 

algorithm-level strategies is cost-sensitive learning, wherein the classification performance is enhanced 

by modifying the algorithm’s objective function. This alteration ensures that the model receives greater 

emphasis on learning from underrepresented classes. This study suggests using these measures as cost 

functions, frequently obtained using the confusion matrix [28]. Mienye et al. [29] focus on building 

robust cost-sensitive classifiers by altering the objective functions. Since the improved algorithms 

consider the unequal class distribution during training, altering the original data's distribution is not 

essential. This leads to more dependable performance than when the data is resampled.Fig.(2) 

summarizes algorithm-level solutions. 

3.1 Cost-Sensitive Learning 

Cost-sensitive learning takes into account the different costs associated with different types of  

misclassification and aims to optimize the model for scenarios where the consequences of errors are 

uneven. Cost-sensitive cross-entropy is a common choice for multi-class imbalance in water quality 

data. Analyzing the performance of data-level approaches against algorithm-level approaches that 

emphasize cost-sensitive models and against a hybrid approach that combines those two approaches is 

the main purpose of the work [30]. To emphasize accurate minority class classification, cost-sensitive 

learning introduces penalty terms to the loss function [31]. By assigning higher costs to misclassified 

minority samples, models must improve their performance in these underrepresented categories. The 

study to improve the classification performance of SVMs [32] proposed a method that automatically 

adjusts the error cost between class samples to identify a preferred hyperplane effectively. In 

classification accuracy, it can evaluate the efficiency of an error cost, and, should it proven ineffective, 

it modifies  

Fig. (2). Algorithmic level Solutions 

the error cost in the correct direction. To handle imbalanced streaming data involving concept drift, the 

work in [33] presents a chunk-based incremental  
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learning method termed adaptive chunk-based dynamic weighted majority. The loss function is 

modified to balance misclassifications of minority classes using cost-sensitive learning. Every class has 

a weight that is determined by inversely proportioning to how frequently it occurs in the training set in 

the Weighted Cross-Entropy Loss method. The weight Wc for a class C is calculated as  

Wc = 1/frequency of class C. 

Thus, classes with lower frequencies are given higher weights. This technique improves model 

performance on minority classes, which is particularly helpful for deep learning models that deal with 

multiclass imbalance issues by lowering the bias toward majority classes.[34] Suggested a class 

rebalancing technique based on a class-balanced dynamically weighted loss function, where weights are 

allocated according to class frequency and the predicted probability of ground truth class, to solve the 

imbalance in the class distribution in deep learning. 

3.2 Class-Balanced Loss Functions: 

Hard-to-classify examples can be focused more on using focal loss, an extension of cross-entropy loss. 

By lowering the weights of examples that are simple to categorize, this approach enhances the model's 

attention to uncommon occurrences in water quality datasets and successfully handles unbalanced 

datasets. Focal loss is a sophisticated function created to deal with the problem of class imbalance, 

especially when a model has to manage a major class difference. Facebook AI researchers first proposed 

the idea of focal loss for object detection in computer vision; it dynamically scales the cross-entropy loss 

and concentrates the model's training on samples that are difficult to categorize or incorrectly 

identified. The focal loss network intrusion detection system, a cost-sensitive neural network based on 

focal loss, is suggested to solve the unbalanced data issue in the study [35].  

4. HYBRID APPROACHES 

Hybrid approaches effectively address multi-class imbalance problems, particularly in intricate, high-

dimensional data like water quality. To improve classification performance for minority classes, hybrid 

approaches combine algorithmic and data-level techniques to create a fairer representation of classes. 

For example, Hybrid Data Augmentation with a Loss Adjustment approach utilizes synthetic data 

generation techniques, such as SMOTE, alongside algorithmic changes like class-reweighting in the loss 

function. In water quality data, for instance, generating synthetic samples of rare contaminant levels 

while adjusting the loss function to penalize misclassification of these rare classes can significantly 

enhance the model’s sensitivity to minority classes. The data-level augmentation increases the 

representation of minority classes in the training data, while loss adjustment methods—such as focal 

loss or class-balanced loss—bias the model to pay greater attention to these underrepresented classes. 

The study [36] combines SMOTE for augmenting minority class samples with algorithmic adjustments, 

enhancing classification performance in imbalanced water quality datasets. It details the impact of this 

hybrid approach on minority class detection accuracy in water monitoring contexts, showing improved 

results through a combined data and algorithmic methodology. One key limitation is the increased 

computational cost due to the hybrid approach, especially when applying SMOTE alongside algorithmic 

tuning for enhanced performance. This computational demand can make  
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Fig. (3). Hybrid Approaches  

real-time processing challenging. Class-specific ensemble networks are a powerful approach to 

addressing class imbalance in water quality data by tailoring ensemble components to enhance the 

representation of minority classes. The research study [37] demonstrates a dynamic selection approach 

to improve water quality anomaly detection, combining multiple ensemble methods with resampling 

techniques, including SMOTE and Tomek Links. When developers combine large amounts of 

heterogeneous data, which is structured, semi-structured, and unstructured data,  a significant barrier 

for applications is presented [38].By selecting specific models or components based on each class’s 

characteristics, this approach adapts dynamically to boost classification performance on imbalanced 

data. The study utilized techniques like Local Class Accuracy (LCA), decision trees, and random forests 

within a dynamic ensemble setup. This method showed improved balanced accuracy, F-score, and G-

mean, with the LCA-based ensemble showing the best results for minority class detection. However, 

these approaches' complexity and computational cost are higher, making real-time applications 

challenging in some scenarios.Fig.(3) summarizes these solutions. 

5. DEEP LEARNING SOLUTIONS FOR MULTICLASS IMBALANCE 

Deep learning, the subfield of machine learning, is employed with artificial neural networks (ANNs) 

with two or more hidden layers. A completely connected feedforward neural network with at least one 

hidden layer is called a multilayer perceptron (MLP). A particular kind of feedforward neural network, 

the CNN, is designed to process multi-dimensional data, including images [39]. The MLP and CNN are 

only two of the alternate DNN designs that have been created over time. Autoencoders and RNNs are 

described in detail in [40–42]. They also provide advanced optimization tactics such as  

increased regularization, parameter initialization, normalization, activation functions, and optimizers 

that have been shown to reduce training times and boost efficiency. While deep learning models such 

as CNNs and RNNs have shown remarkable success in various domains, handling multi-class imbalance 

remains a significant challenge, particularly in water quality classification. Representation learning is 

mapping raw input data features into a new representation or a new feature space using machine 

learning to improve detection and classification tasks. Non-linear input data transformations 

accomplish this process of translating unprocessed input data to new representations. This automated 

feature development saves a great deal of time by eliminating the need for specialists to manually hand-

engineer features. It enhances performance in difficult issues, like picture and speech, which are 

otherwise challenging to determine. By assembling several hidden layers, DNNs can learn high-level 

feature representations of inputs when given enough data. These learned representations decrease 

irrelevant input components while strengthening those crucial for discrimination. Deep learning 

architectures are made of more sophisticated abstract representations, giving them power.This section 

discusses developments in deep learning methods that tackle imbalance problems and demonstrates 

how well they perform in real-time water monitoring systems. 
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Fig. (4). Advancement in the classification of water data sets 

5.1 DNN Advancements and Multi-Class Imbalance (2012-2023) 

The evolution of deep learning models has significantly influenced the ability to manage imbalanced 

datasets. Below is a timeline of key advancements and their implications for handling multi-class 

imbalance, which is graphically shown in Fig. (4). 

2012-2014: Emergence of Deep Learning in Classification. 

Alexnet's [43] demonstration of the efficacy of deep learning in image classification sparked interest in 

DNN research in the period 2012-2014. Although it is not the main focus, the inherent imbalance in 

datasets such as ImageNet is started to be recognized as a potential issue. The study in [44] 

examined how the depth of the convolutional network affects its accuracy when used for large-scale 

image recognition. To meet the new state of the art for detection and classification in the ImageNet 

Large-Scale Visual Recognition Challenge, the study in [45] proposed a deep convolutional neural 

network architecture codenamed Inception. This study also implemented GoogLeNet, a 22-layer deep 

network whose quality is evaluated in detection and classification. The study in [46] investigates a 

technique the stack model classifier for multiclass classification for water quality prediction, which 

integrates machine learning with practical and simple water quality measurements. The introduction 

of GANs made it possible to create artificial data.[47] suggested a novel framework for using an 

adversarial approach to estimate generative models, enabling synthetic data generation, which became 

useful in addressing class imbalances by augmenting datasets. Early applications of machine learning 

for water quality focus primarily on regression-based models predicting specific parameters (e.g., pH, 

dissolved oxygen), with limited exploration of deep learning. 

2013-2015: Deeper Networks and Architectures 

Deeper networks like VGGNet [48] and GoogleNet [49] emerge, pushing the boundaries of accuracy in 

image classification. RNNs gain traction for sequential data such as time-series analysis. Researchers 

begin exploring techniques like data augmentation and cost-sensitive learning to address imbalances in 

specific applications. The introduction of RNNs sparks interest in using time-series data for water 

quality monitoring. However, studies remain sparse, and multi-class imbalance is still underexplored. 

2016-2018: Generative Models and Attention Mechanisms 

GANs are introduced, enabling the generation of synthetic data. Attention mechanisms [50] improve 

performance in tasks like machine translation and image captioning. The use of GANs for data 

augmentation to address class imbalance is explored. The problem of long-tailed distributions, a 

specific type of multi-class imbalance, gains attention. Early studies began experimenting with deep 

learning for classifying water quality indices, but imbalanced class distributions (e.g., more 'safe' than 

'unsafe' samples) pose challenges. GAN-based data augmentation starts being considered for 

underrepresented water quality classes. 
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2019-2021: Transformers and Self-Supervised Learning 

Transformer networks [51] revolutionize natural language processing and begin to influence other 

domains like vision and time-series analysis. Self-supervised learning techniques [52] allow models to 

learn from unlabelled data, reducing dependence on large labelled datasets.Research on specialized loss 

functions (e.g., focal loss) and training strategies (e.g., re-weighting, resampling) for imbalanced 

datasets intensifies. New metrics for evaluating performance under imbalance, such as balanced 

accuracy and macro-averaged F1 scores, are proposed.Researchers apply Transformer models to time-

series water quality data, improving classification accuracy for multi-class water quality indices. Studies 

highlight that class imbalance—particularly in real-world datasets from sensor networks—adversely 

affects model performance, leading to hybrid approaches combining data augmentation and 

algorithmic solutions. 

2022-2024: Focus on Robustness and Efficiency 

Emphasis shifts towards improving the robustness and efficiency of DNNs through techniques like 

model pruning, quantization, and federated learning, allowing deployment in resource-constrained 

environments. The connection between class imbalance and model robustness is further investigated. 

Methods for detecting and mitigating the effects of imbalance in real-world applications, including 

imbalanced environmental monitoring data, gain importance.2022: The paper "A Stacked Ensemble 

Deep Learning Approach for Imbalanced Multi-Class Water Quality Index Prediction" [Wen Yee 

Wong et al.] introduces a novel ensemble strategy combining deep neural networks to tackle multi-class 

imbalance in water quality datasets. The study demonstrates how ensemble methods can significantly 

improve prediction accuracy across imbalanced classes. Increased interest in integrating self-

supervised learning and domain adaptation for water quality classification, enabling models to handle 

data scarcity and class imbalance. Researchers focus on real-time monitoring systems incorporating 

class imbalance mitigation techniques, improving water quality predictions in diverse environmental 

conditions. 

5.2 Advantages of Deep Learning in Handling Class Imbalance for Water Quality Data 

Deep learning neural networks have several inherent advantages when handling multiclass data 

imbalance. Still, they may also be improved and modified with certain methods to deal with the problem 

more successfully. [53] suggests a novel framework for extracting hybrid characteristics that emphasize 

the combination and ideal choice of high- and low-level attributes. The suggested method achieves 

scalability and dependability by automatically adjusting the final ideal features based on real-time 

scenarios while producing an accurate and effective disease classification of medical images. Deep 

learning models, particularly CNNs and RNNs, excel at extracting intricate features directly from raw 

data without requiring extensive manual feature engineering. In [54], the most used DL network type 

CNNs are introduced, and their architecture development and key characteristics are discussed. This is 

essential for classifying water quality because it enables models to pick up on small differences between 

classes, like chemical compositions or contamination levels, that conventional models can miss. Layers 

in the deep neural network catch increasingly complicated information; the deeper layers concentrate 

on particular, in-depth aspects that distinguish one water quality level from another, while the first 

layers record fundamental patterns. This adaptability is highly advantageous in multi-class 

classification tasks with imbalanced data, as the model can focus on learning key traits of minority 

classes through feature extraction. 

5.2.1 Scalability and Flexibility 

Water quality datasets, which may include pH levels and other chemical indicators, are examples of 

huge, complicated datasets with high-dimensional features that deep learning models can manage. In 

contrast to traditional algorithms, which frequently require pre-processed or reduced input for effective 

training, architectures such as CNNs and transformers are naturally scalable; they can analyze large 

data volumes and complicated characteristics without requiring significant restructuring. This 

scalability is essential for water quality monitoring systems that gather data at high frequencies and 

from numerous sources to ensure that the model retains accuracy over various expanding datasets. 
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5.3 Transfer Learning and Pretrained Models 

Transfer learning allows training models on larger, balanced datasets and then fine-tuning them on a 

specific water quality dataset, which is particularly useful for minority class detection. Using pre-trained 

models like any domain-specific datasets, deep learning architectures can leverage the general feature 

representations learned from balanced data and apply these to smaller, imbalanced water quality 

datasets. This technique enhances the model’s ability to detect rare pollutants or contaminants, as the  

pre-trained layers retain generalizable knowledge that only needs fine-tuning, often resulting in 

improved accuracy for minority classes  

5.4 Innovative Imbalance-Specific Architectures 

Recent deep learning advancements include architectures specifically tailored for imbalanced data, like 

attention mechanisms and class-aware learning.[55] developed an Enhanced Long Short-Term Memory 

(E-LSTM) based on the feature attention mechanism that employs word-feature seizing and sequential 

modelling to identify and classify the stress polarity. By focusing on the most significant parts of an 

input, attention mechanisms enable models to enhance attributes from underrepresented classes. 

Attention methods can draw attention to important pollutant indicators in water quality categorization, 

even if those indicators only appear in just a fraction of the data. By producing embeddings emphasizing 

class differences, class-aware representation learning further enhances model performance by 

guaranteeing that minority classes have a separate representation space inside the model.  

Summary of Case Studies 

The case studies in Table 1 show the effectiveness of various deep learning strategies for addressing 

multi-class imbalances in water quality data. Techniques such as SMOTE, cost-sensitive learning, 

GANs, and ensemble methods have shown promise in improving minority class detection, although 

each method comes with trade-offs. Combining these methods in real-world water quality monitoring 

systems is often necessary to achieve robust performance. 

6.CONCLUSION AND FUTURE DIRECTIONS 

Water quality datasets often suffer from severe class imbalances, where certain pollution levels are 

significantly underrepresented. This limits the ability of deep learning models to generalize effectively. 

Many available datasets are small or collected under specific conditions, making it difficult to develop 

models with broad applicability.   Future research should focus on establishing standardized, well-

balanced water quality datasets by leveraging data augmentation techniques and synthetic data 

generation. This paper highlights the need for integrating advanced deep-learning techniques into 

water quality monitoring systems   GANs and hybrid deep learning approaches are powerful tools for 

handling class imbalance but require significant computational resources. Research should explore 

lightweight GAN architectures and efficient training strategies to make these methods more accessible 

for real-world applications. 

LIST OF ABBREVIATIONS 

IoT         =   Internet of Things   

ML         =   Machine Learning   

DL          =   Deep Learning  

CNN       =  Convolutional Neural Networks 

RNN       =  Recurrent Neural Networks 

LSTM    = Long Short-Term Memory  

DNN      = Deep Neural Networks 

SMOTE = Synthetic Minority Over-sampling      Technique   

SDSMOTE = Spatial Distribution-based SMOTE 

CBIS = Cluster-Based Instance Selection  
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GAN= Generative Adversarial Networks  

LCA = Local Class Accuracy  

ANN = Artificial Neural Networks  

MLP = MultiLayer Perceptron  

E-LSTM = Enhanced Long Short-Term Memory  
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1 Zhang, H., 

and Wang, 

M.[56] 

 

"Cost-

Sensitive 

LSTM for 

Imbalanced 

Industrial 

Wastewater 

Quality 

Prediction" 

2021 Cost-

sensitive 

learning 

+ LSTM 

Severe class 

imbalance; 

only 2% 

critical 

contaminatio

n samples 

AUC-PR 

increased by 

15%; 

improved 

sensitivity to 

minority class 

Struggled with 

false positives; 

suggested 

combining with 

under sampling 

techniques. 

2 Nicholaus 

et al.,[57] 

"Anomaly 

Detection in 

Coastal Water 

Quality Using 

Autoencoders" 

2019 Autoenco

ders 

Highly 

imbalanced 

data; rare 

pollution 

events 

Recall for rare 

events 

increased by 

30%; 

effectively 

identified 

rare pollution 

events 

Flagged natural 

fluctuations as 

anomalies, leading 

to false positives; 

proposed 

integrating domain 

knowledge. 

3 Karami 

Lawal et 

al.,[58] 

Optimized 

Ensemble 

Methods for 

Classifying 

Imbalanced 

Water Quality 

Index Data 

 

2020 Ensembl

e 

learning 

Resampled 

subsets of 

imbalanced 

data 

Overall 

accuracy: 

92%; 

improved 

recall for 

minority class 

None specified; 

demonstrated 

improved 

performance 

through 

aggregation of 

predictions. 

4 Wong, 

W.Y., et 

al.[59] 

"A Stacked 

Ensemble 

Deep Learning 

Approach for 

Imbalanced 

Multi-Class 

Water Quality 

2023 Stacked 

ensemble 

learning 

Imbalanced 

datasets with 

rare events 

Superior 

balanced 

performance 

across 

accuracy, 

precision, 

None specified; 

applied balanced 

bagging and 

RUSBoost 

techniques for 

improved 

classification. 
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